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 A partial least squares model has been generated enabling the rapid 

assessment of ordered molecular structure in a semi-crystalline polymer, 

starch, directly from solid state NMR spectra. Solid state NMR 

spectroscopy offers many advantages over conventional analysis tools 

being non-destructive and functional in complex mixtures. 

Starch is typically the single largest component in most 

people’s diet and represents an abundant and readily-

processed renewable polymer source for industrial 

applications. The percentage helical order or crystallinity of 

starches is recognized as contributing to signature properties 

such as the integrity of granules, the mechanical properties of 

processed starches, and amylase digestibility.
1-7

 The transition 

of starch from its native, semi-crystalline, granular form to an 

amorphous form through hydrothermal processing (cooking) 

results in a dramatic increase in susceptibility to α-amylase 

digestion.
4
 The resultant increase in available glucose from 

starchy foods as a result of hydrothermal processing has been 

shown to be highly important to human nutrition,
8
 and indeed 

the development of cooking, and subsequent increased 

availability of starchy foods as a glucose source, has been 

highlighted as a key step in human evolution.
9
 

A number of methods have been used to characterize starch 

ordered structures such as X-ray diffraction (XRD),
10

 

differential scanning calorimetry (DSC),
11, 12

 and rapid visco-

analysis (RVA).
13

 These techniques all have limitations in terms 

of experimental time, availability, amount of sample required 

and sample preparation. Solid state 
13

C NMR spectroscopy
14

 

can be used to analyse short range order in starches due to the 

different chemical shift patterns characteristic of ordered 

(arising from A, B and V type crystalline polymorphs) and non-

ordered materials. Using peak fitting software and amorphous 

material standards, a quantitative analysis of double helical,  

Figure 1. Exemplar 13C CP/MAS NMR spectra for semi-

crystalline A-type starch (black) and non-ordered (amorphous) 

starch (grey) with the assignments of each of the peaks 

indicated. 

 

single-helical, and non-ordered starch content can be 

obtained.
14

 The 
13

C CP/MAS NMR spectrum of starch contains 

resonances which have been assigned to each of the carbons 

in the glucose ring (Figure 1). Approaches to determining 

ordered structure from starch NMR spectra involve subtracting 

non-ordered (amorphous) spectra and then deconvoluting to 

generate crystalline and amorphous sub-spectra, and assessing 

the relative contributions of these two spectra.
14-16

 Generally, 

resonances arising as a result of the C1 carbon of the glucosidic 

ring are used, as they are particularly sensitive to changes in 

both relative order and crystalline polymorph.
14

 The C1 peak is 

a triplet for the A type crystalline polymorph (indicated in 

Figure 1), and a doublet for B type crystalline starch.
14

 

Deconvolution approaches to evaluating ordered structure are 

of limited application, however, as they are  time consuming 

and introduce a degree of subjectivity in the analysis of the 

data as amorphous reference spectra may vary depending on 

the botanical origin of starch and the preparation and drying 

methods. 
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Figure 2. PLS model constructed using the full 13C CP/MAS 

NMR spectra for starch. a. Reference vs. predicted ordered 

helical structure for calibration samples (filled circles) and 

validation samples (open circles). b. Model correlation loadings 

for principle component 1 (solid line) and principle component 

2 (broken line) 

 

A significant advantage of NMR over alternative 

methodologies such as XRD is that impurities in the samples 

such as lipid, protein or polyphenols do not interfere with the 

spectrum of starch making it possible to study the molecular 

order of starches even in processed foods and complex 

mixtures, so improved data analysis tools are urgently needed. 

Using a large reference set of starch spectra including different 

varieties of wheat, barley, rice and maize, the present study 

aimed to use chemometric approaches to analyse ordered 

structure in starch from 
13

C CP/MAS NMR spectra. The 

starches were used either in a granular form or following 

processing such as: extrusion, digestion or boiling. Freeze 

drying, oven drying and air drying were also used to introduce 

diversity to the sample set. A total of 114 starch spectra were 

used, randomly split into a calibration set consisting of 76 

spectra and a validation set comprising 38 spectra. These 

spectra were subjected to Partial Least Squares (PLS) 

modelling. PLS is a statistical method whereby two matrices X- 

(in this case NMR spectra) and Y- (molecular order values from 

spectral deconvolution) are modelled to find the latent 

variables in X that best predict the latent variables in Y. 

The spectral deconvolution method of Tan et al.
14

 was applied 

to all 114 spectra to produce reference data values, and the 

starches were found to cover a range of molecular order from 

amorphous to 50% order and all crystalline polymorphs (A, B 

and V) were represented (Supplementary Table T1). This 

provides a reference data set of spectra for analysis by 

multivariate modelling covering the full range of ordered 

structure and crystalline polymorph that may be expected to 

be encountered during the analysis of native and processed 

starches.
6, 10, 15, 17

 DSC and XRD was also carried out on a 

subset of the starch samples (Supplementary Table T1) to 

allow comparison of the performance of the conventional 

deconvolution method and new multivariate analysis methods 

with alternative measures of starch ordered structure. 

A preliminary model (Figure 2) was built using the full spectral 

range covering all the main resonances associated with the 

glucan ring, from 48 to 122 ppm, using single normal variate 

(SNV) normalised spectra, to ascertain the validity of using PLS 

to model NMR spectra of starch, and to explore the main 

regions of variance in the spectrum correlated with the 

presence of ordered starch structure. As shown in Figure 1a,  

 

Figure 3. PLS model constructed using the C1 region of the 13C 

CP/MAS NMR spectra for starch. a. Reference vs. predicted 

ordered helical structure for calibration samples (filled circles) 

and validation samples (open circles). b. Model correlation 

loadings for principle component 1 (solid line) and principle 

component 2 (broken line) 

A. 

B. 

A. 

B. 
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using 2 principle components, a predictive model can be built 

for total ordered structure arising from A or B type 

crystallinity, with a root mean square error (RMSE) of 5.5%, 

showing very similar performance for the calibration and 

validation datasets. The correlation loadings (Figure 2b) 

demonstrate that the model is fitting to variation in all of the 

starch associated peaks in the chosen spectral region. It should 

be noted that while A/B ordered structure could be predicted 

from the model, it was not possible to predict V-type ordered 

structure from this model (or any of the models presented in 

this paper), as it was found that there was too little variability 

in V-type crystallinity between the different samples, and the 

overall amount of V-type present in each of the samples was 

very low (<10%). 

 

Table 1. Fitting parameters for PLS models using calibration and 

validation data sets, for the full spectrum, and each individual peak.   

 

To further explore the suitability of each of the major peaks in 

the starch spectrum for modelling ordered structure, PLS 

models were constructed using spectral regions relating to 

each of the major peaks present in the spectrum of starch (C1, 

90-105 ppm; C2,3,5, 65-78 ppm; C4, 77-88 ppm; C6, 56-64 

ppm). The model performance for each of the major peaks, 

and for the full spectrum, is summarised in Table 1. As would 

be expected, given that Figure 2b demonstrates that there are 

correlations between all the major peaks in the spectrum and 

the level of ordered structure in starch, and Figure 1 

demonstrates that there are significant contributions from the 

ordered sub-spectrum of starch to each of the major peaks in 

the NMR spectrum of starch, it was possible to construct and 

validate models using each of the peaks individually 

(Supplementary Figure S1 and Figure 3). There was, however, 

variation in model performance between different peaks. The 

worst calibration performance was observed for the C4 peak, 

which is to be expected as this peak has the least difference 

between amorphous and crystalline sub-spectra (Figure 1), 

therefore the least variation for the model to fit to. The best 

model performance was observed for the C1 peak. This is in 

agreement with previous studies which have focussed on the 

C1 peak for determining ordered helical structure from starch 

NMR spectra.
10, 14, 16, 18

 A closer look at the model for the C1 

peak (Figure 3a) shows that it is capable of predicting ordered 

structure from between 5% and 55% ordered structure (below 

5% ordered structure the model becomes unreliable due to 

the small number of available calibration samples). The 

regression loadings (Figure 3b), show that the model is fitting 

to the triplet C1 peak, with peaks in the regression coefficients 

at 98, 99 and 100 ppm, matching those in the crystalline sub-

spectrum of A-type crystalline starch. The performance of the 

model constructed using the C1 peak is comparable to that of 

the full spectra, but using only the C1 peak has the advantage 

that the model is more robust to the presence of other 

spectral signals. Thus, the model is applicable to complex 

mixtures containing other components, as long as there is no 

overlap with the C1 spectral region. 

To allow wider use of this model, a spread sheet (Excel) macro 

was created to allow prediction from the model parameters 

(Supplementary data file). 
13

C CP/MAS NMR spectra of starch 

can be copied and pasted into the spread sheet as x-y data. 

The macro interpolates the C1 region of the spectrum, and 

applies SNV normalisation and mean centring. It then applies 

multiple linear regression using β-factors extracted from the 

C1 PLS model to give a prediction of percentage ordered 

double helical structure present in the sample from the 

spectrum. 

A subset of 56 samples had ordered double helical structure 

predicted using the prediction macro, and using the 

conventional deconvolution method, and the results were 

correlated (Supplementary Figure S2) against two alternative 

measures of starch ordered structure (XRD and DSC). It can be 

seen that there is a significant (p <0.0001) correlation 

between the values predicted by the macro and both XRD and 

DSC data, and that the predication macro provides very 

similar performance to the deconvolution method. Close 

inspection suggests that the macro may actually provide 

somewhat better performance, as the data points are more 

evenly spaced. For comparison, a correlation is also included 

between XRD and DSC data. 

  The new prediction equation removes the need for the 

lengthy iterative fitting process and the need for an 

amorphous standard. The NMR method requires no sample 

preparation, the spectra used for prediction can be collected in 

as little as one hour, and the method is non-destructive. Using 

the provided spread sheet macro, the present work 

demonstrates the rapid and efficient determination of ordered 

double helix starch structure from 
13

C CP/MAS NMR spectra, 

with reduced subjectivity. This will allow this powerful and 

flexible tool to become more widely and readily applied in 

studies of starch structure in complex, heterogeneous systems. 
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