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A simple sensing ensemble was designed to discriminate 5 

structurally similar divalent metal chlorides utilizing 

multivariate data analysis. The system features the binding of 

four synthesized coumarin-enamine probes to a series of ten 

metal chlorides. Linear discriminant analysis (LDA) achieves 

what univariate data analysis alone cannot i.e., full analyte 10 

discrimination and differentiation.   

 Traditional sensing customarily employs “lock-and-key” 

receptors requiring synthesis of highly-selective, unique sensors 

for each analyte to be detected.1, 2 The synthesis of such stimuli 

responsive compounds is often quite difficult and time-15 

consuming, therefore producing a specific molecular probe for a 

target of interest may often be impractical. Moreover, many 

molecular probes are not selective. A more attractive approach to 

chemical sensing has begun to emerge; that is the use of cross 

reactive sensor arrays that exploit a series of non-selective, 20 

differential chemosensors,3-6 inspired by the mammalian olfactory 

and taste systems. 

 The advantage of cross-reactive arrays lies in the amount of 

data that is generated quickly and analysed using chemometric 

techniques that assist in simplifying and interpreting said data.2, 7 25 

Additionally, the power of such cross-reactive systems comes 

from collecting multivariable instrumental responses. Subtle 

correlations between instrumental variables can often be 

overlooked in univariate data collection in favour of simpler data 

interpretation. On the other hand, it is well known in the 30 

chemometric community that the correlation information, which 

is otherwise not captured in univariate data sets, renders 

multivariate analysis methods invariably more powerful than 

univariate techniques.8  

 Here we report our findings on the use of multivariate pattern 35 

recognition approaches to the binding between coumarin-enamine 

probes (Fig. 1) and ten divalent metal ions. Coumarin-based 

molecular probes are attractive due to their unusual photophysical 

properties in different media.9, 10 As a result of these unique 

properties, they have been used as colorimetric sensors.10-13 It has 40 

recently been shown that coumarin probes (1) and (4) have been 

able to selectively detect cyanide anions.9 In addition to their 

reactivity to nucleophilic anions, these probes contain Lewis basic 

sites which can coordinate metal ions, so we report here on the 

striking results obtained by expanding their sensing scope to 45 

divalent metal ions using pattern recognition methods in DMSO, 

a highly polar solvent. 

 

Fig. 1 Structures of the coumarin-enamine probes. 

 The detection of metal cations is of great continuing interest:15 50 

metal ions are ubiquitous, and many members of this family pose 

serious health and environmental risks.16-18 It is becoming more 

apparent that metal ions, in particular iron, zinc and copper play 

key roles in neurodegenerative diseases that have been linked to 

increasing levels of metals in certain areas of the brain (“metal-55 

based neurodegeneration hypothesis”). Therefore, synthesizing 

molecular probes that can selectively target these metal ions is an 

area of interest.17 Moreover, cadmium, lead, and mercury are 

highly toxic metals associated with severe health risks.19 Some 

array methods for the detection of metal cations have been 60 

previously proposed by the Anzenbacher group,20 and by 

others,21-23 but analyte panels invariably contained cations with 

different oxidation states. We concentrated our attention on a 

homogeneous series of cations in order to highlight subtler 

structural differences that are not dictated by simple charge 65 

effects. In particular, we used metal(II) chlorides to highlight 

differences arising from the nature of the cation itself, rather than 

from the ion pairing. Chloride is a relatively inert counterion 

common to all fields of application of metal sensing. Multi analyte 

detection is generally achieved by utilizing Boolean logic, and at 70 

most four analytes at a time are screened. Here we report the use 

of a family of structurally similar coumarin-enamine molecular 

probes that can discriminate between ten divalent metal cations. 

To the best of our knowledge, there are only a handful of cross-

reactive systems capable of screening this high number of closely 75 

related divalent metal ions in a single experiment.  However, these 

systems use a mixture of charges in their sensor array.  

 In this current system a dye-metal complex is adopted, wherein 

coordination occurs via the Lewis basic sites. The initial binding 

interaction between probes 1 to 5 with various divalent metal salts 80 

was carried out in DMSO solution through optical spectroscopic 

methods (absorbance and fluorescence emission). The coumarin 

enamine probes are only sparingly soluble in water, so the highly 

polar DMSO was selected as a close replacement for an aqueous 

environment. As aliquots of a solution of the metal ion are added, 85 
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we observed a decrease in the fluorescence intensity indicative of 

a binding interaction (see ESI figure S1). We were also able to 

determine binding constants for selected metal ions and ligands, 

and the limit of detection associated with this determination 

method (see ESI). 5 

 Although these coumarin dyes are good ligands, they were 

found to be poorly selective in their binding to different metal 

ions, as shown in Figure 2A in the case of probe 5: the sensor 

clearly responds to the metal ion analytes, as indicated by the 

change in the emission signal, but different analytes cause a 10 

similar response. Analyte discrimination purely on the basis of the 

fluorescence intensity signal recovered from such binding 

measurements was not possible. The other coumarin-enamine 

probes were subjected to similar studies, which produced 

comparable results (see ESI). In short, the univariate analysis 15 

alone did not provide analytical differentiation among the series 

of metal chlorides under study. 

 

Fig 2. (A) Normalized fluorescence spectra of probe 5 (16 M, ex = 408 

nm), either alone, or upon the addition of different MCl2 (32 M). (B) 20 

Molecular probes 2 to 5 upon the addition of one equivalent of ZnCl2 in 

DMSO (16 M, ex = 408 nm). 

 It became apparent that the univalent approach omitted a lot of 

information. However, more data was present in these systems 

than could be captured by the simple univariate response to a 25 

single probe. In fact, all the coumarin-enamine probes shown in 

Fig. 1 bind to divalent metal cations, each one more or less 

effectively, but the signal differences among the individual 

analytes are small for each probe, as illustrated in the case of 

Zn(II) metal ion in Figure 2B. 30 

 In order to capture this wealth of information and to be able to 

carry out the discrimination of metal cations as proposed, a 

multivariate approach was adopted. Further studies were 

conducted on a multimode microwell plate reader allowing for 

rapid and automated acquisition of multivariate data. The sensor 35 

array was comprised of compounds 2 to 5. Compound 1 does not 

possess a chelating binding site on the aromatic ring system, so it 

was used as a reference for experimental consistency (see ESI for 

experimental details). We monitored the absorbance response of 

this array of four sensors at 330, 380, 400, 430 nm, and 40 

fluorescence intensity at 330/450 nm, 330/528 nm, 330/580 nm, 

380/450 nm, 380/528 nm, and 380/450 nm (λexc/λem), for a total of 

ten instrumental variables, which were all used concurrently in the 

procedures described below. The sensing array was exposed to a 

panel of analytes comprising the following metal ions, as chloride 45 

salts: Ca(II), Cd(II), Co(II), Cu(II), Fe(II), Hg(II), Mg(II), Ni(II), 

Pb(II), Zn(II); all measurements were conducted in the same 

solvent as the univariate analysis for consistency (DMSO). The 

sensor array was exposed to each metal multiple times, generating 

a cluster of 18 replicates for each analyte. This approach generated 50 

a very large multivariate data set (4 sensors by 10 analytes by 

18 replicates = 720 data points, each described by nine 

instrumental variables). Linear discriminant analysis (LDA) was 

used to organize the high-dimensionality data and to extract the 

most relevant information, ultimately providing the information 55 

necessary to classify the ten analytes considered.  

 The well-established LDA algorithm computes a linear 

combination of the original variables that maximizes the 

separation between multiple analytes, while minimizing the 

separation between replicate measurements of the same 60 

analyte.24, 25 In doing so, the algorithm generates a new set of 

variables, called factors, which are returned ordered by decreasing 

relative information content. Data reduction is then accomplished 

by retaining only the first two or three LDA factors and dropping 

the higher order ones. This produces a transformed dataset, in 65 

which each point is associated with a pair or a triplet of numbers, 

respectively, typically referred to as the factor scores of those 

points. These factor scores can be used as coordinates in plotting 

the transformed points in either a two- or three-dimensional plot.  

 In the present study, the first two factors obtained from the 70 

LDA analysis, out of the ten present in the system (see ESI), 

accounted for 80.7% of the total information content of the 

original system. A two-dimensional score plot (Figure 3) was 

obtained that shows clear clustering of the data: replicate 

measurements of samples of each divalent metal ion are classified 75 

as similar and grouped together by the LDA analysis. In short, the 

pattern-based approach is capable of differentiating almost all ten 

divalent metal cations, using the additional information collected 

through patterning and multivariate analysis. 

 In addition to the excellent analytical results, further features of 80 

the score plot are still under investigation to interpret the 

clustering position in terms of the chemical properties of the 

relevant metal ions (e.g. ionic radius, coordination number and 

geometry).  
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Fig. 3 Two-dimensional LDA score plot for the analysis of probes 2-5 

binding 10 divalent metal chlorides (confidence ellipsoids at 95% 

probability).  

 5 

Fig. 4 A three-dimensional LDA score plot captures 90% of all the 

information available from the pattern recognition system, significantly 

improving on the separation of difficult cases that were imperfectly 

discriminated using the two-dimensional results. Confidence ellipsoids are 

drawn at 95% confidence. 10 

 Although the analytical discriminatory power of the system as 

described above is already significant, more information is stored 

in the system than can be represented with a simple two-

dimensional plot. In fact, as mentioned above, the plot in Figure 3 

only captures ca. 81% of the total information available in the 15 

analytical results. We were able to obtain better analyte 

discrimination using a larger portion of those results, i.e. by 

adding a third dimension as shown in the three-dimensional score 

plot in Figure 4. The third factor contributes another significant 

9.3% of the total information content, bringing the captured 20 

information content to 90% overall. This third factor allowed for 

better differentiation of metal ions, which was especially useful in 

those difficult cases that were not well differentiated in the two-

dimensional plot.  

 The clustering presented in Figure 4 obtained from LDA 25 

analysis and data reduction takes advantage of a total of 90% of 

the information content available from the multivariate pattern 

response. This is the most information that can be easily presented 

in graphical form, but of course machine learning methods are not 

constrained to working in three dimensions. Using hierarchical 30 

classification one can take advantage of the entire information 

content gleaned from the multivariate response described above.26 

The results of such an analysis based on Manhattan distance and 

Ward linkages, are shown in Figure 5 as a dendrogram. The 

classification is improved when compared to the clustering shown 35 

in Figure 4, but many of the classification features are maintained. 

For instance, one major group includes Fe(II), Ni(II) and Co(II) 

on the one hand, and all the remaining metal ions on the other. 

Similarly, Hg(II), Pb(II) and Cd(II) samples are clustered in very 

close proximity to each other. Both observations are in agreement 40 

with the situation observed in the LDA clustering plots shown in 

Figures 3 and 4.  

 
Fig. 5 The dendrogram obtained from hierarchical clustering analysis of 

the ten analytes using all the information contained in the multivariate 45 

pattern response. The dendrogram was constructed using Manhattan 

distance and Ward linkages. 

 The classification accuracy of the method is the best 

representation of its chemical selectivity. This parameter can be 

more easily estimated using clustering analysis. To this end, each 50 

dataset was divided in two groups of samples: five samples from 

each set were used as a classification test set, and the remaining 

ones were grouped together to form the training set for a naïve 

Bayes classifier. The resulting classification accuracy matrix is 

shown in Figure 6. Although some samples from analytes that 55 

were reported as poorly separated in previous analyses were still 
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misclassified (e.g. Cd(II)Hg(II), Hg(II)Pb(II), 

Mg(II)Zn(II)), re-classification analysis reported excellent 

overall accuracy for this classifier (94%, see Figure 6).  

 
Fig. 6 Classification accuracy of a naïve Bayes classifier trained on a 5 

partial subset of the full dataset, and challenged with five samples per 

analyte class taken from the original dataset that were not present in the 

training set. 

 Finally, we considered the relative contributions of each of the 

cross-reactive sensors to the overall discrimination and of each 10 

instrumental variable in the multivariate set (see ESI). The loading 

plot provides the relative contribution of the original absorbance 

or fluorescence variables to each of the two factors we selected 

providing insight into the origin of the discriminatory power of 

the system. The loading plot clearly demonstrates that probes 2 15 

and 4 provide the most information to the system.  

 In summary, we presented here the use of a series of coumarin-

enamine chromogenic and fluorescent probes to construct a 

sensing array capable of discriminating ten divalent metal ions as 

their chloride salts. To the best of our knowledge this is the first 20 

time that structurally similar fluorophores have been shown to 

discriminate a large number of metal ions of the same oxidation 

state. Multivariate analysis paired with pattern-based recognition 

achieved what the univariate approach could not, i.e. the effective 

differentiation of most divalent metal cations in our extensive 25 

analyte panel. The sensing system was simple to set up; optical 

spectroscopy coupled with a multi-well plate reader gave us ready 

access to a multivariate data set through automation-friendly 

methods. We obtained excellent cluster dispersion for most 

analytes, giving remarkable discrimination capacity over an 30 

uncommonly vast and highly diverse panel of ten analytes 

comprising metal ions from the main group as well as the d-

transition series. We are currently expanding the analytical scope 

of our sensing system to include trivalent metal ions as well as 

other counter-ions in order to be able to differentiate ion pairs. 35 
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