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Charge transport plays a crucial role in the working principle of most opto-electronic and energy devices. 

This is especially true for organic materials where the first theoretical models date back to the 1950s and 

have continuously evolved ever since. Most of these descriptions rely on perturbation theory to treat small 

interactions in the Hamiltonian. In particular, applying a perturbative treatment to the electron-phonon and 

electron-electron coupling results in the band and hopping models, respectively, the signature of which is 

conveyed by a characteristic temperature dependence of mobility. This perspective describes recent 

progress of studying charge transport in organics using mixed quantum-classical dynamics techniques, 

including mean field and surface hopping theories. The studies go beyond the perturbation treatments and 

represent the processes explicitly in the time-domain, as they occur in real life. The challenges, 

advantages, and disadvantages of both approaches are systematically discussed. Special focus is dedicated 

to the temperature dependence of mobility, the role of local and nonlocal electron-phonon couplings, as 

well as the interplay between electronic and electron-phonon interactions. 

1. Introduction 

Semiconductors are everywhere in our life. Silicon has 
held a dominant position in modern technologies for about forty 
years. Despite great successes in multiple applications, 
conventional inorganic electronics will likely reach its limits in 
the near future and face a number of practical issues that 
prevent applications, in which cost, mechanical properties, and 
tenability are important. Organic semiconductors have gained 
increasing interest over the past few decades.1 These affordable 
materials possess many novel advantages, such as light weight, 
mechanical flexibility, easy fabrication, and large scale 
production, which can be used to overcome the bottlenecks of 
their inorganic competitors.2 To date, organics have found wide 
applications in various (opto)electronic and energy devices, 
such as organic field-effect transistors,3 organic light-emitting 
diodes,4 and organic photovoltaics.5 

The overall efficiency of electronic devices relies strongly 
on the carrier mobility of functional organic semiconductors. 
Theoretical studies are very helpful to reveal the intrinsic 
charge transport mechanism.6-11 Because of complex electron-
phonon couplings (EPCs), charge transport is a many-particle 
problem, which is extremely difficult to solve. Perturbation 
theories have been extensively explored, and two well-known 
regimes for charge transport have been identified.10 On the one 
hand, when intermolecular electronic couplings are much 

weaker than EPCs and treated as a perturbation, charge 
transport falls into the hopping regime. There, the charge 
carriers are completely localized on individual molecules and 
diffuse by hopping from one site to another. The hopping 
transport is thermally activated, because increasing temperature 
provides the activation energy for the charge carriers to 
overcome the barrier associated with both intra- and inter-
molecular geometric relaxation. On the other hand, when the 
EPCs are weak and regarded as a perturbation, the band regime 
of charge transport is activated. The charge is delocalized over 
the whole system, and the carrier mobility generally decreases 
with temperature due to the enhanced phonon scattering. 
Instead of using free charges as elementary carriers, a more 
general description is provided in the framework of the so-
called polaron model,12-15 where the charge carrier moves 
together with the dressed phonon cloud and behaves as a quasi-
particle named polaron. The coupling between polarons is 
normally treated as a perturbation, and the two distinct charge 
transport regimes can be reproduced.16, 17 In general cases, 
however, no parameter can be easily treated as a perturbation, 
and thus non-perturbative methods are in demand. 

Due to the different nature of electrons and nuclei involved 
in charge transport, only the former should be dealt with 
quantum mechanically, while the later can be treated more 
simply, in a classical manner. As a result, charge transport can 
be described with a mixed quantum-classical dynamics (MQCD) 
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idea,8, 9 which has attracted growing interest in many other 
research fields as well, e.g., proton transfer,18 exciton 
dynamics,19 and vibrational relaxation.20 MQCD has two major 
flavors: mean field (MF) (also known as Ehrenfest)21, 22 and 
surface hopping (SH),23, 24 both of which are non-perturbative. 
They share the same feature that the electronic state responds 
instantaneously to the nuclear motion. The difference resides 
primarily in the description of the classical equations of motion 
(EOM) for the nuclei. In the MF theory, they are governed by 
the gradient of the expectation value of the system energy, 
namely, a single average potential energy surface (PES). In 
contrast, by design, the SH method incorporates nonadiabatic 
transitions between different PESs. As a result, SH is more 
appropriate when nuclear evolution on different PESs may lead 
to divergent trajectories. 

In this Perspective, we bring together recent MQCD 
studies devoted to charge transport in organics. We begin by 
reviewing the widely used model Hamiltonians designed to 
cover different types of EPCs. The MF and SH methods for 
charge transport are then discussed in detail. Special focus is 
given to the insights into the charge transport mechanisms 
obtained from the MF and SH theories. The theories are 
evaluated in both band and hopping regimes using analytical 
results as reference. Available numerical calculations for 
realistic materials are also examined. Finally, we conclude with 
an outlook for the future of MQCD in application to design of 
organic materials with desired charge transport properties. 

2. Modeling Charge Transport with Mixed Quantum-

Classical Techniques 

The theories described in this section are based on minimal 
model Hamiltonians for typical organic materials, but can be 
easily extended for more complex Hamiltonians to investigate 
charge transport in realistic materials. 

2.1 Hamiltonian 

One-dimensional molecular stacks characterized by Su-
Schrieffer-Heeger (SSH)-type Hamiltonians25 are widely used 
to investigate the charge transport properties in organic 
materials.26-31 In practice, an array of N molecular sites with 
periodic boundary conditions and equal spacing between all 
nearest neighbors, L, are considered. Without loss of generality 
and to simplify the formulations, each molecule k is associated 
with one electronic orbital |k› (e.g., the highest occupied 
molecular orbital, HOMO, for hole transport and the lowest 
unoccupied molecular orbital, LUMO, for electron transport) 
and one intramolecular harmonic vibrational degrees of 
freedom, xk (the corresponding velocity is vk) with the same 
force constant, K, and effective mass, m. At equilibrium 
geometry, the onsite energies of all molecules are identical and 
are therefore set to zero for simplicity. Because the 
intermolecular electronic coupling, which is proportional to the 
overlap between molecular orbitals, is short-range in nature, a 

tight-binding model is widely used to characterize molecular 
systems. The electronic couplings between all nearest neighbors 
at equilibrium are the same and assigned to be -τ. Note that 
such a minimum model for charge transport can be easily 
generalized to more complex cases with higher space 
dimension, static disorder, external electric field, and multiple 
electronic orbitals or vibrational modes per molecular site. 

If the onsite energy of molecule k is linearly modulated by 
xk, namely, the system experiences local EPCs, the Hamiltonian 
reads,28 

( )

( )2 2

1 1

1

2
           

local k

k k

k k

k

H x k k k k k k

mv Kx

α τ= + − + + +

+ +

∑ ∑

∑

,           (1) 

where α is the local EPC constant. Alternatively, if the 
electronic coupling between molecule k and its neighboring 
molecule k+1 is linearly modulated by the intermolecular 
displacement xk+1-xk, the resulting Hamiltonian incorporating 
such nonlocal EPCs can be written as 

( ) ( )

( )

1

2 2

1 1

1
2

              

nonlocal k k

k

k k

k

H x x k k k k

mv Kx

τ β += − + − + + +  

+ +

∑

∑

,        (2) 

where β is the nonlocal EPC constant. Apparently, a more 
general Hamiltonian can be constructed considering both local 
and nonlocal EPCs, 

( ) ( )

( ) ( )

1,

2, 1 2,

2 2 2 2
1 1, 1 1, 2 2, 2 2,

1 1

1 1

2 2

            

            

general k

k

k k

k

k k k k

k k

H x k k

x x k k k k

m v K x m v K x

α

τ β +

=

 + − + − + + + 

+ + + +

∑

∑

∑ ∑

.      (3) 

Here two vibrational degrees of freedom are considered for 
each molecule. In the following context, Eqs. (1), (2), and (3) 
will be abbreviated as the local, nonlocal, and general 
Hamiltonians, respectively. 

2.2 Mean Field Theory 

The time evolution of the wave function, ψ(t), is generally 
described by the time-dependent Schrödinger equation, 

( ) ( ) /t H t iψ ψ=& h .                                   (4) 

At the MF level, the acceleration of any classical degree of 
freedom is obtained through the spatial derivative of the 
expectation value of the system energy, 

( ) ( )1
k

k

t H t
v

m x

ψ ψ∂
= −

∂
&

.                            (5) 

If ψ(t) is expressed as a linear expansion of the basis states, 
{|k›}, 
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( ) ( )k

k

t t kψ ψ=∑ ,                                 (6) 

we can easily obtain the following EOM based on the general 
Hamiltonian given by Eq. (3),30 

( )

( ) ( )

1 1 1,

2, 1 2, 1 2, 2, 1 1       

k k k k k

k k k k k k

x
i i

x x x x
i

τ α
ψ ψ ψ ψ

β
ψ ψ

+ −

+ + − −

= − + +

 + − + − 

&
h h

h

,           (7) 

( )*
1, 1 1, 1/k k k kv K x mαψ ψ= − −& ,                          (8) 

( )* * * *
2, 2 2, 1 1 1 1 2/k k k k k k k k k kv K x mβ ψ ψ ψ ψ ψ ψ ψ ψ+ + − −

 = − + + − − & .   (9) 

By means of these differential EOM, all the relevant dynamical 
quantities (i.e., ψk, v1,k, v2,k, x1,k, and x2,k) can be solved 
iteratively by the standard fourth-order Runge-Kutta (RK4) 
algorithm.32 Note that there also exists explicit integrators 
designed specifically for MQCD.33 

The above MF calculations can be also carried out via the 
density matrix, 

( ) ( )kl

kl

t t k lρ ρ=∑ .                              (10) 

The time derivative of the density matrix is obtained through the 
Liouville equation, 

( ) ( )( ) , /t H t t iρ ρ=   & h ,                            (11) 

and the classical acceleration becomes 

( ) ( )1
( )

k

k

Tr H t t
v t

m x

ρ∂   = −
∂

&
,                        (12) 

Based on the general Hamiltonian, it's easy to obtain28 

( ) ( )

( ) ( )

( ) ( )

1, 1, , 1 , 1 1, 1,

2, 1 2, 1, 2, 2, 1 1,

2, 2, 1 , 1 2, 1 2, , 1

       

       

kl k l k l k l k l k l kl

k k k l k k k l

l l k l l l k l

x x
i i

x x x x
i

x x x x
i

τ α
ρ ρ ρ ρ ρ ρ

β
ρ ρ

β
ρ ρ

+ − − +

+ + − −

− − + +

= − + − − + −

 + − + − 

 − − + − 

&
h h

h

h

,     (13) 

( )1, 1 1, 1/k k kkv K x mαρ= − −& ,                             (14) 

( )2, 2 2, , 1 , 1 22 Re Re /k k k k k kv K x mβ ρ ρ+ −
 = − + − & .            (15) 

Analogously, the time evolution of ρkl, v1,k, v2,k, x1,k, and x2,k can 
be solved iteratively by RK4.32 Besides, it's straightforward that 
the wave function approach based on Eqs. (4-9) and density 
matrix approach described by Eqs. (10-15) are fully equivalent 
at the MF level.28 

2.3 Initial Conditions 

To calculate the charge carrier mobility, one needs to carry 
out a series of simulations with different initial conditions to 

characterize the canonical ensemble of nuclear degrees of 
freedom. For a harmonic oscillator, it is well-known that the 
nuclear position follows a Gaussian distribution,31, 34 

2 2/21
( )

2
xx

x

P x e
σ

σ π
−= .                                (16) 

The variance of the nuclear position is 

2 coth
22

x

Bk TKm

ω
σ

 
=  

 

h h .                          (17) 

where ħ is the reduced Planck constant, ω = (K/m)1/2 is the 
vibrational frequency, kB is the Boltzmann constant, and T is the 
system temperature. In the low temperature (high frequency) 
limit, Eq. (17) goes to 

2

2
x

Km
σ =

h ,                                   (18) 

which is independent of temperature, representing the 
coordinate uncertainty of ground state nuclear vibration. And in 
the high temperature (low frequency) limit, Eq. (17) becomes 

2 B
x

k T

K
σ = ,                                      (19) 

which is actually the classical Boltzmann distribution. Similarly, 
the variance for nuclear momentum is expressed as, 

2 coth
2 2p

B

Km

k T

ω
σ

 
=  

 

h h .                          (20) 

In MQCD, nuclear vibrations are treated classically. According 
to the Boltzmann distribution, the initial {x1,k}, {x2,k}, {v1,k}, 
and {v2,k} can be set as Gaussian random numbers with 
variance kBT/K1, kBT/K2, kBT/m1, and kBT/m2, respectively. 
Using Eqs. (17) and (20) instead as initial conditions, one can 
achieve a better description of charge transport at low 
temperatures. In addition, the equilibrium geometry for nuclear 
vibrations should be also taken into account to setup the initial 
conditions.30 Based on the local Hamiltonian in Eq. (1), the 
neutral molecular geometries (xk=0) are generally used. This is 
reasonable for systems falling in the band regime, but is 
questionable in the hopping regime with low mobility, where 
the presence of a charge is accompanied by a distortion of the 
molecular structure. When the charge is localized on a single 
molecule, the charged geometry of the corresponding molecule 
is associated with xk = -α/K.30 

2.4 Charge Carrier Mobility 

For each realization m, the corresponding time-dependent 
wave function ψ(m)(t) or density matrix ρ(m)(t) can be obtained. 
The mean squared displacement (MSD) is then calculated by28 

2( ) 2 ( ) ( ) ( )

1

1
( ) ( ) ( ) ( ) ( )

M
m m m m

m

MSD t t r t t r t
M

ψ ψ ψ ψ
=

 = −  ∑ , (21) 

and 
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{ }( ) 2 2 ( )

1

1
( ) ( ) ( )

M
m m

m

MSD t Tr t r Tr t r
M

ρ ρ
=

   = −   ∑ ,          (22) 

using the wave function and density matrix approaches, 
respectively. M is the total number of realizations. When/if the 
MSD shows a linear evolution in time, one enters the regime of 
equilibrium diffusion and the diffusion coefficient is evaluated 
through the time derivative of the MSD as 

1
lim

2 t

dMSD
D

n dt→∞
= .                                (23) 

where n is the space dimension (e.g., n=1 for one-dimensional 
systems). Finally, the carrier mobility can be calculated by 
means of the Einstein relation,35, 36 

B

e
D

k T
µ = .                                     (24) 

where e is the elementary charge. 

2.5 Mean Field Theory without Feedback 

As shown in Eqs. (7-9) and (13-15), the combined 
dynamics of electrons and nuclei should be solved self-
consistently, that is to say, electron evolution has an impact on 
nuclear dynamics and vice versa. When electron dynamics is 
ultrafast in comparison with the nuclear energy relaxation, its 
influence on nuclear vibrations can be neglected.28 As a result, 
Eqs. (8), (9), (14), and (15) simply reduce to 

1, 1 1, 1/
k k

v K x m= −& ,                                    (25) 

2, 2 2, 2/
k k

v K x m= −& ,                                  (26) 

which correspond to the EOM for isolated harmonic oscillators 
in the absence of feedback from the electron to nuclei. This 
approximation offers great advantages when studying charge 
transport properties in realistic materials.28 In detail, one can 
perform molecular dynamics simulations to get a set of 
realizations of nuclear trajectories, and use quantum-chemical 
single point calculations to get the corresponding time-
dependent electronic Hamiltonian for each realization. The 
time-dependent wave function and density matrix can then be 
obtained through Eqs. (7) and (13), respectively. Finally, the 
charge transport mobility can be evaluated by Eqs. (21-24). 

2.6 Surface Hopping Method 

SH in the adiabatic representation usually gives more 
accurate results than that in the diabatic representation.37, 38 
However, there exists great difficulty to implement SH 
formalisms for charge transport in large molecular systems 
mostly due to the existence of high density of adiabatic PESs.29, 

39 Intermolecular electronic couplings are weak and short-range 
interactions. Most crossings happen between localized adiabatic 
states that are far away, and have no contribution to the charge 
transport process. Accurately dealing with these massive trivial 

crossings is quite difficult. Recently, a flexible surface hopping 
(FSH) technique,29 which treats only a small portion of the 
system in a SH manner and does it in a flexible way in time, 
has been proposed. In this QM/MM-like approach, the 
problematic crossing problem is avoided because all adiabatic 
states are spatially close and the computational cost is largely 
reduced because only a small Hamiltonian matrix is 
diagonalized to get all important PESs. A flexible time step 
technique, which ensures the smoothness of all time-dependent 
adiabatic states, was proposed, to enable an accurate SH 
description with the largest possible time intervals. 

In detail, diagonalizing the Hamiltonian, one gets the 
adiabatic states in terms of the original diabatic orbitals, {Φi = 
∑kpki|k›}, and the corresponding energies, {Ei}, to construct the 
adiabatic PESs. The electron wave function is defined as a 
linear expansion of these adiabatic states, i.e., Φ = ∑iciΦi. 
According to the Schrödinger equation, one obtains29 

( )1, 2,
1, 2,

1 k k

i i i j k ij k ij

j i k

c c E c x d x d
i ≠

= − +∑ ∑& & &
h

,                (27) 

where 

1(2),

1(2),

k

ij i j

k

d
d

dx
= Φ Φ ,                        (28) 

are nonadiabatic couplings. The nuclear EOM are modeled by 
the Langevin equation, 

'
1(2) 1(2), 1(2), 1(2) 1(2), 1(2)k k k

m x V m xγ ξ= − − +&& & ,               (29) 

Here, V'1(2),k = K1(2)x1(2),k+dEa/dx1(2),k, with a representing the 
active adiabatic surface, γ is the fraction coefficient 
characterizing system-bath coupling strength, ξ1(2) is a 
Markovian Gaussian random force with standard deviation 
(2γm1(2)kBT/∆t)1/2, and ∆t is the time interval. The differential 
equations, Eq. (27) and Eq. (29), can be solved with the RK4 
method.32, 40 The Langevin equation like Eq. (29) can be also 
solved with the numerical integration method introduced by 
Ermak and Buckholz.41 Based on the Hellmann-Feynman 
theorem,42 we obtain29 

1, ki kjk

ij

j i

p p
d

E E

α
=

−
,                                    (30) 

( ) ( )1, 1, 1, 1,2, ki k j k j kj k i k ik

ij

j i

p p p p p p
d

E E

β − + − +
 − + − =

−
,           (31) 

2

1,

i
ki

k

dE
p

dx
α= ,                                       (32) 

( )1, 1,
2,

2i
ki k i k i

k

dE
p p p

dx
β − += − ,                           (33) 
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2
1,

2
1,

2 ki
ji ki kj

j ik

d E
d p p

dx
α

≠

= ∑ ,                               (34) 

( ) ( )
2

2,
1, 1, 1, 1,2

2,

2 - -

ki
ji ki k j k j kj k i k i

j ik

d E
d p p p p p p

dx
β + +

≠

 = − + − ∑ .   (35) 

The active SH subsystem is free to self-adjust during the 
charge transport process, through adding and/or removing 
neighboring molecules to/from the subsystem at each time step. 
For example, in order to check whether a molecular orbital |j› 
should be added or not, we regard the active state of the SH 
subsystem (Φa = ∑ipia|i›) and this test state together as a two-
level system. Their onsite energies and coupling are29 

( )2
1, 2, 1 2, 1,2a a ia i i i i a ia

i i

H p x x x p pα τ β + +
 Φ Φ = + − + − ∑ ∑ ,  (36) 

1, j
j H j xα= ,                                   (37) 

( )
( )

1, 2, 1 2, 1,

2, 2, 1 1,                  

a ja j j j j a

j j j a

H j p x x x p

x x p

α τ β

τ β

+ +

− −

 Φ = + − + − 

 + − + − 

.      (38) 

When the ratio between the absolute coupling, abs{‹Φa|H|j›}, 
and the absolute energy difference, abs{‹Φa|H|Φa›-‹j|H|j›}, is 
larger than a critical fraction Rc, |j› is added into the new 
subsystem for SH. Similar procedures are carried out when 
removing a molecular orbital from the SH subsystem. 
Meanwhile, the new active state is set as the adiabatic state of 
the new subsystem which mostly overlaps with the old active 
state. Obviously, this approach converges to the traditional SH 
when Rc goes to 0, while alleviating the trivial crossing problem 
at finite Rc.

29 In addition, a proper ∆t can be adjusted at each 
time step to ensure that the minimum overlap between the 
adiabatic state at time t and the corresponding state at the next 
time step t+∆t, min{|‹Φi(t)|Φi(t+∆t)›|}, is always higher than a 
critical value Oc. Note that smaller time steps are automatically 
generated when the dynamics approaches nonadiabatic regimes 
to prevent the divergence of Eqs. (30-31). As in Tully's fewest 
switches surface hopping (FSSH) algorithm, the switching 
probability from the active surface i to another surface j is23 

( )* 1, 2,
1, 2,

*

2 Re
max 0,

k k

i j k ij k ijk

ij

i i

t c c v d v d
g

c c

  ∆ +  =  
  

∑ .         (39) 

When a surface hop to j-th PES is chosen stochastically, one 
needs to ensure that Ei+∑k(m1v

2
1,k+m2v

2
2,k)/2 > Ej and adjust 

nuclear velocities along the direction of the nonadiabatic 
coupling vector to conserve the total energy,29 

( )1(2),
1(2), 1(2), 2

1 2 1k

k k ij i j

A B
v v d E E

B A

 
′ = + + − − 

 

.           (40) 

where 

1, 2,
1 1, 2 2,

k k

k ij k ij

k k

A m v d m v d= +∑ ∑ ,                      (41) 

( ) ( )2 21, 2,
1 2

k k

ij ij

k k

B m d m d= +∑ ∑ .                     (42) 

If Ei+A2/(2B) < Ej, the hop is rejected; otherwise, the trajectory 
evolves on the PES Ej. Environmental fluctuations tend to 
destruct the superpositioned quantum states, resulting in  
coherence loss. Decoherence effects can be naturally 
considered through damping off-diagonal terms of the density 
matrix with pairwise decoherence rates.43 The simplest way to 
implement decoherence can be achieved by collapsing the 
electronic wave function to the new PES after every successful 
and unsuccessful hop.44 For each realization m, the time 
evolution of the active state Φa

(m)(t) is restored and used to 
calculate the MSD after a total number of M realizations, 

2( ) 2 ( ) ( ) ( )

1

1
( ) ( ) ( ) ( ) ( )

M
m m m m

a a a a

m

MSD t t r t t r t
M =

 = Φ Φ − Φ Φ  ∑ . (43) 

The carrier mobility is calculated through the Einstein relation 
in Eq. (24). 

2.7 Surface Hopping without Feedback 

Similar to the MF case discussed previously in Section 2.5, 
the feedback from electron dynamics to nuclear vibrations can 
also be neglected in certain limits, resulting the so-called 
classical path approximation (CPA).45 Such an approximation 
assumes that the classical trajectory is independent of electron 
dynamics, while it is not the case the other way round. CPA is 
appropriate when the nuclear thermal energy is much greater 
than the electronic activation energy, that is, the energy 
exchange between electrons and nuclei does not have a strong 
impact on the nuclear dynamics. Due to the stochastic nature of 
SH methods, a large number of realizations are required to get 
converged results, making the computational cost extremely 
high particularly for a first-principle study of large systems. 
Charge transport calculations at the CPA level utilize either 
force field or ab initio molecular dynamics to obtain only one 
pre-computed nuclear trajectory, along which a series of SH 
simulations are performed to obtain the carrier mobility. The 
computational cost is significantly reduced, and thus larger 
system size and/or longer time scale can be reached.  So far 
available surface hopping investigations for charge transport in 
realistic materials are mostly carried out with CPA.46 To mimic 
the hop rejection due to the violation of energy conservation, 
the surface hopping probabilities in Eq. (39) are rescaled by the 
Boltzmann factor to account the detailed balance,45 

( )* 1, 2,
1, 2,

*

2 Re
max 0,

k k

i j k ij k ijk

ij ij

i i

t c c v d v d
g b

c c

  ∆ +  =  
  

∑ ,         (44) 

where 
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exp
,

1,

  

             

j i

Bij j i

j i

E E

k Tb E E

E E

 − 
−  

= >  
 ≤

.         (45) 

The processes to calculate the carrier mobility remains the same. 

3. Results and Discussion 

3.1 Charge Transport with Mean Field Theory 

The MF theory is the most widely used MQCD technique 
for charge transport studies so far. A lot of new insights have 
been obtained and will be extensively discussed in the 
following subsections. 

3.1.1. Role of Initial Charge Extension on Equilibrium 

Transport 

 
Fig. 1 Time-dependent MSD with different initial charge extension ranging from 
1 to 9 molecular sites. The nonlocal Hamiltonian in Eq. (2) is chosen with the 
parameters: τ = 300 cm−1, β = 995 cm-1/Å, K = 14500 amu/ps2, m = 250 amu, and 
T = 150 K, and the wave function strategy of the MF theory is adopted. Reprinted 
with permission from ref. 28. 

Charge carrier mobility is a steady state property, and thus 
should be insensitive to the choice of initial charge distribution. 
As an illustration, the initial population has been equally 
distributed over a certain number of contiguous molecules in a 
linear stack, and its role on the time dependence of MSD has 
been examined based on the nonlocal Hamiltonian.28 As shown 
in Fig. 1, the time-dependent MSD with different initial charge 
extension differs significantly within the first several ps, but the 
time evolutions become more or less parallel to each other at 
longer time scale. As a result, the corresponding dMSD/dt (and 
thus the charge carrier mobility) converges to the same value 
eventually. The convergence with simulation time is found to 
be faster for smaller initial charge extension. Similar 
observations also hold for the local Hamiltonian. In general 
cases, therefore, one can initially localize the charge on a single 
molecular site to reduce the total simulation time for 
equilibrium charge transport. 

3.1.2. Feedback from Electron Dynamics to Nuclear Vibrations 

If the feedback from the quantum charge carriers on the 
classical nuclei can be completely neglected, a multiscale 
simulation approach can be naturally constructed, taking the 
advantage of molecular dynamics for nuclear trajectories, 
quantum chemical calculations for the time-dependent 
Hamiltonian, and MQCD simulations for charge transport 
properties. It is thus of great interest to study how feedback 
effects depend on details of the Hamiltonian. Due to the 
different nature of local and nonlocal EPCs, the feedback effect 
can be investigated separately as follows. 

 
Fig. 2 The ratio of the approximated dMSD/dt without considering the feedback 
from the charge carrier to the nuclei, (dMSD/dt)approx, and the Ehrenfest solution 
of dMSD/dt considering such feedback, (dMSD/dt)Ehrenfest, as a function of 
(dMSD/dt)Ehrenfest in one-dimensional stacks based on the local Hamiltonian in Eq. 
(1). For each calculation, either the intermolecular electronic coupling (τ), the 
local EPC (α), the force constant (K), the mass of nuclear vibrations (m), or the 
temperature (T) is changed, while keeping the other parameters to their reference 
values (τ = 300 cm−1, α = 3500 cm−1/Å, K = 14500 amu/ps2, m = 250 amu, and T = 
150 K). The density matrix approach of the MF theory is applied. The dashed 
lines are used to guide the eyes. Reprinted with permission from ref. 28. 

For the local Hamiltonian, numerical calculations have 
been carried out for one-dimensional stacks in a broad 
parameter space.28 For each data point, the converged dMSD/dt 
values obtained by either treating electron-phonon interactions 
explicitly or neglecting the feedback from electron dynamics to 
nuclear vibrations have been compared. As shown in Fig. 2, 
when (dMSD/dt)Ehrenfest is larger than 0.1 L2/fs, (dMSD/dt)approx 
is almost identical to (dMSD/dt)Ehrenfest, and thus the feedback 
effect can be safely neglected. However, the characteristic ratio 
(dMSD/dt)approx/(dMSD/dt)Ehrenfest increases up to 1.5 with the 
decrease of (dMSD/dt)Ehrenfest. As a result, the carrier mobility 
obtained by neglecting the quantum forces on the nuclei can be 
regarded as an upper limit. Only the values of τ, α, and K have a 
strong impact on the error because the charge delocalization 
relies on the interplay between the electronic coupling, τ, and 
the reorganization energy, λ = β2/K,28 and the feedback forces 
on the nuclei depends on the associated electron population. If 
the intermolecular distance, L, is set to 5 Å, which is typical for 
molecular crystals, the critical room-temperature mobility is 
calculated to be 4.8 cm2/Vs. Similar calculations have been 
performed on two-dimensional lattices, where the critical room-
temperature mobility is reduced to 0.14 cm2/Vs.28 Considering 
that high carrier mobilities have been widely observed in 
molecular crystals,1 the MF approach without feedback thus 
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provides a reliable tool to investigate the intrinsic transport 
properties in high-mobility materials, while it captures the 
upper limit in low-mobility materials. 

In the case with only nonlocal EPCs, the nuclear dynamics 
relies only on Reρkl with odd sum indices, see Eq. (15). 
Applying the Liouville equation in Eq. (11) to the identity Reρkl 
= (ρkl+ρlk)/2 yields28 

( )Im ImRe kj jl lj kjjkl
H H

t

ρ ρρ −∂
=

∂

∑
h

.                 (46) 

For the nonlocal Hamiltonian in Eq. (2), Eq. (46) becomes 

, 1 1, , 1 1,

, 1 , 1 , 1 , 1

Im ImRe

Im Im
                -

k k k l k k k lkl

l l k l l l k l

H H

t

H H

ρ ρρ

ρ ρ

− − + +

− − + +

+∂
=

∂
+
h

h

.                 (47) 

In other words, ∂Reρkl/∂t depends on Imρk-1,l, Imρk+1,l, Imρk,l-1, 
and Imρk,l+1, for which the sum of the two indices is of opposite 
parity to that of ∂Reρkl/∂t. Similarly, ∂Imρkl/∂t involves Reρk-1,l, 
Reρk+1,l, Reρk,l-1, and Reρk,l+1, for which the sum of the two 
indices is also of opposite parity to that of ∂Imρkl/∂t. The initial 
ρ is generally a real diagonal matrix, namely, only Reρkl with 
even sum indices are nonzero. Especially, when the total 
number of molecules is even, it is easy to deduce that Reρkl 
with odd sum indices will remain zero forever.28 As a result, 
Eq. (15) reduces to Eq. (26), and the feedback from electron to 
nuclei is rigorously negligible when the Hamiltonian includes 
only nonlocal EPCs. 

3.1.3 Temperature Dependence of Mobility 

As the only source of disorder to the electronic 
Hamiltonian, nuclear coordinate fluctuations determine the 
entire temperature dependence of mobility, which also reflects 
the underlying charge transport mechanism. In general, two 
critical temperatures can be defined.31 The first is Tc1 = ħω/kB, 
below which nuclear quantum effect is important. The second is 
Tc2 = τ2K/(α2kB) for the local Hamiltonian and Tc2 = τ2K/(2β2kB) 
for the nonlocal Hamiltonian. When temperature is above Tc2, 
the fluctuation of the electronic Hamiltonian (i.e., ασx and 
21/2βσx for local and nonlocal Hamiltonians, respectively) 
becomes significant in comparison to the intermolecular 
transfer integral, τ, and the perturbation theory becomes invalid. 
As a result, three charge transport regimes can be commonly 
identified: quantum regime (T < Tcl), classical perturbative 
regime (Tc1 < T < Tc2), and regime beyond perturbation (T > 
Tc2).

31 

 
Fig. 3 Temperature dependence of (A) and (B) mobility, µ, and (C) and (D) its 
derivative, −d(logµ)/d(logT), for the MF dynamics with classical and quantum 
initial conditions. (A) and (C) are based on the local Hamiltonian in Eq. (1), while 
(B) and (D) are based on the nonlocal Hamiltonian in Eq. (2). The parameters are 
chosen as: τ = 300 cm−1, α = 3500 cm−1/Å, β = 995 cm−1/Å, K = 14500 amu/ps2, 
and m = 250 amu. Reprinted with permission from ref. 31. 

In Fig. 3A, a typical temperature dependence of mobility 
obtained at the MF level based on the local Hamiltonian is 
shown.31 Using classical initial conditions, the MF dynamics 
gives an almost perfect linear relationship in the log-log plot, 
which implies that the carrier mobility follows an overall 
power-law dependence. With quantum initial conditions, the 
temperature dependence remains the same above 50 K, but the 
mobility is strongly reduced at lower temperatures. Based on 
the parameters used, the vibrational frequency is calculated to 
be about 40 cm-1, corresponding to a critical temperature Tc1 of 
58 K. These numerical calculations thus confirmed that a strong 
change in the transport behavior happens around Tc1 because of 
the nuclear quantum effect. Due to the same reason, for the 
nonlocal Hamiltonian, the role of the quantum initial conditions 
remains basically the same (see Fig. 3B). Note that systematic 
studies using the MF theory for charge transport have been 
carried out with a broad range of parameters, and similar 
observations have been always obtained.27, 31 

The above phenomena can be viewed more clearly when 
one extracts n(T) ≡ −d(logµ)/d(logT) from µ(T). As shown in 
Figs. 3C and 3D, for both local and nonlocal Hamiltonians, the 
n(T) predicted by the MF theory using classical initial 
conditions are more or less constant at low temperatures, falling 
into the classical perturbation regime. Above 150 K, however, 
they experience an evident reduction. This is related to the 
transition around Tc2, which is calculated to be 128 K for the 
local Hamiltonian. The decrease of n is even more significant 
for the nonlocal Hamiltonian. Because the electronic site 
energies at equilibrium geometries are zero, the fluctuations 
due to local EPCs always result in a enhancement of electronic 
disorder and thus a reduction of transport efficiency.31 It is a 
different story for nonlocal Hamiltonians, where charge 
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transport relies strongly on the absolute values of transfer 
integrals. With the increase of temperature, the time-dependent 
transfer integrals can be of opposite sign of their values at 
equilibrium geometries.47 Charge transport can be even 
relatively enhanced, resulting in a weaker temperature 
dependence of mobility. The n(T) values calculated with 
quantum initial conditions are close to unity at extreme low 
temperatures, falling into the quantum regime. For high 
temperatures, the results are similar to those using classical 
initial conditions. 

3.1.4 Multiple Phonons per Molecular Site 

 
Fig. 4 MF calculated temperature dependence of mobility with either one nuclear 
vibration (α = 3500 cm−1/Å, m = 250 amu or m = 15.625 amu) or two nuclear 
vibrations (α1 = α2 = 2475 cm−1/Å, m1 = 250 amu, and m2 = 15.625 amu) coupled 
to each molecule. The other parameters, τ = 300 cm−1 and K = 14500 amu/ps2, are 
fixed in all calculations. The local Hamiltonian is used with quantum initial 
conditions. Reprinted with permission from ref. 31. 

In realistic organic materials, each molecule is associated 
with a large number of vibrational modes with different 
frequencies. The role of multiple phonons has been studied 
using the local Hamiltonian with two uncorrelated vibrations 
per molecule.31 Two sets of calculations with a single 
vibrational mode and different frequencies are used as 
references. For systems with local EPCs, the reorganization 
energy can be calculated as λ = ∑iαi

2/Ki,
28 where i covers all 

considered vibrational modes. The EPC strengths are adjusted 
to conserve the total reorganization energy. As shown in Fig. 4, 
the temperature dependence of mobility using two phonons per 
molecule falls exactly between the results based on one single 
phonon per molecule and proper EPCs yielding the same 
reorganization energy. Thus, the major charge transport 
mechanism under multiple phonons per molecule can be fully 
understood with one single vibrational mode as systematically 
discussed throughout this perspective. 

3.2 Assessment of Mean Field and Surface Hopping 

Methods 

At variance with MF theory that reflects only the average 
effect of all PESs, the SH method can respond individually to 
different PESs, and thus has more flexibility to describe 
complex dynamics like charge transport. In this section, the MF 

and SH results are benchmarked, and new understandings in 
charge transport are summarized. 

3.2.1 Mean Field and Surface Hopping Methods for Charge 

Transfer Rates 

Due to the loose packing between molecules, most organic 
materials possess weak intermolecular electronic couplings and 
strong EPCs. In this limit, charge transport falls into the 
hopping regime, where the whole transport process can be 
viewed as a series of charge transfer steps between molecular 
dimers.7 Analytical rate expressions can be derived from 
perturbation theories, including the fully quantum mechanical 
Fermi's golden rule (FGR)48 and the classically approximated 
Marcus formula,49 and further used as references to assess 
MQCD studies. 

In organic semiconductors comprising a single type of 
conjugated molecules, charge transfer processes between 
adjacent molecules are actually self-exchange reactions. For 
simplicity, only one reaction coordinate, x, is considered. The 
spin-boson Hamiltonian in the basis of diabatic states reads,30, 50 

2 2

2 2

/ 2

/ 2

m x Mx
H

m x Mx

ω τ
τ ω

 + −
=  

− − 

,                (48) 

which is actually a special case of the local Hamiltonian given 
by Eq. (1) for two molecular sites. m and ω are the mass and 
frequency of the nuclear vibration along the reaction path x, 
respectively. The local EPC factor, M, can be expressed in 
terms of the reorganization energy, λ, as M = (λmω2/2)1/2.50 

When the perturbation theory is applied in the small 
electronic coupling limit (τ << λ), the charge transfer rate is 
analytically expressed by FGR as48 

( ) ( ){ }
2

2
exp 2 1 1i t i t

FGRk dt S n ne n eω ωτ ∞ −

−∞
 = − + − − + ∫

h

,     (49) 

where n = 1/[exp(ħω/kBT)-1] is the phonon occupation number 
at temperature T, and S = λ/(ħω) is the Huang-Rhys factor. In 
the strong coupling (S >> 1) and high temperature (kBT >> ħω) 
limits, Eq. (49) naturally reduces to the Marcus rate,49 

2

exp
4Marcus

B B

k
k T k T

τ π λ
λ

 
= − 

 h

.                     (50) 

As a result, a thermally activated temperature dependence of 
charge transfer rate is generally obtained. 
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Fig. 5 Temperature dependence of the charge transfer rate in model dimers by the 
MF approach with and without system-bath interaction (MF and MFL with γ = 4 
ps-1), the SH approach with and without decoherence (SH and SHD), together 
with the reference results from FGR and Marcus formula. The parameters are τ = 
50 cm-1, α = 3500 cm-1/Å, K = 14500 amu/ps2, and m = 250 amu. Reprinted with 
permission from ref. 30. 

Using existing analytical expressions as references, the 
performance of the MF and SH theories for charge transfer 
dynamics has been carefully examined with the temperature 
dependence as a marker.30 As mentioned above, the vibrational 
frequency of 40 cm-1 means that the quantum effect in the 
nuclear motion can be fully neglected above 50 K. As a result, 
Marcus rates are very close to FGR results for the whole 
temperature range investigated (see Fig. 5). In line with these 
temperature-dependent results, SH with or without decoherence 
give almost identical rates, showing that the decoherence effect 
is not significantly relevant with the chosen parameters. The 
MF method with system-bath interaction is found to work 
surprisingly well, deviating only very slightly from the SH 
results. The most obvious difference is obtained with the MF 
theory, where the rate decreases with temperature, in strong 
contrast with all other approaches. 

3.2.2 Mean Field and Surface Hopping Methods for Charge 

Transport Mobilities 

Taking the advantage of FGR and Marcus charge transfer 
rates, the hopping mobility of charge carriers in organic solids 
can be well-described by the Pauli master equation (PME)51 or 
the kinetic Monte-Carlo (KMC) algorithms.7 A set of purely 
classical kinetic equations can be constructed to describe the 
evolution of the charge population at each molecule, 

( )i ji j ij ij
P k P k P= −∑& .                            (51) 

where Pi is the occupation probability of the charge carrier to 
be on molecule i, and kij is the charge transfer rate from 
molecule i to j. Eq. (51) can be solved easily through an 
iterative numerical scheme: at time zero, the populations {Pi} 
are initialized, e.g., one molecule is set to be unity, while the 
others are zero. The time evolution of the populations can then 
be obtained through RK4.32 The MSD is obtained through 

22( ) ( )( ) ( )i ii i
MSD t P t iL P t iL = −  ∑ ∑ .                 (52) 

The simulation continues until one gets a linear time 
dependence of the MSD, and the mobility can be calculated 
according to Eqs. (23-24). Alternatively, the KMC algorithm 
approach, which is actually a random walk technique, can be 
used to simulate the dynamics. In detail, an arbitrary site is 
initially chosen as the starting position for the charge. For a 1D 
stack containing only one molecular species, the charge transfer 
rate to the left neighbor is the same as that to the right one,  and 
thus the charge has a probability of 1/2 to hop left or right. In 
order to identify the next site for the charge statistically, a 
random number ζ uniformly distributed between 0 and 1 is 
generated. If ζ < 1/2, the charge hops to the left neighbor after a 
waiting time of 1/(2k), where k is the intermolecular charge 
transfer rate; otherwise it hops to the right neighbor. Thousands 
of realizations should be carried out to obtain the averaged 
time-dependent MSD and the carrier mobility for equilibrium 
charge transport. 

The small polaron theory is a traditional approach to study 
charge transport in molecular crystals.12 Starting from the fully 
quantum version of the mixed quantum-classical Hamiltonian 
in Eq. (3),30 

( )

( ) ( )

1 1 1, 1,

2 2 2, 2,

1 1, 1, 2 2, 2,

1 1

1 1
2 2

      

      

k k

k

k k

k

k k k k

k k

H g b b k k

g b b k k k k

b b b b

ω

τ ω

ω ω

+

+

+ +

= +

 + − + + + + + 

   + + + +   
   

∑

∑

∑ ∑

h

h

h h

,   (53) 

where b(+)
1,k and b(+)

2,k are annihilation (creation) operators 
related to modes x1,k and x2,k, respectively. The dimensionless 
local and nonlocal EPC constants are g1 = α(2m1ħω1)

1/2/ω1 and 
g2 = β(m2ħω2)

1/2/ω2. The polaron mobility can be calculated 
by13 

2
( )

2
( ) f t

B

eL
dt t e

k T
µ χ

+∞

−∞

= ∫
h

,                          (54) 

where 

 ( ) 2 22 2 2 2
2 2 2 2

1
( ) 1

2
i t i t

t g n e n e
ω ωχ τ ω − = + + + h ,            (55) 

( ) ( )
2

2

1

( ) 2 1 2 1 cos sini i i i

i

f t g n t i tω ω
=

= − + − +  ∑ .          (56) 

n1 and n2 are occupation numbers of the two phonon modes. 
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Fig. 6 Temperature dependence of the charge transport mobility in model stacks 
calculated with the MF theory starting from charged and neutral geometries 
without system-bath interaction, MF theory with system-bath interaction (MFL, γ 
= 1 ps-1), the KMC and PME approaches based on Marcus charge transfer rate, 
the PME approach based on FGR, the small polaron model, and surface hopping 
calculations with and without decoherence (SHD and SH). Only local electron-
phonon couplings are considered. The chosen parameters are τ = 50 cm-1, α = 
3500 cm-1/Å, K = 14500 amu/ps2, and m = 250 amu. Reprinted with permission 
from ref. 30. 

As expected, the PME and KMC approaches using Marcus 
charge transfer rates give identical temperature-dependent 
mobilities (see Fig. 6).30 When FGR rates are used instead, the 
mobilities are slightly larger at low temperature due to the 
quantum effect. The values obtained from small polaron theory 
are similar to the PME results based on FGR charge transfer 
rates because both approaches use the same perturbation 
scheme in the small electronic coupling limit. SH results with 
or without decoherence are very close and agree very well with 
the PME or KMC calculations except at high temperatures. The 
MF mobility using charged geometry gives similar thermally 
activated temperature dependence but with larger magnitudes 
especially at low temperatures. In contract, the data obtained 
from the MF approach with neutral geometry at time zero 
follow a bandlike power law with temperature, similar to the 
results shown in Fig. 4 with much larger transfer integrals. 
With system-bath interactions, the temperature dependence is 
just up-shifted, showing also bandlike behavior. As a result, the 
MF theory must be used with caution when studying charge 
transport in the hopping regime, while the SH approach is 
generally superior and thus can be exploited to probe the charge 
transport mechanism in complex situations.30 

3.3 Band-to-Hopping Crossover 

 
Fig. 7 FSH calculated temperature dependence of the (A) charge mobility and (B) 
IPR for model stacks. The local Hamiltonian in Eq. (1) is used. τ varies as 
indicated with α = 3500 cm−1/Å, K = 14500 amu/ps2 and m = 250. The Marcus 
result and a power law T−1 dependence are shown to guide the eyes. Reprinted 
with permission from ref. 29. 

After benchmarking the hopping picture of charge 
transport, we now investigate to which extent SH approaches 
can reproduce the band-to-hopping crossover expected upon 
going from strong to weak coupling regime. The local 
Hamiltonian has been adopted with the local EPC, α, fixed as 
3500 cm-1/Å. Different values for τ, that is, 50, 100, 200, 400, 
and 800 cm-1, have been chosen as to cover from weak to 
strong intermolecular couplings. From Fig. 7, it is clear that the 
FSH approach successfully reproduces the expected smooth 
transition from hopping to band-like regimes with the increase 
of electronic couplings.29 In detail, the mobility is thermally 
activated for small τ (50 and 100 cm-1), while it monotonously 
decreases with temperature for large τ (400 and 800 cm-1). For 
intermediate electronic couplings around τ = 200 cm-1, the 
carrier mobility is basically insensitive to temperature. 

The band-to-hopping crossover phenomenon52 can be 
rationalized on the basis of the tendency for the charge carrier 
to localize in absence of thermal disorder. When temperature is 
zero, the competition between the local EPCs that tend to 
localize the charge and the intermolecular couplings that favor 
charge delocalization result in different charge carrier size. For 
localized charges, raising the temperature enhances the effect of 
local EPCs, and induces more fluctuations to the localized 
charge. The charge carrier has a higher possibility to climb over 
the barrier, resulting in larger charge delocalization and 
mobility. In contrast, if the charge is delocalized, any thermal 
effect from local EPCs tends to destroy the translational 
symmetry of the electron Hamiltonian, and results in smaller 
delocalization reflected in a lower mobility. Comparing Fig. 7A 
with Fig. 7B, there is a strong correlation between the carrier 
mobility and the charge localization strength (characterized by 
the inverse participation ratio, IPR).29 Namely, the charge gets 
larger (smaller) when the mobility increases (decreases). 
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3.4 Role of Nonlocal Electron-Phonon Couplings 

Organic materials are built from weak van der Waals 
interactions, and thus feature strong nonlocal EPCs, which are 
key to understand the intrinsic charge transport mechanisms.27, 

47 In the literature, disparate views have been advanced 
regarding the role of nonlocal EPCs on charge transport. It was 
indicated by Munn and Silbey that incorporating nonlocal EPCs 
yields higher hopping contribution, which leads to an increase 
in the charge mobility.53 In contrast, Troisi pointed out that 
nonlocal EPCs dynamically localize the charge carrier, and 
eventually decrease the charge transport efficiency.27 This 
‘apparent’ divergence has been recently resolved through SH 
studies.29 

 
Fig. 8 FSH calculated temperature dependence of the (A) charge mobility and (B) 
IPR for model stacks. The general Hamiltonian is used. τ and β vary as indicated 
with α = 3500 cm−1/Å, K1 = K2 = 14500 amu/ps2, and m1 = m2 = 250 amu. 
Reprinted with permission from ref. 29. 

The role of nonlocal EPCs relies strongly on its interplay 
with electronic couplings and local EPCs. Special focus has 
been devoted to its impact on the carrier mobility in both 
hopping and band regimes.29 For the sake of convenience, the 
same force constant and effective mass were chosen for the 
nuclear vibrations corresponding to both local and nonlocal 
EPCs. As illustrated in Fig. 8A, FSH calculations revealed that 
nonlocal EPCs have exactly opposite effects in the two 
transport pictures: the mobility is increased when accounting 
for nonlocal EPCs in the hopping scenario but reduced in the 
band regime.29 Such an observation is also perfectly in line with 
the evolution of the charge carrier size (compare Fig. 8A with 
Fig. 8B). On one hand, nonlocal EPCs introduce perturbations 
to the localized charge in the hopping picture, aid the charge 
transfer out of the potential well, and thus enhance charge 
transport. On the other hand, nonlocal EPCs break the 
translational symmetry of the electronic Hamiltonian in the 
band regime, reduce the delocalization strength of charge 
carriers, and hence decrease the mobility. The results reported 
by SH thus unify the two distinct pictures proposed by Munn,  

Silbey53 and Troisi,27 which appear as the two limiting cases 
obtained for hopping and band regimes. It is worthwhile to 
mention that these findings have been recently confirmed by a 
fully quantum treatment of charge transport based on the 
Liouville space hierarchical EOM method.54 

3.5 Charge Transport in Realistic Materials 

For real systems, MQCD studies of charge transport need 
to couple with first-principles electronic structure calculations. 
As MQCD deals with the interaction between electrons and 
nuclei iteratively and stochastically, single point calculations 
should be carried out repeatedly. Moreover, charge transport is 
a bulk property, and thus a large supramolecular system needs 
to be chosen. The associated quantum chemical calculations for 
the whole system are thus computationally very expansive. As a 
result, available charge transport studies for realistic materials 
are quite limited in the literature. 

There exits several practical, although maybe appropriate, 
strategies to investigate the charge transport properties in 
realistic materials in the framework of MQCD. In the first 
approach, normal mode or Fourier transform analysis is 
adopted to obtain the effective vibrational modes and the 
associated EPCs, which are further used to parameterize model 
Hamiltonians and calculate the carrier mobility as described in 
Sections 3 and 4. This approach has been applied to study 
charge transport in conjugated polymers,26, 55 molecular 
crystals,27, 56, 57 and discotic liquid crystals.58 In a second 
approach feedback from electronic dynamics to nuclear 
vibrations is neglected. The advantage of this approximation is 
that charge transport can be studied directly on the basis of ab 

initio electronic structures, going beyond model Hamiltonians. 
This results in a multiscale strategy: nuclear trajectories are 
obtained through quantum mechanical or force field molecular 
dynamics, the time-dependent electronic Hamiltonians are 
generated from first-principles singlet point calculations, and 
MQCD simulations are used to calculate the carrier mobility. 
This type of calculation has been performed for pentathiophene 
butyric acid monolayers.46 The third approach takes the 
advantage of recent developments on fast and efficient 
electronic structure methods. For instance, MF dynamics has 
been coupled with density functional tight binding (DFTB)59 to 
study the transport properties in a series of donor-acceptor type 
polymers for photovoltaics.60 This strategy is advantageous 
over the other two since quantum backreaction effects are taken 
into account at the ab initio level. Within our knowledge, no 
extensive calculations of this type have been devoted to SH 
studies of charge transport which are computationally much 
more expensive than MF investigations due to the existence of 
substantial unavoided crossing regimes.29 

4. Outlook 

MQCD techniques have proved to be a powerful tool to 
study charge transport in organic materials. They are non-
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perturbative in nature, and can be easily coupled with modern 
electronic structure methods for atomistic investigations. A lot 
of insights into the underlying mechanism of charge transport 
have been obtained with these techniques. The characteristic 
phenomenon of band-to-hopping crossover in organics has been 
captured by SH, which has been demonstrated to be superior 
than MF in general. A quantitative prediction of carrier 
mobility at the SH level, however, is still a difficult task. 

One major difficulty to implement SH dynamics for charge 
transport is the so-called trivial crossing problem arising due to 
high degeneracy of electronic levels in large systems. The FSH 
technique can resolve this issue, but critical parameters are 
needed to ensure stability and accuracy of the simulations. 
Parameter-free methods are in demand. Self-consistency 
checks61 have been recently proposed to correct the FSSH 
transition probabilities when encountering surface crossings, 
providing a straightforward way to describe the trivial crossings. 
Besides, the fewest switches concept of FSSH has been 
generalized to gross population flow between states, resulting 
in the global flux surface hopping (GFSH) method,24 where the 
above self-consistency check is automatically satisfied. In 
contrast to FSSH, GFSH is capable of representing the super-
exchange mechanism of charge transport. These new 
developments can be potentially combined with FSH to 
generate more reliable and efficient methods for charge 
transport in large systems. Besides, decoherence is needed for 
proper description of slow transitions, and thus should be 
important for low-mobility materials. It would be valuable to 
incorporate more robust decoherence strategies43, 44, 62-65 into 
further charge transport studies. In addition, the semiclassical 
treatment of the nuclear tunneling effect should be improved 
when high-frequency modes play the key role for charge 
transport. Fully quantum propagation methods, e.g., multilayer 
multiconfiguration time-dependent Hartree approach,66, 67 can 
be used. 

When mapping model Hamiltonians to realistic materials, 
we need to evaluate a huge amount of intermolecular electronic 
couplings, which are computationally very expensive for large 
systems with many snapshots.7 Recently, Blumberger's group 
has proposed a simple computational scheme based on the well-
known linear dependence of transfer integral with respect to 
overlap.68 Their approach can speed up the calculation by 6 
orders of magnitude in comparison with DFT references while 
keeping high accuracy. For first principle simulations of charge 
transport, more efficient single point electronic structure 
methods are needed to further reduce the computational cost. 
DFTB is a good choice. Semiempirical methods such as 
Hückel,69 MNDO70 and AM171 could be also very helpful, 
although extensive tests are needed. 
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