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A new Rh(III)-catalyzed oxidative bicyclization through C-H 

functionalization is presented. This reaction allows the selective 

assembly of diverse benzo[g]indoles from 4-arylbut-3-yn-1-amines 

and internal alkynes via a sequence of aromatic C(sp
2
)-H 

functionalization, cyclodimerization and nucleophilic cyclization.  

Ring-fused naphthalenes,
1
 including benzo[g]indoles (Scheme 1),

2
 

are an important class of polycyclic hydrocarbons in organic 

synthesis, chemical biology, pharmaceutical discovery, and 

materials science. As a result, much attention has been attracted to 

the development of new efficient methods to build ring-fused 

naphthalenes.
1-6

 Traditional approaches for such compound 

synthesis are derived from the preexisting naphthalene skeletons 

via several steps.
1-3

 In recent years, transition-metal-catalyzed 

tandem annulation reactions and especially tandem annulation 

strategy between aromatic compounds and alkynes through aryl 

C(sp
2
)-H functionalization have emerged as an efficient, convergent 

method to assemble naphthalenes
4-7

 and ring-fused naphthalenes.
8
 

However, the majority of these transformations are limited by the 

use of alkynes only as the 2-carbon synthons,
5,6,8

 and approaches to 

ring-fused naphthalenes are quite rare.
8
 In 1998, Kisch and co-

workers developed a novel HCl-facilitated rhodium-catalyzed aryl 

C(sp
2
)-H functionalization and [4+2] cyclodimerization of arylalkynes 

for building naphthalene skeletons, in which one arylalkyne 

molecule was used as the 4-carbon synthon and the other 

arylalkyne molecule as the 2-carbon synthon.
7a

 Miura and co-

workers have reported a new rhodium/phosphine/amine·HBr 

catalyst system for the highly chemoselective synthesis of 

multisubstituted naphthalenes by aryl C(sp
2
)-H functionalization 

and [4+2] cyclodimerization of two different internal alkynes; the 

catalytic conditions tolerated various internal alkynes and made the  

Scheme 1  Selected examples of important benzo[g]indole 

compounds.  

cross-dimerization to predominate over the conceivable homo-

dimerization.
7b

 During the cyclodimerization process (Pathway I, 

Scheme 2),
7
 the rhodium hydride species first formed from the Rh(I) 

species and a hydrogen cation (H
+
) would subsequently undergo the 

insertion of a C-C triple bond in an arylalkyne to the Rh-H bond and 

geometrical isomerization via a zwitterion to give intermediate A. 

ortho-Metalation of intermediate A with the liberation of HX 

produces rhodacycle B, followed by selective insertion of another 

alkyne molecule to the rhodium-aryl or -alkenyl bond and reductive 

elimination afford naphthalenes.  
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In contrast, Rh(III)-catalyzed oxidative aromatic C(sp
2
)-H 

functionalization and annulation reactions with alkynes are initiated 

via the direct insertion of Rh(III) species to the aromatic C(sp
2
)-H 

bond leading to intermediate C (Pathway II, Scheme 2).
5,6,8

 On this 

basis, we speculated that a Rh
III

 oxidative catalysis might trigger 

novel C-H functionalization and cyclodimerization reactions of 

arylalkynes through different quenching from the Rh
I
 catalysis to 

provide intermediate E, which would react with a nucleophile to 

afford ring-fused naphthalene skeletons. Herein, we report the first 

Rh(III)-catalyzed oxidative bicyclization of 4-arylbut-3-yn-1-amines 

with internal alkynes through C-H functionalization; this reaction 

proceeds by a sequence of aromatic C(sp
2
)-H functionalization, 

cyclodimerization and nucleophilic cyclization and represents an 

practical method to access benzo[g]indoles (Scheme 2).  

 

Table 1  Screening of the optimal reaction conditionsa 

 

Entry Variation from the standard conditions 
Isolated yield [%]

 

3aa 4a 

1
b none 66 8 

2
 

at 130 
o
C 65 10 

3 at 100 
o
C 28 trace 

4
c
 [{Cp*RhCl2}2] (10 mol%) 21 15 

5
 Without [{Cp*RhCl2}2] 0 0 

6 without AgOTf 0 0 

7 AgSbF6 instead of AgOTf 35 5 

8
 AgOAc instead of AgOTf 19 trace 

9 AgCO2CF3 instead of AgOTf 18 trace 

10 Cu(OTf)2 instead of AgOTf 40 10 

11 Sc(OTf)3 instead of AgOTf trace trace 

12
 without CF3CO2H 46 9 

13
 TfOH instead of CF3CO2H 10 trace 

14 N2 (1 atm) instead of O2 27 trace 

15 Cu(OAc)2 (1 equiv) instead of O2 21 trace 
 

a
 Reaction conditions: 1a (0.2 mmol), 2a (1.5 equiv), [{Cp*RhCl2}2] (5 

mol%), AgOTf (4 mol%), CF3CO2H (1 equiv), O2 (1 atm), MeOH 
(anhydrous, 2 mL), 120 

o
C, 22 h. 

b
 Other side-products, including 4-

methyl-N-(4-oxo-4-phenylbutyl)benzenesulfonamide (5a; 15%) from 
hydration of alkyne 1a, were observed. 

c
 Side-product 5a in 36% yield.

 

We started our optimization investigation with the bicyclization 

reaction between 4-methyl-N-(4-phenylbut-3-yn-1-

yl)benzenesulfonamide (1a) and 1,2-diphenylethyne (2a) (Table 1). 

When a combination of [{Cp*RhCl2}2] (5 mol%) with AgOTf (4 mol%), 

CF3CO2H (1 equiv) and O2 (1 atm) in the medium MeOH at 120 
o
C 

for 22 h was employed, the cross-bicyclization product 3aa
9
 was 

furnished in the highest yield (66%) with two side-products, the 

homo-bicyclization product 4a and hydration product 5a, from 

substrate 1a in 8% and 15% yields, respectively (entry 1). While a 

higher reaction temperature gave the same results with those at 

120 
o
C (entry 2), a lower reaction temperature had a negative effect 

(entry 3). However, the yield of 3aa decreased sharply when using 

10 mol% of [{Cp*RhCl2}2] because the side-reactions were 

promoted (entry 4). Notably, the Rh
III

 catalyst and AgOTf play a 

crucial role in the reaction, as omittance of any one of these species 

leads to no detectable products 3aa (entries 5 and 6). Other Ag salts, 

namely AgSbF6, AgOAc and AgCO2CF3, were less efficient than 

AgOTf (entries 7-9). Use of Cu(OTf)2 instead of AgOTf showed 

activity for the reaction, albeit giving a lower yield (entry 10). 

However, Sc(OTf)3 was ineffective (entry 11). These results support 

that Ag salts and Cu salts act as a promoter to activate the Rh
III

 

species, not as a Lewis acid. Screening on the effect of acids 

confirmed that the role of CF3CO2H is to improve the reaction 

(entries 1, 12 and 13 and Table S1 in the Supporting Information). 

The yield of 3aa decreased dramatically when N2 or Cu(OAc)2 was 

used to replace O2 (entries 14 and 15).  
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Scheme 3  Bicyclization of 4-arylbut-3-yn-1-amines (1) with internal 

alkynes (2). 
a
 Reaction conditions: 1 (0.2 mmol), 2 (1.5 equiv), 

[{Cp*RhCl2}2] (5 mol%), AgOTf (4 mol%), CF3CO2H (1 equiv), O2 (1 
atm), MeOH (anhydrous, 2 mL), 120 

o
C, 22 h. The regioselective 

ratio based on unsymmetrical alkynes 2 as the 2-carbon synthons is 
given in parenthesis. Two main side-products 4 and 5 were 
observed.  

The scope of this cross-bicyclization reaction with regard to 4-

arylbut-3-yn-1-amines reacting with different internal alkynes was 

first investigated by using the optimal reaction conditions (Scheme 

3). The substituents, namely Me, Br, Cl and NO2 groups, on the aryl 

ring in 4-arylbut-3-yn-1-amines 1b-h were well-tolerated. For 

example, treatment of 4-Br- or 4-Cl-susbtitutted substrates 1c or 1d 

with 1,2-diphenylethyne (2a), [{Cp*RhCl2}2], AgOTf, CF3CO2H and O2 

afforded the desired benzo[g]indoles 3ca-da in moderate yields, 

which may provide opportunities for further additional 

modifications of the product. Notably, 3-Br-susbtituted substrate 1f 

led to a mixture of regioselective bicyclization products 3af/3af’. 

Gratifyingly, substrate 1h with a phenyl group on the 1 position was 

also compatible with the optimal conditions and gave 3ha in 48% 

yield. Substrate 1i with a Ac group instead of the Ts group also 
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afforded the expected product 3ia in moderate yield. However, 

substrates 1j and 1k with a Bn group or two free hydrogen atoms 

on the nitrogen atom were not viable for the bicyclization reaction 

and lea to no formation of 3ja and 3ka.  

The optimal conditions were found to be applicable to various 

internal alkynes 2b-i (3ab-ai). Using symmetrical internal alkynes, 

1,2-di-p-tolylethyne (2b) and hex-3-yne (2i), to react with substrate 

1a, [{Cp*RhCl2}2], AgOTf, CF3CO2H and O2 successfully furnish 3ab 

and 3ai in high yields. For unsymmetrical internal alkynes 2c-h, a 

mixture of regioselective products were observed. For example, (4-

methylphenyl)phenylethyne (2c) was converted into 3ac with >20:1 

regioselectivity.
9
 Aryl-substituted prop-1-ynes 2d-g were suitable 

substrates and the substitution effect of the aryl group had a 

fundamental influence on the regioselectivity (3ad-ag). Gratifyingly, 

hex-2-yne (2h), an aliphatic internal alkyne, also led to 3ah with 

73% yield and 2.2:1 regioselectivity.  

As shown in Table 2, the homo- bicyclization of 4-methyl-N-(4-

arylbut-3-yn-1-yl)benzenesulfonamides 1a-g were examined. 4-

Phenylalkyne 1a was treated with [{Cp*RhCl2}2], AgOTf, CF3CO2H 

and O2 smoothly, providing the desired homo-bicyclization product 

4a in 65% yield with 25% yield of the hydration product 5a (entry 1). 

Alkynes 1b-d and 1f-g bearing a 4-MeC6H4, a 4-BrC6H4, a 4-ClC6H4, a 

3-BrC6H4 or a 3,5-diMeC6H4 group at the 4 position, successfully 

delivered 4b-d and 4f-g in moderate yields (entries 2-6).
9
 Notably, 

4-arylalkyne 1f with a Br group at the meta position gave a mixture 

of regioselective isomers 4f/4f’ based on alkyne 1f (entry 5). 

 

Table 2  Homo-bicyclization of 4-arylalkynes(1)
a 

 

Entry R
2
(1) 

Isolated Yield [%]
 

4 5 

1
 H, 1a 4a, 65 (>20:1) 5a, 25 

2
 

4-Me, 1b 4b, 67 (>20:1) 5b, 26 

3 4-Br, 1c 4c, 57 (>20:1) 5c, 38 

4 4-Cl, 1d 4d, 59 (>20:1) 5d, 32 

5
b 3-Br, 1f 4f (8-Br)/4f’ (6-Br), 62 5f, 26 

6 3,5-diMe, 1g 4g, 60 (>20:1) 5g, 33 
 

a
 For reaction conditions, see Table 1 and Scheme 3. The 

regioselective ratio based on unsymmetrical alkynes as the 2-carbon 
synthons is given in parenthesis. 

b
 The regioselectivity ratio of 4f/4f’ is 

2.5:1 based on alkyne 1f as the 4-carbon synthon. 

 

To understand the mechanism for this bicyclization reaction 

(Pathway II, Scheme 2), some control experiments were performed 

(Scheme 4). Substrates 5a and 6a could not be converted into the 

expected product 3aa, suggesting that they were not intermediates 

for this bicyclization reaction [Eq (1) and Eq (2)].
10

 The 

intermolecular (kH/kD = 3.0) and intramolecular (kH/kD = 2.3) kinetic 

isotope effect experiments support that the C(sp
2
)-H 

functionalization is the rate-limiting step.
5
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Scheme 4  Control experiments.  

In conclusion, we have developed a Rh(III)-catalyzed oxidative 

bicyclization reaction of 4-arylbut-3-yn-1-amines with internal 

alkynes via C(sp
2
)-H functionalization, cyclodimerization and 

nucleophilic cyclization cascades, which enables a variety of ring-

fused naphthalenes with excellent functional-group tolerance. In 

contrast to the catalytic cycle of the Rh
I
 catalysis, this Rh

III
 catalysis 

is initiated by C-H functionalization and quenched through 

nucleophilic cyclization, which may be useful for the construction of 

diverse polycyclic structures in organic synthesis and medicinal 

chemistry. Further studies on the mechanism and applications of 

this bicyclization strategy are currently under way in our laboratory.  
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