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In summary, this work successfully developed a one-pot strategy 
to prepare Pt NPs-encapsulated MOFs as electrocatalytic tracer for 
the rapid and sensitive electrochemical detection of telomerase 
activity. Owing to the well-defined porosities and chemical tenability 
of MOFs, the Pt NPs were homogeneously distributed inside the 5 

MOF frameworks with the diameter of ca. 1.0 nm. The resulting 
Pt@UiO-66-NH2 composite demonstrated high electrocatalysis for 
NaBH4 oxidation via multi-electron (maximum 8e−) transfer in 
alkaline solution. On the basis of the high catalytic performance of 
Pt@UiO-66-NH2, the designed method can measure the telomerase 10 

activity with high sensitivity down to 100 cell mL−1 and wide 
dynamic range. More significantly, this approach achieved the 
detection of the telomerase activity in single cell. Furthermore, the 
proposed method is more convenient without the need for any 
additional separation steps. The advantages of the biosensor were 15 

also identified by analyzing various other cell lines of telomerase 
activity. The Pt@MOFs not only offer an excellent platform for 
elucidating the biofunctionality of telomerase but also easily 
integrate other signal amplification for trace detecting a wide range 
of the analysts. 20 
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