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Algorithms and working expressions for a grid-based fast multipole method (GB-FMM) have been
developed and implemented. The computational domain is divided into cubic subdomains, organized
in a hierarchical tree. The contribution to the electrostatic interaction energies from pairs of neigh-
boring subdomains are computed using numerical integration, whereas as the contributions from
further apart subdomains are obtained using multipole expansions. The multipole moments of the
subdomains are obtained by numerical integration. Linear scaling is achieved by translating and
summing the multipoles according to the tree structure, such that each subdomain interacts with a
number of subdomains that is almost independent of the size of the system. To compute electrostatic
interaction energies of neighboring subdomains, we employ an algorithm which performs efficiently
on general purpose graphics processing units (GPGPU). Calculations using one CPU for the FMM
part and 20 GPGPUs consisting of tens of thousands of execution threads for the numerical inte-
gration algorithm show the scalability and parallel performance of the scheme. For calculations on
systems consisting of Gaussian functions (α = 6) distributed as fullerenes from C20 to C720, the total
computation time and relative accuracy (ppb) are independent of system size.

1 Introduction

The computational speed has doubled every 18 month since the birth of the first computer. The exponential
growth of the computational efficiency is called Moore’s law.1 However, the computational speed of the
individual processors has already practically reached its maximum when using silicon-based technology,
and the primary means to improve the performance is parallelization.

The parallelization of quantum chemistry codes is not a trivial task, especially when aiming at imple-
mentations that run efficiently on thousands of central processing units (CPU) or general purpose graphics
processing units (GPGPU), although great advances have been made in the recent years.2–15 For example,
Yasuda and Maruoka 16 report a speed-up of four when using a GPGPU-accelerated version of their elec-
tron repulsion integral code, which is to be contrasted with the theoretical peak performance advertised by
GPGPU vendors that suggest several orders of magnitude better results.

Setting technicalities such as memory access patterns and communication overheads aside, the software-
hardware gap ultimately results from a mismatch between computer algorithms and the execution model
of the computer hardware. In particular, maximal performance can never be attained if the focus is on
parallelizing individual code segments interleaved by sequential parts, which is the core content of Amdahl’s
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law.17 It states that for massively parallel computers, the wall time it takes to perform a given calculations is
determined by the computational time that is needed to perform the operations in the serial part of the code.
The law seems to introduce severe limitations, because if 10% of the code is run serially the maximum
speed-up is a factor of about 10. However, if the time needed for the serial part can be made more or less
independent of the amount of parameters needed to describe the molecule, the total computational scaling
becomes independent of the size of the molecule, as long as a sufficiently large computer is available.
Alternatively, if the size of the system is kept the same, a higher accuracy is obtained at the same cost.

To be able to explore the computational capacity of future computers one has to design algorithms that
run efficiently on massively parallel computers. Real-space grid-based methods, also known as numerical
methods are well-suited for these architectures because the local support of the basis functions introduces
new opportunities to divide the calculation into lots of independent parts that can be performed in parallel.
Once numerical integration can be performed concurrently on sufficiently many cores, the performance is
not going to be limited by the total amount of work but by the work per computational node. In addition, the
flexibility of numerical approaches also renders accurate calculations with small basis-set truncation errors
(µEh) feasible.18–24 Thus, quantum chemistry calculations of the future employ local basis functions.

In this work, we discuss a fully numerical technique for computing electrostatic interaction energies
between charge densities. In the context of ab initio electronic structure calculations, this is needed to
compute large numbers of two-electron repulsion integrals. The evaluation of these integrals constitutes
one of the computational bottlenecks of the self-consistent-field (SCF) calculations. Implementation of the
FMM scheme in quantum chemistry codes that rely on atom-centered Gaussian-type basis sets significantly
reduces the number of explicit integrals over the basis functions.25–29 Instead of the O(M4) integrals in
the naive case, the FMM-accelerated prescreening scheme computes all interactions with only O(M) work,
as demonstrated by e.g. Rudberg and Sałek.29 We have adapted the FMM scheme originally conceived
by Greengard and Rokhlin 30 and introduced into quantum chemistry codes by White and Head-Gordon
et al.31,32 to a fully numerical framework. In the grid-based fast multipole method (GB-FMM), the long-
ranged and short-ranged contributions of the two-electron interactions are identified and treated differently.
The long-ranged interactions are computed using an FMM scheme with numerically calculated multipole
moments, whereas the short-ranged contributions are obtained by numerical integration as described in our
previous work.15,33–36 For a discussion of alternative parallelization techniques for Poisson solvers, we refer
to the recent survey by García-Risueño et al. 37

Even though the FMM scheme is surely a key component in the quest for linear scaling SCF calcula-
tions,38 our interest in the FMM algorithm does not stem merely from asymptotic complexity arguments.
Instead, we also tackle a somewhat different problem that is typical for grid-based methods, namely that
the memory requirements for representing functions on a grid grow linearly with the volume of the sys-
tem. The FMM scheme allows one to circumvent such limitations as it provides a natural framework for
decomposing functions into local grids that can be distributed across several computational nodes opening
the avenue for massive parallelization.

The article is outlined as follows. In Section 2, the GB-FMM scheme is thoroughly described. The bipo-
lar series expansion of electrostatic interactions and the translation of multipole moments are discussed in
Subsections 2.1 and 2.2. The partitioning of the computational domain and the grids are described in Sub-
sections 2.3 and 2.4. The expressions for calculation the two-electron interaction energy using numerical
integration combined with the GB-FMM scheme are derived in Subsections 2.5. The algorithm for cal-
culating multipole moments is presented in Subsection 2.7, whereas the algorithm of the direct numerical
integration of the near-field contributions to the two-electron interaction is described in Subsection 2.8. The
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different components are put together in Subsection 2.9, where the final algorithm is given. The timings
and accuracy of the calculations are presented in Section 3. The article ends with conclusions and a future
outlook in Section 4.

2 The Grid-Based Fast Multipole Method

The ultimate goal is efficient calculations of the Nρ(Nρ +1)/2 distinct pair interactions resulting from Nρ

charge distributions, that is

Uµν =
∫
R3

∫
R3

ρµ(r)
1

|r′− r|
ρν(r′)d3r d3r′ (1)

for 1≤ µ ≤ Nρ , 1≤ ν ≤ µ .
In this Section, we present the different expressions and methods required to arrive to the final expres-

sion for the energy, Eq. (26). The algorithm to efficiently evaluate the interaction energy is then given in
Subsection 2.9.

2.1 Bipolar expansion of electrostatic interactions

The mathematical basis of the fast multipole method is the bipolar series expansion39 of the Coulomb
potential:

1
|r′− r|

=
∞

∑
l=0

l

∑
m=−l

∞

∑
l′=0

l′

∑
m′=−l′

Slm(r−P)Tlm,l′m′(Q−P)Sl′m′(r′−Q). (2)

In Eq. (2), P and Q are two distinct (P 6= Q) but arbitrary reference points and Slm are real solid harmonics
in Racah’s normalization.40,41 Tlm,l′m′(Q−P) are the elements of the interaction matrix T(Q−P). We
provide explicit expressions for the elements in terms of real spherical harmonics in Appendix A.

Eq. (2) conveniently decouples coordinates r and r′, which significantly simplifies the evaluation of the
interaction energy in Eq. (1). The pair interaction energy can now be written as:

Uµν =
∞

∑
l=0

l

∑
m=−l

(∫
R3

Slm(r−P)ρµ(r)d3r
)

∞

∑
l′=0

l′

∑
m′=−l′

Tlm,l′m′(Q−P)
(∫

R3
Sl′m′(r′−Q)ρν(r′)d3r′

)
, (3)

where we identify the multipole moments (monopole, dipole, quadrupole, etc.) of the charge distributions

qµ,lm(P) =
∫
R3

Slm(r−P)ρµ(r)d3r. (4)

Organizing the multipole moments as a vector qµ , Eq. (3) can be rewritten as

Uµν = qT
µ(P)vν(P). (5)

with the potential moments vector given by

vν(P) = T(Q−P)qν(Q). (6)
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Fig. 1 The blue sphere overlaps with the red spheres, but not with the green spheres. Hence, the interaction of the density enclosed in the box
marked with a black circle with the boxes marked with white circles must be computed directly using Eq. (1). On the other hand, the
interaction between the box with the black circle and the boxes with white crosses can be computed using the multipole expansion in Eq .(3).

The elements of the potential vectors vν(P) have a direct physical significance,31 as they are the expan-
sion coefficients in solid harmonics of the electric potential due to ρν(r) expanded around P:

Vν(r) =
∞

∑
l=0

l

∑
m=−l

vν ,lmSlm(r−P). (7)

The main limitation of the bipolar expansion in Eq. (2) is that it converges only if |r′−Q|+ |r−P| <
|Q−P|. In geometrical terms, this means that it must be possible to enclose the two charge densities in
spheres which do not overlap, as shown in Fig. 1. Furthermore, in a practical implementation the expansion
must be truncated at a certain order lmax. However, the error diminishes systematically as lmax is increased,
implying that this is in general not a problem.

In the fast multipole method, the bipolar expansion is efficiently exploited by partitioning the charge
densities into spatial subdomains, such that each of these subdomains overlaps only with a handful of the
other subdomains, as described in the next Section. Grid-based methods have the advantage that non-
overlapping domains are very easily identified due to the local support of the numerical basis functions.

2.2 Translation of multipole moments

An important property of multipole moments is that the expansion point can be shifted, without explicit
recalculation of the multipole moments. The translation of the multipole moment from Q to P is given by

qµ(P) = W(Q−P)qµ(Q). (8)

Expressions for the elements of the translation matrix W can be found in Appendix A. The potential
moments can be translated in a similar fashion using

vν(Q) = WT (Q−P)vν(P). (9)

2.3 Domain partitioning and box hierarchy

A box is here a three-dimensional Cartesian domain. The A-th box Ω(A) is defined as:

4 | 1–22

Page 4 of 22Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Level 0 Level 1 Level 2

...

Fig. 2 An octree data structure is obtained by subdividing a three-dimensional domain recursively.

Ω
(A) =

[
x(A)min,x

(A)
max

]
×
[
y(A)min,y

(A)
max

]
×
[
z(A)min,z

(A)
max

]
, (10)

The zeroth box, Ω(0) is the complete computational domain. The center of box A is the point C(A) with
coordinates

C(A) =

(
x(A)min + x(A)max

2
,
y(A)min + y(A)max

2
,
z(A)min + z(A)max

2

)
. (11)

Each box is completely enclosed by a sphere centered at C(A) with radius

r(A) =
1
2

√(
x(A)max− x(A)min

)2
+
(

y(A)max− y(A)min

)2
+
(

z(A)max− z(A)min

)2
. (12)

We will refer to r(A) as the extent of box A. The enclosing spheres of boxes A and B overlap when∣∣∣C(A)−C(B)
∣∣∣≤ r(A)+ r(B).

Boxes are recursively subdivided such that each box is the parent to eight children boxes, thus forming
the octree data structure that is illustrated in Fig. 2. The indices of the children of box A are denoted by
Children(A). Likewise, the index of the parent of box A is parent(A).

The boxes are grouped into levels, which we define recursively as:

level(0) = 0, (13)
level(A) = level(parent(A))+1. (14)

The I-th level contains 8I boxes, and when the number of divisions is set to Dmax, the number of childless
leaf nodes at the highest level is 8Dmax . In order to make an efficient use of the bipolar expansion, the
vicinity of every box at all levels is divided into two groups: the nearest neighbors and the local far field.
The nearest neighbors of box A, NN(A), are the boxes which belong to the same level as A and whose
enclosing spheres overlap with that of A:

NN(A) =
{

B : level(A) = level(B),
∣∣∣C(A)−C(B)

∣∣∣≤ r(A)+ r(B)
}
. (15)

Note that A is itself a member of NN(A). The number of nearest neighbors ranges from 8 when A is
in a corner to 27 when it is in the interior of the computational domain. The local far field of the A-th
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level(A)=4 level(A)=3 level(A)=2

Fig. 3 Illustration of the domain partitioning for Dmax = 4. Each figure shows, for a selected box A (marked with a black circle): NN(A)
(circles, both white and black), parent(A) (in red), NN(parent(A)) (in blue) and LFF(A) (white crosses). The selected box (black circle) in
each figure is the parent to the box marked with a black circle in the figure to its left.

box, LFF(A), consists of all the children of the nearest neighbors of the parent of A, which are not nearest
neighbors of A themselves:

LFF(A) =

 ⋃
B∈NN(parent(A))

Children(B)

\NN(A). (16)

There are 43− 33 = 37 to 63− 33 = 189 boxes in the local far field of any box. From this definition we
note that, for boxes at levels 0 and 1, the local far field is empty, because box 0 has no parent and no nearest
neighbors.

An important property of this separation is that Ω(0) is exactly covered by the boxes in NN(A) ∪
LFF(A)∪LFF(parent(A))∪LFF(parent(parent(A)))∪ . . ., for any box A. In this way, the complete do-
main can be partitioned into a hierarchy of non-overlapping domains,

∫
R3

f (r)d3r = ∑
B∈NN(A)

∫
Ω(B)

f (r)d3r+

∑
B∈LFF(A)

∫
Ω(B)

f (r)d3r+

∑
B∈LFF(Parent(A))

∫
Ω(B)

f (r)d3r+ . . . .

(17)

The decomposition in Eq. (17) will always terminate with boxes at level two. The concepts defined in this
section are illustrated in Fig. 3 in two dimensions, for Dmax = 4.
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2.4 Grid representation

For each of the boxes at the highest level Dmax, an equidistant Cartesian grid is constructed as presented
below. A more detailed discussion can be found elsewhere.42

The one-dimensional grids consist of N points separated by a distance h, the grid step, denoted by
h. For example, for the x dimension, the points are x(A)1 = x(A)min,x

(A)
2 , . . . ,x(A)N = x(A)max. A one-dimensional

basis function is assigned to each point, e.g. χ
(A,y)
j (y) is assigned to point y(A)j . The basis functions are

polynomials of degree P with small support around their grid points. We employ sixth-degree polynomials
(P = 6) in the present work.

The three-dimensional basis set is an outer (tensorial) product of the one-dimensional local basis sets.
The expansion coefficients are the values of the function in the corresponding grid points. Taking the density
ρµ(r) as an example, its expansion in the local basis functions within box A is given by

ρµ(r)≈∑
i jk
(ρµ)

(A)
i jk χ

(A,y)
i (x)χ(A,y)

j (y)χ(A,y)
k (z). (18)

with the expansion coefficients (ρµ)
(A)
i jk = ρµ(x

(A)
i ,y(A)j ,z(A)k ).

As we have shown before,35 this representation is adequate for smooth charge densities. For all-electron
calculations, the presence of cusps at the nuclear positions requires a prohibitive number of points, which
can be circumvented by explicitly representing those cusps, which is beyond the scope of the present work
but described in detail in our previous work.42

The total number of grid points is given by (2DmaxN)3. Equivalently, this is (L/h)3, where L is the total
length of the computational domain Ω(0). For a typical step of 0.1 a0 and N = 200, Dmax = 3 allows treating
systems with a volume of up to 160×160×160 a3

0.

2.5 The FMM energy expression

Using Eq. (17), the expression for the energy in Eq. (1) can be reorganized as

Uµν = ∑
A:level(A)=Dmax

∫
Ω(A)

ρµ(r)

[
∑

B∈NN(A)

∫
Ω(B)

1
|r′− r|

ρν(r′)d3r′+

∑
B∈LFF(A)

∫
Ω(B)

1
|r′− r|

ρν(r′)d3r′+

∑
B∈LFF(Parent(A))

∫
Ω(B)

1
|r′− r|

ρν(r′)d3r′+ . . .

]
d3r.

(19)

The contributions arising from the nearest neighbors are grouped together into the near-field interaction
energy, U (A)

NF . The remaining terms constitute the far-field interaction energy U (A)
FF .

Uµν = ∑
A:level(A)=Dmax

U (A)
NF +U (A)

FF . (20)

U (A)
NF can be written more compactly as
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U (A)
NF =

∫
Ω(A)

ρµ(r)V
(A)
ν (r)d3r (21)

where V (A)
ν (r), which is the near-field potential at box A, is computed as a sum of contributions V (B,A)

ν (r):

V (A)
ν (r) = ∑

B∈NN(A)

∫
Ω(B)

1
|r′− r|

ρν(r′)d3r′ = ∑
B∈NN(A)

V (B,A)
ν (r). (22)

Because all the density pairs contributing to the far-field energy are non-overlapping, U (A)
FF can be calcu-

lated by exploiting the bipolar expansion in Eq. (3) as

U (A)
FF =

(
q(A)

µ

)T
v(A)ν (23)

where q(A)
µ are the multipole moments of the part of ρµ(r) contained within Ω(A),

q(A)
µ,lm =

∫
Ω(A)

Slm(r−C(A))ρµ(r)d3r, (24)

and the far-field potential moment vector v(A)µ is defined recursively as

v(A)µ = ∑
B∈LFF(A)

T(C(B)−C(A))q(B)
µ +WT (C(A)−C(parent(A)))v(parent(A))

µ . (25)

The final expression for the energy is then given by

Uµν = ∑
A:level(A)=Dmax

∫
Ω(A)

ρµ(r)V
(A)
ν (r)d3r+

(
q(A)

µ

)T
v(A)ν . (26)

2.6 Parallelization

The linear scaling nature of the fast multipole method is apparent from Eq. (26): for a given set of far field
potential vectors and near field potentials, the energy is evaluated in a single loop over the boxes. For an
analysis establishing linear scaling complexity also in the potential construction step, we refer to the work
by White and Head-Gordon.31 Here, we focus on presenting the traditional FMM algorithm in a maximally
parallel fashion.

Each box A is assigned to a node, denoted with A. If the GB-FMM scheme is parallelized to the fullest,
the number of computational nodes will be 82 + 83 + · · ·+ 8Dmax . We will refer to the 8Dmax nodes at the
highest level as near-field nodes. It is not required that all nodes are physically different. For example, in
the benchmarks shown in Section 3, all non near-field nodes are in fact the same.

The algorithms required for the calculation of pair energies are represented in Fig. 4 to Fig. 8. The
operations, which are run concurrently by all nodes, are represented within rectangles. The near-field nodes
must often carry out additional steps, which are indicated separately. Grey rectangles indicate steps that
require some type of inter-node communication.

In order to carry out the necessary operations, each node A stores the center of its own box, C(A), and
the centers of all its children, its parent and all boxes in LFF(A). In addition, each near-field node must also

8 | 1–22

Page 8 of 22Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



All near-field nodes A concurrently do

ai jk = (ρµ)
(A)
i jk ∀ i, j,k

for all 0≤ u≤ lmax do
b jk = ∑i I(A,x)i ai jk ∀ j,k
for all 0≤ v≤ lmax−u do

ck = ∑ j I(A,y)j b jk ∀ k
for all 0≤ w≤ lmax−u− v do

d = ∑k I(A,z)k ck

for all (l,m) such that Clm
uvw 6= 0 do

q(A)
µ,lm← q(A)

µ,lm +Clm
uvwd

(Note: d =
∫

Ω(A) xuyvzwρµ(r)dxdydz)

ck← z̃kck ∀ k
b jk← ỹ jb jk ∀ j,k

ai jk← x̃iai jk ∀ i, j,k

Fig. 4 Algorithm for the numerical integration of the multipole moments of the boxes with level(A) = Dmax.

store the grids of its nearest neighbors (including its own), and be able to calculate or read the expansion
coefficients

(
ρ
(A)
µ

)
i jk

, which are the expansion coefficients of all the input densities in box A.

2.7 Evaluation of multipole moments

At the highest division level, the multipoles are integrated using the expression in Eq. (24). The fact that
the multipole moments have to be computed by numerical integration may seem daunting, especially when
the multipole moments of Gaussian primitives can be evaluated more or less trivially.32 However, it turns
out that the tensorial nature of the local basis functions leads to a very efficient algorithm, as the multipole
moment integrals always separate to products of one-dimensional integrals, many of which can be reused.

The real solid harmonics can be expressed using Cartesian coordinates as

Slm(r,θ ,ϕ) = ∑
uvw

Clm
uvwxuyvzw. (27)

where Clm
uvw are the transformation coefficients.41 The multipole moments in the Cartesian representation

are easily computed with the following expression:

q(A)
µ,lm = ∑

uvw
Clm

uvw ∑
k

I(A,z)k z̃w
k ∑

j
I(A,y)j ỹv

j ∑
i

I(A,x)i (ρν)
(A)
i jk x̃u

i , (28)

where the shifted coordinates are x̃i = x(A)i −C(A)
x , ỹ j = y(A)j −C(A)

y and x̃i = z(A)k −C(A)
z . The quantities I(A,x)i ,

I(A,y)j and I(A,z)k are one-dimensional integrals over the basis functions, e.g.

I(A,x)i =
∫ x(A)max

x(A)min

χ
(A,x)
i (x)dx. (29)
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All near-field nodes concurrently do

Compute q(A)
µ (Eq. (28), Fig. 4)

All nodes A with level(A)≥ 2 concurrently do
for all boxes B ∈ Children(A) do

Receive q(B)
µ from node B

q(A)
µ ← q(A)

µ +W(C(B)−C(A))q(B)
µ

Send q(A)
µ to node parent(A)

Fig. 5 Algorithm for calculating q(A)
µ , the multipole moments for all boxes at all levels greater or equal to two for a charge density ρµ .

The most expensive operations appear in the outermost loops, with a computational cost that is asymp-
totically proportional to O

(
(lmax +1)N3), which is a substantial improvement as compared to the cost of

O
(
(lmax +1)2N3) for the naive implementation.
For the boxes at lower levels, the multipole moments can be computed recursively from the multipoles

of their children using Eq. (8):

q(A)
µ (C(A)) = ∑

B∈Children(A)
W(C(B)−C(A))q(B)

µ (C(B)). (30)

The algorithm to compute the multipole moments at all boxes is outlined in Fig. 5. Initially, all near-
field nodes must integrate the multipole moments in their respective boxes as described above. Then, the
boxes at lower levels can recursively reconstruct their multipole moments. For each of its 8 children,
each node receives the (lmax +1)2 entries of the multipole moment vector, which is then multiplied by the
(lmax +1)2× (lmax +1)2 translation matrix, and the result is accumulated into q(A)

µ . In the FMM literature,
this step is often referred to as the upward pass.

Once the multipole moments have been obtained, the corresponding potential vectors v(A)µ are computed
using the algorithm described in Fig. 6. Each node computes its contribution to the potential in each box
B of LFF(A). This computational step consists of a series of constructions of interaction matrices and
the corresponding matrix-vector multiplications with a cost of O(lmax

4). The resulting potential vectors,
containing (lmax+1)2 entries each, are then sent to the appropriate nodes B. In this way, each node receives
all the necessary contributions which are added up to form the local far-field contribution to v(A)µ . Then,
starting from the lowest level, which is level 2 in practice as the contributions from levels 0 and 1 vanish,
because they have no local far field neighbors. Each node sends v(A)µ to its children, which translate the

contribution by means of Eq. (9) and accumulate it into their own v(A)µ , which is commonly known as the
downward pass.

2.8 Calculation of the direct interactions

For the direct interactions, we use a low-rank separated representation of the Coulomb potential based on
the well-known integral expression by Boys and Singer43,44:

1
r12

=
2√
π

∫
∞

0
e−t2r2

12dt ≈
R

∑
p=1

ωpe−t2
pr2

12 +
π

t2
f
δ (r1− r2). (31)
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All nodes A with level(A)≥ 2 concurrently do

Require q(A)
µ (Fig. 5)

for all boxes B ∈ LFF(A) do
Compute v(A,B)µ = T(C(A)−C(B))q(A)

µ

Send v(A,B)µ to node B

Receive v(B,A)µ from node B

v(A)µ ← v(A)µ +v(B,A)µ

Receive v(parent(A))
µ from node parent(A)

v(A)µ ← v(A)µ +WT (C(parent(A))−C(A))v(parent(A))
µ

for all boxes B ∈ Children(A) do

Send v(A)µ to node B

Fig. 6 Algorithm for calculating v(A)µ , the potential multipole moments at every box.

We refer to our previous work for further details on how to obtain the quadrature weights ωp and points
tp.35 In this work, the operator rank is R = 50 and the chosen quadrature parameters are tl = 2, t f = 50,
Nlin = 25, and Nlog = 25. The parameters are chosen such that the accuracy of the near-field interactions
is not a bottleneck. Thus, in practical applications the total number of quadrature points can be significally
reduced.

Calculating the contributions to the potential of the nearest neighbors in Eq. (22) is done as a series of
tensor contractions:

(
V (B,A)

µ

)
i jk
≈

R

∑
p=1

ωp

Nz

∑
k′=1

Oz,p
kk′

Ny

∑
j′=1

Oy,p
j j′

Nx

∑
i′=1

Ox,p
ii′

(
ρ
(B)
µ

)
i′ j′k′

+
π

t2
f

(
ρ
(B)
µ

)
i jk

(32)

The linear transformation is executed very efficiently using GPGPUs, as we recently have shown.15 The
performance obtained on a single Nvidia K40 card is between 0.5 and 1 TFLOPs depending on the size of
the matrices Oξ ,p.

The matrix elements of the Oξ ,p matrices are given by

Oξ ,p
ii′ =

∫
ξ
(B)
max

ξ
(B)
min

e−t2
p(ξ−ξ

(A)
i )2

χ
(B,ξ )
i′ (ξ )dξ (33)

The algorithm to compute the near-field potentials is summarized in Fig. 7. Each near-field node com-
putes all contributions in their neighbors boxes and sends the data to the neighbor nodes. The computation
itself is carried out very efficiently on the GPGPU. The inter-node communication can be expensive: the
majority of the nodes have to send and receive 27N3 coefficients, which for typical values of N = 100–200
amounts from hundreds of MB to over 1 GB for 64-bit floating point numbers.

The near-field energy contribution to the energy in Eq. (26) is then computed as∫
Ω(A)

ρµ(r)V
(A)
ν (r)d3r = ∑

k
I(A,z)k ∑

j
I(A,y)j ∑

i
I(A,x)i

(
ρ
(A)
µ

)
i jk

(
V (A)

ν

)
i jk

, (34)
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All nodes A concurrently do
for all B ∈ NN(A) do

Compute V (A,B)
µ (Eq. (22), performed on GPGPU)

Send V (A,B)
µ to node B

Receive V (B,A)
µ from node B

V (A)
µ ←V (A)

µ +V (B,A)
µ

Fig. 7 Algorithm for calculating V (A)
µ (r), the nearest-neighbor contribution to the potentials in all boxes at the highest level.

which can be obtained efficiently using the algorithm for integrating the multipole moments with lmax = 0
shown in Fig. 4.

2.9 Calculation of pair interactions

We are now ready to put together all the pieces introduced in this Section into an overall algorithm that
computes all pair energies. The final algorithm is presented in Fig. 8. In the initialization step, all nodes
compute the translation and interaction matrices that they need. Near-field nodes also compute the necessary
Coulomb matrices and the integral vectors. Then, for each input density, each node computes the necessary
potential vectors (v(A)µ ) and the potential contributions (V(A)

µ (r)) of the near-field nodes. For each density
ρν(r) with 1 ≤ ν ≤ µ , the node computes its contribution to the interaction energy Uµν , either as the dot

product
(

q(A)
µ

)T
v(A)ν or using the tensor contraction in Eq. (34) for the near-field nodes. All contributions

are added up into a master node.

3 Results

3.1 Benchmark calculations on fullerene systems

The accuracy and parallel performance of the GB-FMM scheme was analyzed in a series of benchmark
calculations on fullerene structures that were obtained from Mitsuho Yoshida’s fullerene library database.45

We constructed model densities from linear combinations of Gaussian functions centered on the nuclear
coordinates of the fullerene structures:

ρ(r) =
(

1
π

)3/2

∑
K

qKe−αK(r−RK)
2
. (35)

The densities were partitioned to the boxes at the highest level of division. For example, when Dmax = 3, the
density was represented as an array of size 83 = 512 containing function objects. These objects contained
in turn the information about the near field grids and the numerical meshes. The use of densities of the form
in Eq. (35) permitted us to determine the accuracy of the GB-FMM scheme. The so-called self-interaction
energy of the charge density (Eq. (1) in the case µ ≡ ν) was computed and compared with its analytical
value. The analytical value was obtained as
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All nodes A concurrently do
All nodes:

for all B ∈ LFF(A) do
Compute T(C(A)−C(B))

for all B ∈ Children(A) do
Compute W(C(B)−C(A))

Compute WT (C(parent(A))−C(A))

Near-field nodes:

for all B ∈ NN(A) do
Compute Oξ ,p (Eq. (33))
Compute Iξ (Eq. (29))

for all µ : 1≤ µ ≤ Nρ do
All nodes A concurrently do

All nodes:

Compute v(A)µ (Fig. 6)

Near-field nodes:

Compute V (A)
µ (Fig. 7)

for all ν : 1≤ ν ≤ µ do
All nodes A concurrently do

Compute q(A)
ν (Fig. 5)

All near-field nodes A concurrently do

U (A)
µν = v(A)µ q(A)

ν +
∫

Ω(A) V (A)
µ ρ

(A)
ν d3r

All near-field nodes reduce:

Uµν ←Uµν +U (A)
µν

Fig. 8 The grid-based FMM algorithm for the calculation of all pair interaction energies from Nρ charge densities.
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U = ∑
K

q2
K

√
2αK

π
+2 ∑

K>J

qKqJ erf
(

RJK
αJαK

αJ+αK

)
RJK

, (36)

where RJK = |RJ−RK|.
The Gaussian amplitudes were set to the nuclear charge of carbon, qK ≡ 6, and the exponents were set

to unity, αK ≡ 1. These parameters ensured that the charge was reproduced and, more importantly, that all
model charge densities were globally smooth.

The GB-FMM scheme was implemented in Fortran and parallelized with MPI and cuBLAS, the CUDA-
implementation of the BLAS library. One single-core physical node was responsible for computing the
far-field potentials with the FMM, while the near field potential calculations were divided among hybrid
nodes, each equipped with a GPGPU card (NVIDIA Tesla 40K cards that are controlled by Intel Xeon
E5-2620-v2 CPUs). All parallel runs were performed on the Taito GPGPU cluster of the CSC computing
center.

3.2 Accuracy

The fullerene C60 was picked as the test structure for studying how the accuracy of the GB-FMM scheme
depends on the grid step h, the truncation of the multipole expansion lmax, and the depth of the octree Dmax.
The domain size was adjusted for ensuring that the density was negligible at the domain boundaries. In the
case of C60, the cubic domain had a side length of 24a0. The values Dmax = 2,3,4 and lmax = 5,7,10,12,15
were considered. The grid step was set to h = a0/2i with i = 1,2,3,4.

In Fig. 9, the absolute error in the self-interaction energy is plotted against the grid refinement parameter
i. The error is seen to be saturated below one millihartree in the case of Dmax = 2, while the 10−5Eh level is
reached with Dmax = 3 and Dmax = 4. These absolute energies translate to relative accuracies in the range
of 1 to 10 ppb, which agree well with our previous results.34,35

The error in the energy saturates with respect to both the truncation of the bipolar multipole expansion
lmax and the grid step h, which implies that the remaining error results from the quadrature parameters of
the direct integration, e.g., the discrete representation of the Coulomb operator.

3.3 Performance

The evaluation of the electrostatic potential is by far the most time consuming step in the GB-FMM scheme.
As the near-field and far-field potentials are computed concurrently by construction, the timing is

tpot = max(tNF, tFF). (37)

The near-field contribution is 8DmaxtDAGE, where tDAGE is the time for constructing a single near field poten-
tial with the direct integration. The far-field contribution consists of evaluating the 8Dmax potential vectors,
i.e., the expansion coefficients of the far-field potentials.

In Fig. 10, we report timings for calculation of the the potentials for the C20, C60, C180, C320 and C720
systems together with the absolute relative error. The domain sizes varied between 18a0×19a0×18a0 and
59a0× 56a0× 56a0. The GB-FMM specific parameters were Dmax = 3 and lmax = 15. The grid step and
the quadrature parameters were set to 0.1a0 and Nlin = Nlog = 25, respectively.

While the cost of the direct integration of the potential on a single-core CPU is competitive with the
GB-FMM part for small systems, the GB-FMM scheme scales significantly better with the size of the

14 | 1–22

Page 14 of 22Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



1 2 3 4

Grid refinement i

10−5

10−4

10−3

10−2

10−1

100

101

ε/
E

h

lmax = 5

lmax = 7

lmax = 10

lmax = 12

lmax = 15

(a) Dmax = 2

1 2 3 4

Grid refinement i

10−5

10−4

10−3

10−2

10−1

100

101

ε/
E

h

lmax = 5

lmax = 7

lmax = 10

lmax = 12

lmax = 15

(b) Dmax = 3
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(c) Dmax = 4

Fig. 9 Accuracy of the GB-FMM with respect to grid quality, truncation of the multipole expansion and the depth of the octree. The grid
refinement parameter i gives the grid step from h = a0/2i.
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Fig. 10 Time of the potential calculation as a function of system size. The data points correspond to the fullerene structures C20, C60, C180,
C320 and C720.
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Fig. 11 Speed up of potential calculation in C60 as a function of GPGPU cards. While the near field potential calculation parallelizes well by
construction, the Amdahl’s law limit is reached already with 4 to 5 GPGPU cards as the serial far-field potential calculation forms a bottleneck.
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system, both in terms of accuracy and performance. In the GB-FMM calculation, a constant, ppb-level
relative accuracy is obtained for all system sizes, whereas the accuracy of the direct numerical integration
deteriorates with increasing size of the domain.

The results obtained for the GB-FMM scheme can be expected as the accuracy of the scheme should
not depend on the size of the computational domain, because the entire domain is never simultaneously
considered. In addition, as all the direct numerical integration parts of the calculations within the GB-FMM
scheme are performed on domain sizes of a couple of atomic units per side, the GB-FMM should retain the
accuracy characteristic (0.1–1 ppb) of the direct numerical integration for that size of the grid.

When the near field potential calculation is distributed among 20 GPGPU nodes, the GB-FMM scheme
is clearly superior to the fully numerical integration method and exhibits effectively constant scaling of the
computational time with respect to system size, which is a consequence of reaching the limit of Amdahl’s
law. When all GPGPU nodes performing the numerical integration complete their task faster than the CPU
performing GB-FMM calculation, the running time of the potential calculation is dominated by the single-
core GB-FMM part of the calculation. The calculation can be speeded up by also distributing the GB-FMM
part on several CPUs or GPGPUs.

Fig. 11 shows in detail how the limit of Amdahl’s law is reached for the C60 system. The employed
parameters were the same as used in the calculations reported in Fig. 10. With lmax = 15 and Dmax = 3, the
GB-FMM part becomes the bottleneck when the near field potential calculations are divided among four to
five nodes. The calculations of the near-field potentials scale nearly ideally as expected.

4 Conclusions and outlook

A grid-based fast multipole method (GB-FMM) scheme for calculating two-electron interaction energies
has been developed and implemented. The computational domain is divided into subdomains that can be as-
signed to nearest neighbors and more distant subdomains. The far-field contributions to the two-electron in-
teraction energies are obtained by employing the bipolar series expansion of the Coulomb operator, whereas
the near-field contributions are obtained by fully numerical integration of the corresponding Coulomb en-
ergy integral. In the GB-FMM scheme, the multipole moments are calculated for the individual subdomains
and combined to multipole moments for groups of subdomains. The series expansions of the charge density
and the electrostatic potential are combined to yield the electrostatic interaction energy of separated non-
overlapping charge densities. The numerical integration algorithm has been adapted for general purpose
graphics processing (GPGPU) units. The performance of the computational scheme has been demonstrated
by calculations using one CPU for the serial part including the GB-FMM and up to 20 GPGPUs for the
numerical integration of the Coulomb energy. For the largest GPGPU cluster, the parallel part of the code is
faster than the serial one and since the computing time of the serial part of the code is more or less indepen-
dent of the system size, the computational time is found to be independent of the size of the system. The
present calculations show that numerical calculations using local basis functions can be made to run very
efficiently on massively parallel computers, because for local basis functions the computational domain can
be easily subdivided into smaller units whose interactions can be computed independently. The algorithm
yields a computational method that formally scales linearly with the system size, whereas the massively
parallel computer architecture renders calculations whose wall time is independent of the system size feasi-
ble. The scalability, performance and accuracy of the present numerical calculations on the GPGPU cluster
suggest that quantum chemistry calculations of the future will most likely be made this way using local
basis functions.
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Appendix

A The interaction and translation matrices

Let us introduce the auxiliary functions

Am
l =


l! m = 0

(−1)m
√

(l−m)!(l+m)!
2 m > 0

(−1)mA−m
l m < 0

(38)

Bm
l =


0 m = 0

(−1)m
√

(l−m)!(l+m)!
2 m > 0

(−1)m+1B−m
l m < 0

(39)

Cm
l =

(−1)m√
(1+δm0)(l +m)!(l−m)!

, (40)

Tlm, jk =



(−1) jCm
l Ck

j

[
Am+k

l+ j I|m+k|
l+ j +(−1)kAm−k

l+ j I|m−k|
l+ j

]
m≥ 0,k ≥ 0

(−1) jCm
l Ck

j

[
Bm−k

l+ j I−|m−k|
l+ j − (−1)kBm+k

l+ j I−|m+k|
l+ j

]
m≥ 0,k < 0

(−1) jCm
l Ck

j

[
(−1)m+1Bm+k

l+ j I−|m+k|
l+ j − (−1)k+mBm−k

l+ j I−|m−k|
l+ j

]
m < 0,k ≥ 0

(−1) jCm
l Ck

j

[
(−1)mAm−k

l+ j I|m−k|
l+ j − (−1)m+kAm+k

l+ j I|m+k|
l+ j

]
m < 0,k < 0.

(41)

Conversion to a real-valued formulation is once again effected. We introduce a second set of auxiliary
functions

α
m
l =


1
l! m = 0
(−1)m 1√

2(l+m)!(l−m)!
m > 0

(−1)mα
−m
l m < 0

(42)

β
m
l =


0 m = 0
(−1)m 1√

2(l+m)!(l−m)!
m > 0

(−1)(m+1)β−m
l m < 0

(43)

γ
m
l = (−1)m

√
(2−δm0)(l−m)!(l +m)!, (44)

whereby the translation matrix is given by
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Wlm, jk =



(1
2

)δk0

(
γm

l
γk

j

)[
α

m−k
l− j S|m−k|

l− j +(−1)kα
m+k
l− j S|m+k|

l− j

]
m≥ 0,k ≥ 0(

γm
l

γk
j

)[
(−1)kβ

m−k
l− j S−|m−k|

l− j −β
m+k
l− j S−|m+k|

l− j

]
m≥ 0,k < 0(1

2

)δk0

(
γm

l
γk

j

)[
(−1)m+1β

m−k
l− j S−|m−k|

l− j − (−1)m+kβ
m+k
l− j S−|m+k|

l− j

]
m < 0,k ≥ 0(

γm
l

γk
j

)[
(−1)m−kα

m−k
l− j S|m−k|

l− j − (−1)mα
m+k
l− j S|m+k|

l− j

]
m < 0,k < 0.

(45)
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Graphical abstract

A grid-based fast multipole method have been developed for calculating two-electron interaction energies
for non-overlapping charge densities.
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