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Structural evolution of Ag-Cu nano-alloys confined between AlN nano-

layers upon fast heating 

 

J. Janczak-Rusch, M. Chiodi, C. Cancellieri, F. Moszner, R. Hauert, G. Pigozzi,  

L.P.H. Jeurgens 

 

Abstract 

The structural evolution of Ag-Cu/AlN nano-multilayer (NML), as prepared by a magnetron-

sputtering on a α-Al2O3 substrate, was monitored during fast heating by real-time in-situ XRD 

analysis (at the synchrotron), as well as by ex-situ microstructural analysis using SEM, XPS 

and in-house XRD. The as-deposited NML is constituted of alternating nano-layers (thickness 

≈ 10 nm) of a chemically inert AlN barrier and a eutectic Ag-Cu40at.% nano-alloy. The nano-

alloy in the as-deposited state is composed of a fcc matrix of Ag nano-grains (≈ 6 nm), which 

are supersaturated by Cu, and some smaller embedded Cu rich nano-grains (≈ 4 nm). Heating 

up to 265°C activates segregation of Cu out of the supersaturated Ag nano-grains phase, thus 

initiating phase separation. At T > 265 °C , phase-separated Cu metal partially migrates to the 

top NML surface, thereby relaxing thermally-accumulated compressive stresses in the 

confined alloy nano-layers and facilitating grain coarsening of (still confined) phase-separated 

nano-crystallites. Further heating and annealing up to 420°C results in complete phase 

separation, forming extended Ag and Cu domains with well-defined coherent Ag/AlN 

interfaces. The observed outflow of Cu well below the eutectic melting point of the bulk Ag-

Cu alloy might provide new pathways for designing low-temperature nano-structured brazing 

materials. 

 

Keywords: Ag-Cu eutectic; size effect; brazing filler; melting point depression; nano-joining.

Page 1 of 31 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 2 

  

1. Introduction 

The Ag-Cu system is of broad-interest from both a scientific and technological point of 

view. On the one hand, the Ag-Cu system serves as a model system to investigate the phase 

stability of metastable solid solutions, as prepared by various non-equilibrium processing 

routes (e.g. vapour and splat quenching, mechanical alloying, vapour deposition, ion beam 

mixing).1-6 On the other hand, Ag-Cu-based alloys are among the most commonly used braze 

alloys for joining a wide variety of material combinations.7-11 

The eutectic Ag-Cu alloy has an composition of Ag-40 at.% Cu and a melting point of 

779 oC, much below the bulk melting temperatures of constituting pure fcc metals Ag and Cu 

of 962 oC and 1083 oC, respectively. The large atomic size mismatch (13%) between Ag and 

Cu results in a large positive heat of mixing in both the solid and liquid state. Consequently, 

Ag and Cu are practically immiscible below ~300 oC (the mutual solubility of Cu and Ag in 

equilibrium is less than 1 at.% at room temperature) and, consequently, a large driving force 

for phase segregation of quenched (i.e. meta-stable) Ag-Cu solid solution phases exists below 

the eutectic melting temperature.6 

Production of Ag-Cu alloys by non-equilibrium processing routes typically results in a 

complex metastable phase constitution: a supersaturated crystalline (fcc) Ag-Cu solid 

solution2,6, a mixture of (supersaturated) α-Ag and β-Ag nano-crystallites (i.e. Ag and Cu fcc 

nano-crystals with substitutionally dissolved Cu and Ag, respectively)11, a hexagonal (4H) 

phase13 and/or (occasionally) an amorphous solid solution1-2. Substantial mutual solubility of 

Ag and Cu (up to 10 at.%) has been found for vapour-deposited14 and sputtered Ag-Cu thin 

films15; the solubility (and degree of supersaturation) increases with decreasing substrate 

temperature during deposition (increasing quenching rate)6. The average nano-crystallite size 

in such Ag-Cu films is in the range of 1.6 – 5 nm (as determined by XRD and/or TEM).13,16-18 

As emphasized in Ref.17, reported claims of homogeneous Ag-Cu solid solutions have likely 

undergone (incipient or partial) phase separation on ultrafine scales that escaped detection 

(note: composition modulations on the scale of 1 nm are difficult to image, even by advanced 

TEM methods). 

To rationalize phase stabilities in low-dimensional systems, such as in Ag-Cu 

nanoparticles and Ag-Cu thin films, it is important to recognize that the surface energy of Ag 

(1.25 J/m2) is considerably lower than that of Cu (1.79 J/m2)19, which provides a strong 

driving force for Ag to segregate at the free surface20. Moreover the melting point of nano-

particles and thin–films is known to decrease with size at the nano-scale, as governed by the 

Page 2 of 31Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 3 

increased surface-to-volume ratio.21,22 Several theoretical predictions and experimental 

verifications of e.g. surface segregation, size-dependent melting (i.e. a melting point 

depression) and the size- and shape-dependence of the eutectic composition and melting 

temperature have been reported for Ag-Cu nano-particles and Ag-Cu thin films.20,22,24-26 

These previous studies have shown that, in parallel with a size-dependent decrease of the 

eutectic melting temperature, the eutectic composition of Ag-Cu nano-particles and Ag-Cu 

thin films shifts to the Ag-rich side of the respective Ag-Cu bulk phase diagram. For example, 

for 10 nm thick Ag-Cu films levitating in vacuum, the eutectic composition and melting point 

is predicted to shift to about 76 at.% Ag and 726°C, respectively (note: the corresponding 

shifts are somewhat higher for Ag-Cu nano-particles with a corresponding diameter of 10 

nm).23 

Evidently the phase stability of a nano-alloy in (partial) contact with vacuum (e.g. 

nano-particles and thin films) may principally differ from that of the same nano-alloy 

embedded in a solid matrix (e.g. nano-composites, nano-multilayer). Namely the melting 

behaviour of metallic nanoparticles, as confined in a chemically-inert solid matrix with a 

much higher melting point (e.g. typically an oxide, nitride or refractory metal), will not only 

depend on particle size, but predominantly also on the (defect) structure of the particle-matrix 

interface and the thermal stresses evolving upon heating (due to the thermal expansion 

differences between the particle and the matrix).27 As a rule of thumb, an incoherent interface 

between the nano-particle and an inert matrix phase favours interfacial pre-melting (resulting 

in a melting point depression; MPD), whereas the corresponding coherent particle-matrix 

interface obstructs interfacial pre-melting (causing superheating).28-30 To the best of our 

knowledge, the phase stability of confined eutectic Ag-Cu nano-alloys embedded in an inert 

matrix phase has not been addressed up to date.  

Recently Ag-Cu nano-paste has been proposed for high-temperature die-attach 

applications.31 However, such nano-particle-based joining technologies have to deal with 

complex handling and safety issues. To bypass these critical issues, our research aims at the 

development of nano-structured Ag-Cu braze fillers with a reduced melting point as compared 

to conventionally applied braze alloys, which can be produced as a coating or as a foil by 

conventional thin-film deposition techniques.32 The current paper presents a first 

comprehensive experimental investigation of the structural evolution of eutectic Ag-Cu nano-

alloys, as confined between inert AlN barriers in a nano-multilayered configuration, upon fast 

heating. To this end, Ag-Cu/AlN nano-multilayers (NMLs) were deposited on sapphire 

substrates by magnetron sputtering. The produced Ag-Cu/AlN NMLs are constituted of 
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alternating nano-layers of Ag-Cu braze alloy with a bulk-eutectic composition (i.e. 40at.% 

Cu) and a thin AlN barrier, which serves as a chemically inert barrier to confine the alloy to 

the nano-scale up to its melting point. AlN was selected as a barrier, because it has a 

considerably higher melting point (2200 ºC) than Ag metal, Cu metal and the eutectic Ag-Cu 

alloy. Moreover AlN is chemically inert to Ag and Cu within the investigated temperature 

range (up to 420 ºC).  

The microstructural evolution of the Ag-Cu/AlN NMLs was monitored in real-time 

during fast heating from room temperature (RT) up to 420 ºC by in-situ X-ray diffraction at 

the synchrotron. Furthermore the microstructure (e.g. layer thicknesses, morphology, phase 

constitution, texture) of the as-deposited and heat-treated NMLs was characterized ex-situ by 

a combinatorial analytical approach, applying scanning electron microscopy (SEM), X-ray 

photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis. The thus obtained 

results are discussed in terms of the structural evolution of confined eutectic Ag-Cu nano-

layers upon heating up to 420 ºC. 

 

2. Experimental 

2.1 Materials and experimental setup 

Ag-Cu40at.%/AlN nano-multilayers (NMLs) were deposited on 2” epi-polished α-Al2O3(11�02) 

single-crystalline wafer substrates (i.e. sapphire-R wafers) by magnetron sputtering in a high 

vacuum chamber (base pressure < 1×10-8 mbar) from two confocally arranged unbalanced 

magnetrons equipped with 2" targets of pure Al (99.99% purity, as supplied by Kurt J. Lesker, 

USA) and of an eutectic Ag-Cu40at.% alloy. The eutectic Ag-Cu40at.% alloy target was produced 

by melting a commercial Cusil filler metal foil (Wesgo Metals, USA) of the same 

composition in an alumina crucible under a protective Ar (93 vol.%) – H2 (7 vol.%) gas 

atmosphere and subsequently shape-casting into the desired form. Note that the α-

Al2O3(11�02) substrate is chemically inert with respect to the deposited Ag-Cu/AlN NML 

system (at least up to 420 ºC) and its main diffraction reflections (102�) and (204�) do not 

overlap with the ones originating from metallic Ag and Cu.  

The α-Al2O3(11�02) substrates were ultrasonically cleaned in acetone and isopropanol 

before introduction into the sputter chamber. Before each deposition run, possible surface 

contamination on the α-Al2O3(11�02) substrate (mostly adventitious C) was removed by Ar+ 

sputter cleaning for 5 min applying a RF Bias of 100V. Next, Ag-Cu/AlN NMLs were 

produced by consecutive deposition of a 10 nm-thick AlN buffer layer and 21 alternations of a 
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10 nm-thick (Ag-Cu40at.%) layer and a 10 nm thick AlN barrier layer. Here it is noted that the 

aforementioned layer thicknesses denote nominal thicknesses as estimated from the calibrated 

sputter rates of Ag, Cu and AlN (see Sec. 3 for respective layer thickness values from cross-

sectional SEM analysis). The AlN deposition steps were performed by DC reactive sputtering 

from the Al target in a Ar/N2 reactive mixture (2:1 ratio) applying a target power of 200 W. 

The sputtering parameters were adjusted to obtain a deposition rate of about 5 nm/min. The 

Ag-Cu layers deposition was performed from an Ag-Cu40at.% target in a pure Ar atmosphere at 

25 W target power (corresponding to a deposition rate of about 5.5 nm/min). During the 

deposition, the substrate was rotated at a constant speed of 40 rpm. The sputtering process did 

not involve any active substrate cooling, thus the specimen temperature gradually increased 

from room temperature to about 40 ºC after 1 h of deposition.  

The microstructural evolution of the NMLs was in-situ monitored from room-

temperature (RT) to 420 °C by real-time synchrotron XRD at the Swiss Light Source, 

Material Science beamline (for instrumental details, see Sec. 2.2). The beamline setup was 

equipped with a custom-designed furnace for in-situ heating (HTK 16 MSW), as operated 

under shielding gas (i.e. the chamber was continuously flooded with Ar at slight atmospheric 

overpressure). Such furnace was especially designed and modified to allow transmission 

diffraction experiments. The applied temperature ramp during in-situ heating and 

simultaneous XRD analysis is shown in Fig. 1. First, the specimen was pre-heated up to 250 

°C and thermally equilibrated for roughly 15 min. Next, the specimen was heated up to 320 

°C at an nearly constant rate of 4.6 K/min and subsequently up to 420 °C at maximum power 

(of the ceramic heating plate) resulting in a heating rate of 20 K/min. The specimen was kept 

at 420 °C for 40 min, after which the heat source was switched off, allowing the sample to 

freely cool down to room temperature.  

 

2.2 Analysis and data evaluation 

The phase constitution, texture, morphology and defect structure of the as-deposited and 

thermally-treated NML were studied by SEM, XRD and XPS. Cross-sections for the SEM 

investigations were prepared by a Hitachi IM4000 Ar ion milling system applying an 

acceleration voltage of 6 kV and a swing angle of ±30°. High resolution imaging of the as-

deposited and thermally-treated NMLs was performed with a Hitachi S-4800 SEM (operating 

at 5kV). Combined SEM and energy dispersive X-ray (EDX) analysis was conducted using a 

Hitachi S-3700 (operating a 20kV) equipped with an EDAX Octane Pro detector. Ex-situ 

XRD analysis of the as-deposited and thermally-treated NMLs was performed using a Bruker 
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Discover (D8) X-Ray Diffractometer, operated in either Bragg-Brentano mode (for collecting 

theta-2theta (t2t) scans and rocking curves (RC)) or in grazing-incidence geometry (for 

collecting 2theta (2theta) scans, while fixing the incident angle at 5° to enhance the signal 

contribution from the top layers of the NML). In addition, in-plane texture measurements (i.e. 

pole figures) of the principle Ag, Cu and AlN reflections were recorded before and after 

heating. 

The thermal evolution of the system was monitored in-situ using real-time XRD in 

transmission mode at the Swiss Light Source, Material Science (X03MA) beamline. Such 

beamline is conceived to provide X-Rays in the energy of 5-40 keV for powder diffraction 

and surface diffraction experiments. A photon energy of 20 keV was chosen (λ= 0.61986 Å) 

and our experiments were carried out on the powder diffraction branch using a MYTHEN 

single-photon-counting silicon micros-trip detector, which allowed acquisition of the 

diffraction patterns over 120° in 2theta in less than 40 s. Hence at least one 2theta spectrum 

(with a good S/N ratio) could be recorded  every 10 °C during fast heating at a rate up to 20 

K/min (a detailed description of the beamline setup and the detector are given in Refs. 34,35, 

respectively). 

Ex-situ X-ray photoelectron spectra (XPS) analysis of the as-deposited and heat-

treated NMLs was performed using Physical Electronics (PHI) Quantum 2000 instrument 

(base pressure of < 4×10-7 Pa), employing monochromatic incident Al Kα radiation (1486.68 

eV; spot size 100 µm; electron take-off angle of 45°) and a hemispherical capacitor electron-

energy analyser equipped with a channel plate and a position-sensitive detector. 

Composition–depth profiles were recorded by employing alternating cycles of XPS analysis 

and sputtering with a focused 1 kV Ar+ beam rastering an area of 2×2 mm2. During each 

successive analysis step, detailed spectra of the O 1s, N 1s, Al 2s, Al 2p, C 1s, Ag 3d5/2 and 

Cu 2p3/2 core levels were recorded with a step size of 0.5 eV at a constant pass energy of 

117.4 eV, which corresponds to an analyser energy resolution of 1.62 eV (as taken equal to 

the full-width-at-half-maximum of the Ag 3d5/2 peak). Compensation of surface charging 

during spectra acquisition was realized by simultaneous operation of an electron- and an 

argon ion-neutralizer during each analysis step. The estimated sputter rate was taken equal to 

0.83 nm/min, as determined for a AlN thin-film reference with a known thickness of 30 nm.  

The measured Cu 3s and Cu 3p core-level regions partially overlap with the Al 2s and 

Al 2p regions. Hence the Al 2s main peak had to be separated from the overlapping Cu 3s 

spectral contribution by linear-least squares fitting, using the Linear-Least Squares fitting 

routine in the Phi Multipack Software (version 8.2). Quantification of the resolved peak 
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intensities (areas) was performed by adopting the relative elemental sensitivity factors, as 

supplied by the manufacturer. Oxygen was only detected at the outer surface. To reduce the 

noise in the quantified O concentration-depth profile, the measured O 1s region was linear-

least squares fitted with the dominant O signal recorded from the first cycle (corresponding to 

the unsputtered outer surface). 

Since Ag is preferentially sputtered from the Ag-Cu alloy 36, a steady-state enrichment 

of Cu will be established in the Ag-Cu alloy (sub)surface region upon sputtering. XPS 

measurements of a homogenous bulk eutectic Ag-Cu alloy reference after cumulative steps of 

sputtering-cleaning at 1 keV Ar+ indeed evidence a steady-state enrichment of 60 at.% Cu 

within 15 min of sputtering at 1 kV Ar+. To account for the preferential sputtering of Ag from 

the Ag-Cu alloy, quantification of the measured XPS depth profile of the as-prepared Ag-

Cu/AlN NML was performed using the experimentally determined relative sensitive factors of 

Ag and Cu for the eutectic Ag-Cu alloy reference. As discussed in Sec. 3, the standard 

elemental sensitivity factors of Ag and Cu (as supplied by the manufacturer) were used for 

quantification of the sputter-depth profile of the phase-separated and Cu-depleted NML after 

heat treatment. 

 

3. Results and discussion 

3.1 As-deposited NML microstructure   

A cross-sectional SEM image of the as-deposited NMLs is shown in Fig. 2a; the lighter and 

darker layers correspond to Ag-Cu and AlN, respectively. Since the SEM contrast for Al2O3 

and AlN is very similar, the bottom (i.e. firstly deposited) AlN nano-layer on the α-

Al2O3(11�02) substrate is not resolved. The cross-sectional SEM analysis evidences a highly 

regular periodicity of the alternating layers; each of the 21 repeating Ag-Cu/AlN stacking 

units is clearly resolved. The SEM analysis indicates that the nano-layers are laterally very 

uniform throughout the NML stack with an average layer thickness of ≈15 nm for the Ag-Cu 

nano-alloy and ≈11 nm for the AlN barrier. This complies well with the SEM analysis in 

planar view (insert in Fig. 2a), showing a very smooth surface for the as-deposited NML; i.e. 

no defects, such as cracks, hillocks or voids, were detected at the surface. Notably no phase 

contrast (due to e.g. phase separation) was observed by SEM within the Ag-Cu nano-layers in 

their as-deposited state (in contrast to the phase contrast visible after in-situ heat treatment; 

see Sec. 3.3). 
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The measured XPS composition-depth profile of the as-deposited NML confirms a 

nominal eutectic composition of 60 at.% Ag and 40 at.% Cu for the as-deposited Ag-Cu nano-

layers, as well as a 1:1 stoichiometric composition of the as-deposited AlN layer (Fig. 2b). No 

O contamination was detected in the as-deposited Ag-Cu nano-layers (only at the outer NML 

surface some oxygen was detected).  

X-ray diffractograms of the as-deposited Ag-Cu/AlN NMLs, as recorded at room 

temperature (RT) in transmission geometry at the synchrotron facility and in Brag-Brentano 

geometry in the laboratory (see Sec. 2.2), are shown in Figs. 3a and 3b, respectively. 

Considering the differences in measurement geometry and beam intensity (much more intense 

at the synchrotron), the independent diffraction measurements are fully consistent. Both 

measurements evidence broad diffraction peaks from Ag, Cu and AlN and very narrow (and 

much more intense) reflections from the single-crystalline sapphire substrate. For the 2theta 

scans collected at the synchrotron (Fig. 3a), the Ag(222) line is superimposed on the narrow 

single crystal peak from the sapphire substrate and represents the strongest reflection from the 

NML structure. In addition, much weaker, broad reflections from Ag (i.e. Ag(311) and 

Ag(511)) and Cu (i.e. Cu(222)) are present. As discussed in the following, the large widths of 

the Ag, Cu and AlN peaks can be attributed to the combined effects of a nano-crystallite size, 

the presence of growth defects, internal stress/strain and nano-size confinement.38  

Fig. 3b evidences some modulations in the diffracted intensity in proximity of the 

Ag(111) peak. However, the diffractograms do not exhibit any distinct superlattice 

reflections, as could be expected for a fully coherent stacking of crystalline nano-layers.37 

This suggests that the structural coherence length along the growth direction is lower than the 

(measured) modulation period of ≈26 nm of the Ag-Cu/AlN building block. Indeed the 

average grain sizes (D) of DAg  ≈ 6 nm and DCu ≈ 4 nm in the as-deposited NML (as obtained 

from the synchrotron analysis in Sec. 3.2) are smaller than the individual nano-layer 

thicknesses (≈15 nm and ≈11 nm for the alloy and the AlN barrier; see above).  

The dominant reflections from Ag and AlN in Fig. 3b are all from Ag{111} and 

AlN{001} family of planes, which implies that the preferred growth directions of the Ag and 

the AlN nano-grains are parallel to Ag[111] and AlN[001], respectively. This finding is 

consistent with the most densely packed planes of Ag and AlN of lowest surface energy being 

parallel to the film surface.38 Recorded XRD PHI-scans for AlN(103) and Ag(111) indicate 

that the AlN and the Ag nano-grains also exhibit in-plane texture obeying the epitaxial 

relationship Ag{111}<110>||AlN{001}<1�10>, in accordance with Ref.39: see Fig. 4a. The 
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texture measurements (i.e. pole figures) of the Ag(002) and Cu(111) reflections show that the 

Cu nano-crystallites in the as-deposited NML exhibit the same, albeit a much less pronounced 

texture as compared to the Ag nano-grains (see Fig. 4b). Hence the phase-separated fcc Cu 

nano-grains are coherent with respect to the fcc matrix of Ag nano-grains. The observed six-

fold symmetry in the measured Ag and Cu pole figures originates from the aforementioned 

epitaxial relationship between the AlN barrier and the Ag crystallites, because 60° in-plane 

rotated Ag{111} domains on the AlN{001} are equally preferred from an energetic point of 

view. A six-fold symmetry in the measured Ag and Cu pole figures could also partly originate 

from twinning of the Ag nano crystallites (also inducing twin orientations in coherent Cu 

grains), as commonly observed for metals with a relatively low stacking fault energy, like 

Ag.40 Notably a columnar or fibre structure of the Ag and Cu crystallites, as frequently 

reported for sputter-deposited (nano-crystalline) single-alloyed fcc alloys was not evidenced 

in the present study (i.e. the average crystallize size in the present study is less than the layer 

thickness; see above).6,41 

The two broad and low intensity peaks at t2t = 42.67° and t2t = 73.04° in Fig. 3b are 

close to the Cu(111) and Cu(220) reflections of bulk Cu metal, respectively. However the 

detected Cu content in the Ag-Cu nano-layers (as estimated from intensity ratio of the 

detected Ag{111} and Cu{111} reflections, taken into account the fact that the Ag and Cu 

nano-grains have the same texture) is much less, as would be expected for a completely 

phase-separated bulk-eutectic Ag-Cu alloy constituted of pure Ag and pure Cu nano-grains. It 

is therefore concluded that the eutectic Ag-Cu nano-layers are constituted of Ag nano-grains 

(DAg  ≈ 6 nm), which are supersaturated by Cu, and a much lower content of Cu nano-grains 

(DCu ≈ 4 nm). The confined Ag-Cu nano-layers thus do not comply with a homogenous 

(super) saturated nano-crystalline Cu-Ag solid solution phase, as reported in Refs.2,6,12. In the 

present study, we consciously refrain from estimating the Cu content in the supersaturated Ag 

nano-grains, because the peak positions of the detected diffraction lines will not only depend 

on the composition of the nano-crystallites, but also on the nano-grain size and superimposed 

residual growth stresses.  

A rocking curve (RC) scan of the Ag(111) reflection was measured to reveal the 

degree of in-plane coherency of the supersaturated Ag nano-crystallites in the as-deposited 

state: see Fig. 4d. RCs provide detailed information on the in-plane correlation function of 

textured grains and/or the angular distribution of randomly oriented crystal domains.42 The 

full-width-at-half-maximum (FWHM) of the measured Ag(111) RC directly relates to the in-
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plane coherency length of [111]-oriented Ag domains. The measured RCs for both Ag and 

AlN have a Gaussian line shape with a FWHM of more than 5°, indicating an angular 

distribution of the corresponding domains of roughly 5°.42 Thus although the Ag-Cu/AlN 

NML exhibits a pronounced texture, a substantial degree of disorder due to mozaicity, in-

plane roughness and defects originates from the sputter deposition process. 

 

3.2. Microstructural evolution during heating up to 420°C 

The 2theta scans, as recorded in transmission at the synchrotron with a time resolution of 

about 40s during fast heating up to 420°C (Fig. 1), are plotted as a function of the temperature 

in Fig. 5a. The most pronounced Ag(222) and Cu(222) reflections from the confined nano-

alloy grow in intensity and become narrower during heating, whereas the much weaker 

Ag(311) and Ag(511) reflections gradually disappear during heating. The evolutions of the 

FWHM of the Ag(222) and Cu(222) reflections upon heating are shown in Figs. 5b and 5c, 

respectively. Notably, the evolutions of the FWHMs of the Ag(222) and Cu(222) peaks 

during heating are remarkably different (see Fig. 5b). The FWHM of the Ag(222) peak 

remains constant in the range of 0.53 - 0.55 up to 265°C and then abruptly decreases to 0.50° 

in the T-range from 265°C to 350°C, reaching a FWHM of about 0.5° at 420 °C. The FWHM 

of the Cu(222) peak, on the other hand, gradually decreases from the onset of heating, first 

slowly up to 265°C and then more rapidly up to about 350 °C, attaining a much smaller 

FWHM of 0.12° at 420 °C (as compared to the final FWHM of about 0.5° for the Ag(222) 

peak). A rough estimation of the average Ag and Cu crystallite sizes (D) can be obtained from 

the FWHM values using the so-called Sherrer formula, � =
�.��	


� �
��
, where λ is the photon 

wavelength, β is the FWHM (in radians) and θ is the corresponding Bragg angle.43 It should 

be noted that this simple procedure gives an estimation of the average coherency length of the 

chosen family of planes, rather than a quantitative measure of the “real” grain size of the 

crystallites. Applying this procedure to the FWHMs in Fig. 5b, gives average grain sizes of 

DAg = 6 nm and DCu = 4 nm for α-Ag and β-Cu in the as-deposited NML, respectively (both 

smaller than the layer thickness of the confined alloy of ∼15 nm; see Fig. 2a). Applying to the 

FWHMs after heating at 420 °C, results in estimated average grain sizes of DAg = 7 nm and 

DCu = 26 nm. This indicates that the Ag and Cu nano-grains undergo coarsening during 

heating. Notably the other reflections (not belonging to the {111} family of planes) become 

weaker during heating.  
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As evidenced by XRD, XPS and SEM analyses (see below and Sec. 3.3), protrusions 

of Cu metal have appeared at the NML surface after heating and annealing up to 420 °C. This 

suggests that the initially confined Cu nano-grains have (partially) relocated to the NML 

surface during heating, where they can coarsen at a much faster rate than the still confined 

nano-grains. Hence, the average Cu grain-size of 26 nm after heating, as estimated from the 

FWHM of the Cu(222) peak (see above), is governed by the signal contribution of the large 

(unstrained) Cu protrusions accumulated at the NML surface during heating. Indeed, the 

estimated Cu grain size of 26 nm is by far larger than the thickness of the Ag-Cu nano-layers.  

Since the (linear) thermal expansion coefficients of Ag (αAg ≈ 18×10-6 K-1) and Cu 

(αCu ≈17×10-6 K-1) in the confined alloy nano-layers are much larger than that of the much 

thicker and rigid α-Al2O3 substrate (αsapphire ≈ 8×10-6 K-1, close to that of αAlN ≈ 5×10-6 K-1), 

the ensemble of confined Ag and Cu crystallites in the alloy nano-layers becomes 

compressively strained upon heating. Outflow of Cu to the NML surface during heating 

would thus results in (partial) relaxation of the accumulated thermal stresses, in accordance 

with the observed abrupt decrease in the FWHM of the Ag(222) reflections at T > 265°C (see 

Fig. 5b). To qualitatively investigate the thermal stress evolution in the NML during heating, 

the Ag(222), Cu(222) and Al2O3(223) lattice spacings and their (approximately linear) 

thermal expansion coefficients were deduced from the recorded diffractograms: see Figs. 6(a-

c). Since the α-Al2O3 substrate is infinitely thick and rigid as compared to the NML, the 

thermal expansion of the alloy and AlN nano-layers will be dictated by the thermal expansion 

of the sapphire substrate. Indeed, up to 350°C, the estimated average thermal expansion 

coefficient of the confined nano-alloy roughly lies in between αAg ≈ 7.3±0.1
×10-6 K-1 and αCu ≈ 

11.6±0.4
×10-6 K-1, in accordance with the intermediate experimental value of αsapphire ≈ 

8.1±0.4
×10-6 K-1 (see Fig. 6). Notably, beyond 350°C, the thermal expansion coefficient of Cu 

abruptly increases to αCu ≈ 29.9±0.2
×10-6 K-1, while those of Ag and AlN still (roughly) 

comply with that of Al2O3. This finding also relates well with the accumulation of Cu at the 

top of the NML at around 350°C, where it can (more) freely expand (since it is no longer 

confined). 

Notably Cu2O(200) reflections appear at T > 265°C, as attributed to (partial) oxidation 

of Cu metal, which has accumulated at the NML surface. Here it is noted that the in-situ 

heating experiment was carried out in Ar shielding gas (see Sec. 2.2), which cannot prevent a 

partial oxidation of Cu at the surface. As evidenced by post-mortem XPS depth profiling, 

remaining Cu grains inside the NML were not affected by oxidation during heating (see Sec. 
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3.3). This suggests that the outflow of Cu to the NML surface might also be partially driven 

by O-enhanced segregation of Cu to the NML surface. The recorded diffractograms do not 

show any more significant changes for T > 400 °C, as well as upon subsequent isothermal 

annealing at T = 420°C. The in-situ real-time XRD study evidences that phase separation and 

grain coarsening during heating runs parallel with the outflow and accumulation of Cu at the 

NML surface, leading to a partial relaxation of compressive thermal stresses in the confined 

nano-alloy layers. 

 

3.3. NML microstructure after heat treatment 

SEM micrographs of the heat-treated NML in planar and cross-sectional view are shown in 

Figs. 7a and b, respectively. Table 1 gives the average chemical composition of the as-

deposited and heat-treated NML, as obtained from averaging a series of EDX point 

measurements recorded from the top surface. After fast heating to 420 °C, a high density of 

line-shaped features and spherical-shaped protrusions appeared on the NML surface (as 

indicated by white and black arrows in Fig. 7a, respectively). The original as-deposited NML 

surface was very smooth (see Fig. 2) and thus no distinct correlations between the occurrence 

of lines features and/or spherical protrusions at the heat-treated NML surface and apparent 

growth defects in the as-deposited state could be identified. The EDX analysis shows that the 

average composition of the NML is largely unaffected by the heat treatment up to 420 °C 

(Table 1). In order to probe the chemical composition of the spherical protrusions on the heat-

treated NML surface, EDX point-measurements of big protrusions (diameter > 2µm) were 

performed, which revealed that they mainly consist of Cu and O (in agreement with the XRD 

analysis).  

The cross-sectional SEM micrograph was taken roughly perpendicular to an observed 

line shaped feature: see Fig. 7b. Phase contrast variations could be observed within the alloy 

nano-layer (corresponding to the bright layers in Fig. 7b), confirming that large domains of 

phase-separated Ag and Cu developed after heating up to 420 °C. At first view, the layer 

configuration directly underneath the Cu surface protrusion in the cross-sectional electron 

micrograph of Fig. 7b seems to be more or less intact. However, closer investigation 

evidences that the top AlN and Ag-Cu surface layers seem to be partially missing, as 

indicated by black dashed lines in Fig. 7b.  

 

The measured XPS composition-depth profile of the heat-treated NML is shown in 

Fig. 8. Please note that the surface coverage of (oxidized) Cu protrusions at the heat-treated 
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NML surface is statistically too low to significantly contribute to the XPS depth-profiling 

analysis.1 The XPS analysis of the heat-treated NML clearly indicates that Cu is depleted 

from the top three alloy layers adjacent to the surface. Notably, the first surface-adjacent layer 

is practically fully depleted of Cu (with the remaining Cu being oxidized). Also deeper inside 

the NML (i.e. after the first three AlN/Ag-Cu units from the top), the Cu concentration still 

appears lower as compared to the as-deposited state (although the XPS quantification of the 

annealed NML is rather critical2). Furthermore, the XPS analysis indicates that a reaction 

between Cu and AlN (forming e.g. Cu-nitride compound) has not occurred.  

Except for the rupture and local disappearance of the first surface-adjacent barrier and 

alloy nanolayers, the outflow of Cu during heating up to 420 °C has not resulted in significant 

morphological changes within the NML structure. Noteworthy, significant morphological 

changes due to layer collapse and sintering of AlN barriers have recently been observed for 

annealing of Cu/AlN NML coating systems at more elevated temperatures of 750 °C.47 

X-ray diffractograms of the Ag-Cu/AlN NML before and after heat treatment up to 

420°C are shown in Fig. 9 (as recorded in Brag-Brentano and grazing incidence geometry). 

The grazing incidence analysis in Fig. 9b clearly evidences the enrichment of (partially 

oxidized) Cu at the NML surface after the heat treatment, in accordance with the 

accumulation of Cu at the NML surface after heating (see Sec. 3.2). The measured pole 

figures and RCs of the NML before and after heating are presented in Fig. 4 (see Sec. 3.1). 

The pole figures of the annealed NML appear much more blurred due to the fact that the 

intensity maxima are submerged into a very high background (which is much higher than for 

the as-deposited NML). The very high background signal in the pole figures of the heat-

treated NMLs most probably originates from a random in-plane texture of the accumulated Cu 

protrusions on the NML surface (introducing a high background signal to the measured pole 

figures). Nevertheless, the increased sharpening of the intensity maxima from Ag and Cu in 

the pole figure of Fig. 4b, as well as the much narrower RC curve in Fig. 4d, evidence that the 

                                                
1 A single Cu protrusion of 1×1 µm2 only contributes about 0.01% to the XPS analysis of 100×100 µm2, which is 

well below the XPS detection limit. 
2 Please note that the XPS sputter-depth profile of the heat-treated NML was not corrected for preferential 

sputtering of Ag. Consequently, the measured steady-state Cu concentration in the eutectic alloy, as reached 

during sputter-depth profiling, should approach 60 at.% (see Sec. 2.2), which is not observed in the 

concentration-depth profile of Fig. 8. This implies that Cu also may have depleted to some extent from deeper 

inside the NML after heat-treatment up to 420 °C. 
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confined Ag (and remaining Cu) crystallites have not only increased in size upon heating, but 

also increased their in-plane coherency with respect to the AlN barrier. Moreover, a shift of 

the Ag(111) lattice spacing towards the bulk value of 2.359 Å has occurred, as attributed to 

the combined effect of stress relaxation and segregation of Cu out of the initially 

(super)statured α-Ag grains.  

 

4. Chemical driving forces for structural transformation  

As evidenced in Sec. 3, the as-deposited Ag-Cu /AlN NML is constituted of a regular stacking 

of alternating nano-layers of a eutectic Ag-Cu alloy and an AlN barrier (with individual 

thicknesses in the range of 10 to 15 nm). The individual Ag-Cu nano-layers are composed of a 

fcc matrix of Ag nano-grains (DAg  ≈ 6 nm), which are supersaturated by Cu, and some 

smaller embedded Cu rich nano-grains (DCu ≈ 4 nm). Hence phase segregation on the nano-

scale has already occurred during sputter deposition at RT (i.e. a homogeneous solid-solution 

phase has not formed), as driven by high positive enthalpy of mixing (see Sec. 1). The texture 

of the confined Ag and Cu nano-grains is dictated by the AlN barrier and follows the 

orientation relationships: Ag{111}<110>||AlN{001}<1�10> and 

Cu{111}<110>||AlN{001}<1�10>.  

Heating of the NML up to 265 °C induces segregation of Cu out of the supersaturated 

Ag nano-grains. At T > 265 °C, Cu migrates out of the surface-adjacent alloy nano-layers to 

the top of the NML surface, thereby partially relaxing thermally-accumulated compressive 

stresses in the confined alloy nano-layers and facilitating (i.e. accelerating) grain coarsening 

of (still confined) phase-separated nano-crystallites. The Gibbs energy of incoherent (i.e. 

high-energy) grain-boundary metals is roughly proportional to one third of the surface energy 

of the metal.46 The surface energies of Cu and Ag metal equal 1.79 J/m2 and 1.25 J/m2, 

respectively,19 which suggests that (high-angle) grain boundaries between neighbouring Cu 

nano-grains are higher in energy than neighbouring Ag nano-grains. Hence confined Cu nano-

crystallites possess a higher driving force for grain coarsening (to reduce the total grain 

boundary energy) than Ag nano-grains.  

The subsequent abrupt outflow of Cu to the NML surface at around 265°C could hint at 

a thermally-activated wetting transition of AlN grain-boundaries (or triple junctions) by Cu 

with concurrent fast diffusion of compressed Cu through the wetted “channels”.44 The 

Ag/AlN interfaces become more coherent during heating, in accordance with recent DFT 

calculations of the atomic structure of the (relaxed) Ag/AlN interface (see Fig. 10a).39 The 
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coherent Ag/AlN interface associated with phase-separated Ag domains is preferred with 

respect to the relaxed semi-coherent Cu/AlN interface (associated with phase-separated Cu 

nano-grains). As illustrated by the DFT structures of the Ag/AlN and Cu/AlN interfaces in 

Fig. 10b (adopted from Ref. 39), the semi-coherent Cu/AlN interface contains a higher density 

of lattice misfit dislocations and/or point defects. As a result, the atomic mobility of Cu along 

the semi-coherent Cu/AlN interface will be considerably higher (as compared to the atomic 

mobility of Ag along the Ag/AlN interface), thereby facilitating transport of Cu along internal 

Cu/AlN interfaces to defective sites (i.e. permeable channels) in the AlN barrier layers for 

outward migration of Cu to the NML surface (comparable to the diffusion and subsequent 

wetting of Al grain boundaries by Si at strikingly low temperatures of 200 °C; cf. Ref. 46). As 

evidenced from the partial oxidation of the outflowing Cu, the outward migration of 

compressed Cu might also be partially driven by O-induced surface segregation.  

The concurrent processes of Cu segregation out of (super)saturated Ag grains, grain 

coarsening (reduction of the grain boundary density), slight in-plane grain rotations of phase-

separated Ag and Cu crystallites (increasing in-plane coherency) and thermal stress 

relaxation, all contribute to a lowering of the Gibbs energy of the system. The abrupt and fast 

outflow of confined Cu from the Ag-Cu nano-layers at strikingly low temperatures might 

open new routes for joining at temperatures well below the melting temperature of the 

eutectic Ag-Cu alloy. It still remains to be clarified if the observed very fast kinetics of this 

process is accompanied by (partial) interfacial melting of Cu at the semi-coherent Cu/AlN 

interface and/or a grain-boundary-wetting phase transition in the AlN barrier layers (i.e. 

instantaneous wetting of AlN grain boundaries by Cu at around 265°C). 

 
Conclusions 

A bulk-eutectic AgCu40at.% nano-alloy, as confined between AlN barrier, was prepared by 

magnetron sputtering at room temperature. The confined nano-alloy is composed of a fcc 

matrix of Ag nano-grains (≈ 6 nm), which are supersaturated by Cu, and some smaller 

embedded Cu rich nano-grains (≈ 4 nm). The texture of the confined Ag and Cu nano-grains 

is dictated by the AlN barrier, following the orientation relationships 

Ag{111}<110>||AlN{001}<-110> and Cu{111}<110>||AlN{001}<-110>. The Cu nano-

crystallites exhibit a less pronounced texture than the supersaturated Ag nano-grains.  

Heating up to 265°C induces segregation of Cu out of the supersaturated Ag nano-

grains. At T > 265 °C, Cu migrates out of the surface-adjacent alloy nano-layers to the top 

NML surface, thereby partially relaxing thermally-accumulated compressive stresses in the 
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confined alloy nano-layers. Evidently, migration of Cu from the interior towards the NML 

surface is observed at temperatures well below the bulk melting temperature of Cu. 

Relaxation of thermal stresses by outflow of Cu facilitates (i.e. accelerates) grain coarsening 

of (still confined) phase-separated nano-crystallites within the multilayer, leading to an 

increased coherency of, in particular, the Ag/AlN interface. Further heating and annealing up 

to 420°C results in complete phase separation, forming extended confined Ag and Cu 

domains.  

The structural evolution of the Ag-Cu/AlN NML coating upon heating is driven by a 

large positive enthalpy of mixing (inducing Cu segregation out of (super)saturated Ag grains), 

relaxation of accumulated thermal stresses (promoting outflow of Cu metal), reduction of the 

grain boundary density (by grain coarsening of Ag and Cu nano-crystallites) and reduction of 

interface energies (by slight in-plane grain rotations of phase-separated Ag and Cu 

crystallites).  

The observed outflow of Cu at temperatures well below the melting point of the 

eutectic Ag-Cu alloy offers opportunities for the development of new nanostructured joining 

materials for joining at ever-lower temperatures, as demonstrated for similar Cu/AlN NML 

coating systems in Ref. 47. 
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List of Figures 

 

Fig. 1: Temperature-time program during in-situ heating and simultaneous XRD analysis of 

the as-deposited Ag-Cu/AlN NMLs. 

Fig. 2: (a) Cross-sectional secondary electron image (light grey: Ag-Cu, dark grey: AlN) and 

(b) composition-depth profile measured by XPS, of the as-deposited Ag-Cu/AlN NML. The 

insert in (a) shows a SEM micrograph of the NML surface.  

Fig. 3: X-ray diffractograms, as recorded from the as-deposited Ag-Cu/AlN NMLs at room 

temperature, (a) in transmission geometry at the synchrotron and (b) in Brag-Brentano 

geometry in the laboratory. See Sec. 2.2 for details. 

Fig. 4: (a) PHI scans of AlN(103) and Ag(111) reflections, as recorded from the as-deposited 

NML. (b) Pole figure of the Ag(200) and Cu(111) reflections, as recorded from (b) the as-

deposited and (c) the thermally-treated NML. (d) Rocking curve around the Ag(111) 

reflection, as recorded from the as-deposited and thermally-treated NML. 

Fig. 5: (a) Measured 2theta diffractograms as a function of temperature (in the range from 

RT to 420 °C), as recorded from the  Ag-Cu/AlN NML in transmission at the synchrotron with 

a time resolution of about 40 s during fast heating up to 420 °C (following the temperature 

program pertaining to Fig. 1). The corresponding evolutions of the FWHM of the Ag(222) 

and Cu(222) peaks are plotted in (b) and (c), respectively.  

Fig.6: (a) Cu(222), (b) Ag(222) and (c) Al2O3(223) lattice spacings as a function of 

temperature (in the range from RT to 420°C), as extracted from the corresponding 

diffractograms recorded from the Ag-Cu/AlN NML in transmission at the synchrotron with a 

time resolution of about 40s during fast heating up to 420°C (see Fig. 1). The respective 

linear thermal expansion coefficients (as deduced by linear least squares fitting) are also 

reported. 

Fig. 7: Secondary electron micrographs of the heat-treated Ag-Cu/AlN NML in (a) planar 

view and (b) cross-sectional view. Lines and spherical features, which are present on the 

NML surface, are indicated by black and white arrows in (a), respectively. Phase contrast is 

resolved inside the heat-treated Ag-Cu layers in (b) (light grey: Ag-Cu, dark grey: AlN).  
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Fig. 8: Composition-depth profile measured by XPS, of the Ag-Cu/AlN NML after heat 

treatment up to 420 °C.  

Fig. 9: Measured X-ray diffractograms, as recorded from the Ag-Cu/AlN NMLs before (as-

deposited) and after heat treatment up to 420 °C;  (a) t2t scan in Brag-Brentano geometry 

and  (b) grazing incidence diffraction scan at fixed omega = 5°. The peaks indicated with an 

asterisk (*) are parasitic peaks due to the not-fully monochromatic radiation. 

 

List of Tables 

Table 1: EDX point measurements of the AgCu/AlN NMLs in the as-deposited state and after 

fast heating to 420 °C. The average value and error in the concentration was obtained from 

averaging a series of five EDX point. 
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Fig. 1: Temperature-time program during in-situ heating and simultaneous XRD analysis of 

the as-deposited Ag-Cu/AlN NMLs. 

  

Page 21 of 31 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 22 

 

Fig. 2: (a) Cross-sectional secondary electron image (light grey: Ag-Cu, dark grey: AlN) and 

(b) composition-depth profile measured by XPS, of the as-deposited Ag-Cu/AlN NML. The 

insert in (a) shows a SEM micrograph of the NML surface. 

  

Page 22 of 31Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 23 

 

Fig. 3: X-ray diffractograms, as recorded from the as-deposited Ag-Cu/AlN NMLs at room 

temperature, (a) in transmission geometry at the synchrotron and (b) in Brag-Brentano 

geometry in the laboratory. See Sec. 2.2 for details. 
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Fig. 4 (a) PHI scans of AlN(103) and Ag(111) reflections, as recorded from the as-deposited 

NML. (b) Pole figure of the Ag(200) and Cu(111) reflections, as recorded from (b) the as-

deposited and (c) the thermally-treated NML. (d) Rocking curve around the Ag(111) 

reflection, as recorded from the as-deposited and thermally-treated NML 
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Fig. 5: (a) Measured 2theta diffractograms as a function of temperature (in the range from 

RT to 420 °C), as recorded from the  Ag-Cu/AlN NML in transmission at the synchrotron with 

a time resolution of about 40 s during fast heating up to 420 °C (following the temperature 

program pertaining to Fig. 1). The corresponding evolutions of the FWHM of the Ag(222) 

and Cu(222) peaks are plotted in (b) and (c), respectively.  
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Fig.6: (a) Cu(222), (b) Ag(222) and (c) Al2O3(223) lattice spacings as a function of 

temperature (in the range from RT to 420°C), as extracted from the corresponding 

diffractograms recorded from the Ag-Cu/AlN NML in transmission at the synchrotron with a 

time resolution of about 40s during fast heating up to 420°C (see Fig. 1). The respective 

linear thermal expansion coefficients (as deduced by linear least squares fitting) are also 

reported. 
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Fig. 7: Secondary electron micrographs of the heat-treated Ag-Cu/AlN NML in (a) planar 

view and (b) cross-sectional view. Lines and spherical features, which are present on the 

NML surface, are indicated by black and white arrows in (a), respectively. Phase contrast is 

resolved inside the heat-treated Ag-Cu layers in (b) (light grey: Ag-Cu, dark grey: AlN).  
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Fig. 8: Composition-depth profile measured by XPS, of the Ag-Cu/AlN NML after heat 

treatment up to 420 °C.  
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Fig. 9: Measured X-ray diffractograms, as recorded from the Ag-Cu/AlN NMLs before (as-

deposited) and after heat treatment up to 420 °C;  (a) t2t scan in Brag-Brentano geometry 

and  (b) grazing incidence diffraction scan at fixed omega = 5°. The peaks indicated with an 

asterisk (*) are parasitic peaks due to the not-fully monochromatic radiation. 
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Fig. 10: Atomic structure of the (relaxed) (a) coherent Ag/AlN interface and (b) semi-

coherent Cu/AlN interface (in cross-sectional view), as predicted by Density Functional 

Theory, DFT. Calculations were performed for different (relaxed) Ag and Cu slabs on the 

nitrogen-terminated 5×5×3 AlN(0001�) slab. See Ref. 39 for details. 
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Table 1. EDX point measurements of the AgCu/AlN NMLs in the as-deposited 

state and after fast heating to 420 °C. The average value and error in the 

concentration was obtained from averaging a series of five EDX point. 

As-deposited NML 

 Ag (at.%) Cu (at.%) Al (at.%) N (at.%) O (at.%) 

Bare NMLs 19.0±0.3 12.4±0.5 32.9±2.4 34.3±4.0 1.4±0.8 

Heat-treated NML (after fast heating to 420 °C) 

Bare NMLs 20.3±0.3 10.8±0.4 33.0±2.3 35.2±4.1 0.8±0.7 

Cu protrusions 0.7±0.1 48.7±1.1 2.3±0.3 3.0±2.4 45.4±3.7 
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