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have shown that weak attraction could be measured when 
proteins were pressed into a layer of polymer brushes at 
relatively high load, most likely due to the rearrangements in 
polymer conformation and protein penetration into the polymer 
core.15 Fig. 5 shows that pure repulsive forces were measured 
between PDN-PEG-PDN loops and BSA during both approach 
and separation and no adhesion hysteresis was detected. These 
results indicate that the polymer loops could better adapt 
external compression and reduce the protein penetration, 
exhibiting great potential in antifouling applications. The 
interactions between symmetric loops-bearing surfaces in 
aqueous solutions of different salt concentrations (0.001 M, 
0.01 M and 0.1 M NaCl) were also measured and similar force-
distance profiles were obtained (Fig. S6, ESI†), which indicates 
that the PDN-PEG-PDN loop coating was neutrally charged 
and the repulsive forces between the loops-bearing coating and 
proteins arose from the steric hindrance of the extended PEG 
loops. 

In summary, a mussel-inspired ABA triblock copolymer 
PDN-PEG-PDN was synthesized and used to prepare surfaces 
bearing polymer loops. By direct drop coating, this triblock 
copolymer can form a layer of loops onto substrate surfaces 
with the assistance of two adhesive anchoring blocks. The 
mussel-inspired adhesive anchors can provide stable anchoring 
points and facilitate the grafting of PEG chains to achieve large 
excluded volume. A diblock copolymer PDN-PEG was also 
synthesized which could form a brush layer on substrate 
surfaces by drop coating. The QCM-D protein adsorption tests 
demonstrate that the loops-coated surfaces show stronger 
protein-reduction performance over the brushes-coated surface 
with similar end graft density. The superior antifouling 
properties of PDN-PEG-PDN loops is mainly attributed to the 
strong steric hindrance of the neutrally charged polymer loops 
as confirmed by direct force measurements.  
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