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With >800 members in humans, the G protein-coupled receptors (GPCRs) super-family is the target for more than 30% of the marketed 
drugs.  The recent boom in GPCR crystallography has enabled the solution of ~30 different GPCR structures, what boosted the 
identification and optimization of novel modulators and new chemical entities through structure-based strategies.  However, the number 
of available structures represents a small part of the human GPCR druggable target space, and its complete coverage in the near future 
seems unlikely.  Homology modelling represents a reliable tool to fill this gap, and hence to vastly expand the horizons of structure-10 

based drug discovery and design.  In this Feature Article, we show from a wealth of retrospective and prospective studies, that in spite of 
the pitfalls of, and standing challenges in homology modelling, structural models have been critical for the blossoming and success of 
GPCR structure-based lead discovery and optimization endeavours; in addition, they have also been instrumental in characterizing 
receptor-ligand interaction, guiding the design of site-directed mutagenesis and SAR studies, and assessing off-target effects.  
Considering though its current limitations, we also discuss the most pressing issues to develop more accurate homology modelling 15 

strategies, with a special focus on the integration of computational tools with biochemical, biophysical and QSAR data, highlighting 
methodological aspects and recent progress.  The teachings of the three GPCR Dock community-wide assessments and the fresh 
developments in GPCR classes B, C and F structures are commented.  This is a fast growing and highly promising field of research, and 
in the coming years, the use of high-quality models should enable the discovery of a growing number of potent, selective and efficient 
GPCR drug leads with high therapeutic potential through receptor structure-based strategies.20 

1. Introduction: The world of GPCRs 

1.1 Description and function 

G protein-coupled receptors (GPCRs) are integral membrane 
proteins which recognize numerous messengers such as photons, 
odorants, neurotransmitters, fatty acids, ions, and peptides, and 25 

translate these stimuli into intracellular responses1. The GPCRs 
signalling process is linked to several physiological and 
pathophysiological responses affecting immune, cardiovascular 
and endocrine systems, among others2-4. Neurodegenerative, 
immune, metabolic, cardiovascular, psychiatric, and oncologic 30 

diseases have been tackled by a great number of drugs targeting 
GPCRs5, an attractive target which currently accounts for more 
than 30% of the marketed drugs6. Considering recent efforts 
aimed at determining human GPCR structure and function7, it is 
reasonable to expect that the number of drugs targeted to GPCRs 35 

will further increase. 
 With over 800 members in humans8, 9, the GPCR super-family 
is usually classified into five main families10:  class A or family 1 
(rhodopsin family), which is by far the most numerous group 
with approximately 300 members; class B or family 2 (secretin 40 

and adhesion families); class C or family 3 (glutamate family); 
and the frizzled/taste2 family. GPCRs are composed of a 
polypeptide chain of seven -helices crossing the cell membrane, 
also known as the transmembrane domains (TMs), with the N-
terminus and the C-terminus located at the extracellular and 45 

intracellular side, respectively. The C-terminus possesses an -

helix (helix 8) parallel to the plasma membrane. The TMs are 
connected by three intracellular (ILs) and three extracellular 
(ELs) loops (Fig. 1).  
 The extracellular domains (the ELs and N-terminus) and the 50 

section of the helical-bundle facing the extracellular milieu are 
responsible for the binding of modulators, while the intracellular 
regions (the ILs and C-terminus) and the portion of the TMs 
domains open toward the intracellular milieu are linked to the 
binding of intracellular partners and the regulation of their 55 

activity11.  Ligands can induce or stabilize different 
conformational states of the TMs which trigger intracellular 
signalling cascades controlled by heterotrimeric guanine 
nucleotide-binding proteins (G proteins), and whose function is 
related to the ability of the G subunit to toggle between an 60 

inactive GDP-bound conformation, and an active GTP-bound 
conformation that regulates the activity of downstream effector 
proteins12. 
 In the absence of an activating ligand, GPCRs usually display 
basal activity that is enhanced upon binding of an agonist (full or 65 

partial), reduced by inverse agonists and unaltered by neutral 
antagonists11, which block the action of both agonists and inverse 
agonists13. GPCRs can also be modulated by allosteric ligands, 
which bind to a site different from the orthosteric one (i.e. the 
natural ligand-binding site), and bitopic ligands, which have the 70 

ability to bind to both orthosteric and allosteric sites7.   
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2.2 Refinement strategies: Impact on retrospective docking 
poses and SBVS 

Information inferred from SDM and SAR studies in terms of 
residues and ligand moieties involved in receptor-ligand 
interaction, respectively, and interaction patterns extracted from  5 

related GPCR-ligand crystal structures may be used to 
incorporate pharmacophore/geometrical constraints during the 
modelling process between the receptor and the ligand, or among 
the ligand and receptor themselves.  Although it is advisable to 
use this information as early as possible, it has been shown to be 10 

especially valuable at the model refinement stage. 
 It is worth to note that analysis of SDM data has shown that it 
might be ligand-dependent, both in terms of ligand type (agonist 
or antagonist) and of different chemotypes112.  Thus, one should 
be cautious when using SDM data from a given chemotype to 15 

infer interaction patterns for others113. 
 Conserved interaction sites observed in the growing number of 
bioaminergic receptor structures, such as Asp3.32, aromatic 
residues at positions 4.52, 4.56, 6.52 and 6.55, and polar amino 
acids at positions 5.42 and 5.46, have been successfully used to 20 

derive distance restraints to model GPCR-ligand interaction70-72, 

101.  In the A2AR, although ligand interaction with Asn6.55 was 
correctly predicted in many studies72, 101, the lack of experimental 
information regarding other hydrogen-bond interactions 
precluded an accurate modelling of them, considering also the 25 

unpredictable fact that many of those interactions were mediated 
by non-conserved water molecules, thus not included in the 
modelling72.   
 The use of distance constraints to optimize crude models 
represented a critical step toward high-quality homology 30 

modelling.  Klebe and co-workers introduced protein-ligand 
restraints obtained from manual or rigid-receptor docking in the 
modelling procedure using MODELLER114, and neurokinin-1 
receptor (NK1R) models thus generated were successfully used in 
the discovery of antagonists115.  35 

 In the ligand-steered homology modelling (LSHM) method, 
the binding site is co-optimized with the ligand through a flexible 
ligand-flexible receptor docking procedure by means of Monte 
Carlo sampling of the side-chain dihedral angles, and the six rigid 
coordinates and dihedral angles of the ligand, supplemented by 40 

receptor-ligand distance restraints whenever available from SDM 
or SAR data116, 117.  The use of geometrical constraints is 
convenient –since it helps to decrease the number of degrees of 
freedom-, though not mandatory.  Homology models of the 
melanin-concentrating hormone receptor 1 (MCH-R1) generated 45 

using the LSHM were used in a prospective SBVS campaign, 
where six novel low-micromolar antagonists were discovered117. 
The LSHM was further validated through cross-modelling of 
experimentally solved GPCR structures, observing that refined 
models outperformed crude models in terms of ligand pose 50 

prediction, VS performance and selectivity101 (see also section 
4.); refined models of the cannabinoid 2 receptor (CB2) using 
LSHM were also used for SAR data rationalization118-120.   
 It should be noted that binding site optimization with non-
native ligands, following the successful approach developed for 55 

protein kinases121-123 and other receptors124, 125, was used in 
crystal and modelled structures of the β2AR for receptor 
ensemble docking103, where it was observed that esemble docking 

outperformed the single-structure strategy. 
 In a method proposed by Moro at co-workers, an ensemble of 60 

ligand poses within a crude model binding site is generated using 
rigid receptor soft-docking followed by local energy 
minimization of the side chains and ligand, thus generating 
homology models with diverse side chain orientations126. The 
ligand is then re-docked to the best energy model. Costanzi 65 

utilized an approach wherein experimental knowledge of ligand 
binding is combined with in silico modelling of induced-fit 
effects127 in order to develop β2AR models128.  
 Following this strategy, GPCR models of dopamine (D2, D3, 
and D4), serotonin (5-HT1B, 5-HT2A, 5-HT2B, and 5-HT2C), 70 

histamine (H1), and muscarinic (M1) receptors, based on the 
structure of the β2AR, were created using an induced-fit docking 
(IFD) approach, to assess their performance in VS129.  On models 
of 5-HT2A, 5-HT1B, D2, 5-HT2C, D3, and M1 the Authors were 
able to identify active compounds from decoys, while the 75 

remaining models (5-HT2B, D4, and H1) yielded poorer outcomes, 
probably owing to difficulties in modelling the EL2; the same 
strategy was used to probe whether the availability of a novel 
structure of the closely related D3 receptor would allow the 
construction of reliable models of D2R and D1R

108; the Authors 80 

stressed that the ligand employed in the IFD procedure is a 
determinant factor, much more important for the performance of 
homology models in VS studies than the choice of template or the 
model preparation method. The IFD method was also used to 
develop optimized binding sites of the acetylcholine muscarinic 85 

receptors, where it was concluded that the optimization stage 
including functional knowledge has a stronger impact on model 
quality than target−template sequence similarity130. 
 In a study of VS on a set of MT2 melatonin receptor models131, 
ligands were placed within the MT2 modelled binding sites 90 

according to SDM data and pharmacophore modelling, and the 
complexes were refined using IFD. It was shown that most of the 
ligand-adapted MT2 receptor models displayed important 
improvements in VS enrichments compared to the unrefined 
homology models131. 95 

 Chin et al. developed human M1R homology models based on 
the crystal structure of the rat M3R, and then modified them by 
using the agonist-bound crystal structure of a 2AR132. The 
binding sites were then refined by IFD with acetylcholine; it was 
observed that the models developed could be successfully used to 100 

detect agonists. 
 In the community-wide assessment of GPCR structure 
modelling and ligand docking 2008 (GPCR Dock 2008)72 a 
2AR-based homology model combined with the ligand-guided 
backbone ensemble receptor optimization (LiBERO) technique 105 

was used to predict the structure of the human A2AR complexed 
with antagonist ZM241385133. Multiple conformations of the 
protein backbone were generated using heavy-atom Elastic 
Network Normal Mode Analysis (EN-NMA), which was 
followed by docking ligands into the models with flexible side 110 

chains. The models thus generated were clustered and validated 
through small-scale retrospective VS; the modelling of the non-
conserved part of the EL2 (residues G142 to A165, which was the 
unaligned portion that was not included in the initial A2AR 
model) was performed using the ICM134 loop modelling 115 

algorithm based on global minimization of the conformational 
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energy imposing disulfide bond restraints. Finally, the optimized 
binding site and the EL2 conformational ensemble were ranked 
according to their conformational energy. The LiBERO approach 
was also utilized in the same assessment, although using the 
turkey 1AR as template72. 5 

 Molecular dynamics (MD) is also a useful strategy to optimize 
receptor-ligand interactions135-138.  Using dynamic homology 
modelling135, the activated state of 2AR was modelled based on 
the “active” opsin structure, without adding any experimental 
information. Free MD simulations in an explicit 10 

membrane/solvent environment were conducted and 
representative binding modes were extracted by hierarchical 
clustering of interaction fingerprints (IFPs)139. These binding 
modes were assessed in VS studies in which outperformed the X-
ray structure of the inactive 2AR in prioritizing agonists over 15 

antagonists/inverse agonists140. 
 Explicit-solvated MD simulations of four GPCR-ligand bound 
complexes (CXCR4 and D3R X-ray structures, and H4R and 5-
HT6 homology models) were undertaken in lipid bilayers in order 
to develop discrete protein conformations, and thus to 20 

characterise binding site flexibility141. Representative structures 
from a RMSD-based clustering were compared to crystal 
structures and models, and it was observed that MD snapshots 
outperformed X-ray structures and homology models in terms of 
VS enrichment, what according to the Authors, was probably 25 

because protein conformations from MD are less biased toward a 
specific chemotype.  

2.3 Modelling the loops 

Modelling extracellular and intracellular loops in GPCRs is still a 
highly difficult task due to their high sequence and structural 30 

variability, as observed in the available crystal structures142, 143.  
Moreover, the substantial length of some loops, e.g. IL3, hinders 
any attempt to successfully model them, thus being suitable to 
directly omit them92.   
 The EL2 links TM4 and TM5 and, in many class A GPCRs, 35 

features a highly conserved Cys residue that makes a disulfide 
bond with Cys3.25 (Fig. 1). A great structural variability of EL2, as 
well as a diverse array of disulfide bonds involving Cys residues 
of this loop have been observed among the several 
experimentally solved GPCR structures144. In an early study on 40 

bRho, Cavasotto et al. showed that omitting the EL2 had no 
impact in redocking the co-crystallized ligand retinal, while it had 
a minor impact in retrospective VS145.  On the same line, 
Nikiforovich and co-workers et al. showed that docking to loop-
less crystal structures of 1AR, 2AR, and A2AR was as good as 45 

or better than with modelled loops, in terms of binding mode 
prediction146.  A study by de Graaf et al. on D2R, A3AR, and 
thromboxane A2 (TA2R) models revealed that loop-less models of 
D2R and TA2R were able to discriminate ligands from decoys in 
retrospective VS, while EL2 modelling was only important for 50 

A3AR147.  This suggests that EL2 modelling should be conducted 
using experimental restraints whenever available, while the 
impact of adding ELs should be evaluated by retrospective 
SBVS65. 
 Recently, however, several de novo strategies have been 55 

introduced as alternatives for loop modelling. 
 By means of the Protein Local Optimization Program (PLOP), 
which employs a refined sampling grid, an all-atom energy 

function with implicit solvent, and an accurate side-chain packing 
algorithm, Goldfeld et al.148 were able to restore the conformation 60 

of ILs and ELs of bRho, A2AR, β1AR, and β2AR in their native 
environment. In addition, in order to deal with cases wherein 
loops and membrane have important interactions, they performed 
explicit membrane simulations where the lowest energy 
conformers for both short and long loops matched the 65 

corresponding crystal structures. Later, PLOP was used to predict 
the same ILs and ELs, both with TM domains fixed in their 
crystallographic positions, as well as with a homology model of 
β2AR149. According to the Authors, this was the first successful 
study of an RMSD validated, physics-based loop prediction 70 

within the framework of GPCR modelling. 
 The EL2 structure was predicted in 13 GPCRs by means of the 
CABS (C-Alpha, Beta, and Side chain) protein modelling tool150, 
which is based on a coarse-grained structure representation and a 
Monte Carlo (MC) dynamics sampling scheme151, 152. The 75 

modelling approach used experimental constraints on disulfide 
bonds, yielding ensembles of low-energy conformers with modest 
computational resources. A Metropolis Monte Carlo (MMC) 
method has been used to model the three ELs of the 
transmembrane domains of the thyroid-stimulating hormone 80 

receptor (TSHR) by employing a local torsion move and a grid-
based force-field method153. 
 It should be mentioned that beyond the de novo methods, there 
are also computer programs and web servers which are intended 
to predict the loop structure. Examples include ModLoop154, 85 

which predicts the loop conformations by satisfaction of spatial 
restraints, without depending on a database of known protein 
structures; Rosetta155, a combined approach of fragment-based 
and de novo prediction for loop modelling; and SuperLooper156, a 
knowledge-based method which predicts loop conformation from 90 

a database of known loop structures. 

2.4 Structural model validation 

In order to assess the actual usefulness of a homology model, 
validation is an essential step, regardless the target protein under 
study. As a basic premise, the intended application of the model 95 

should determine its desired quality157.  Medium-quality models 
may be adequate for conducting mutagenesis experiments, while 
high-quality models are required for SBVS studies as well as 
mechanistic analysis.  Typically, an “internal” evaluation is 
undertaken so as to guarantee that the model stereo-chemistry 100 

(e.g. bond lengths and angles, dihedral angles, and non-bonded 
contacts) is within acceptable limits.  This can be assessed by 
employing computer programs such as PROCHECK158, 
WHATCHECK159, and MolProbity160. Despite the fact that 
structural properties outside the normal range could hint serious 105 

errors in the model, a successful internal consistency check in no 
way guarantees that the model is indeed a correct representation 
of the actual structure of the target. 
 In the context of GPCRs, retrospective docking has appeared 
as an efficient approach to validate homology models117, in which 110 

a dataset of known ligands is merged with a decoy library –
preferably an un-biased one161, and docked to the models.  
Binding pose prediction, and/or the ability to prioritize ligands 
over decoys (assessed by EFs and/or area under the ROC curve), 
may be taken as a measure of the quality of the model102, 103, 108, 

115 

117, 130, 131, 141, 162 (see section 2.2).  Experimental knowledge 

Page 6 of 18ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |7 

inferred from SDM, and/or quantitative SAR (QSAR) can not 
only be used to construct binding hypotheses to guide modelling 
(see section 2.2), but also to further examine and validate 
modelled GPCR-ligand complexes163-165.  The successful 
application of modelled binding sites in prospective docking and 5 

lead optimization (sections 3.1 and 3.2, respectively) is a further 
step toward model validation. 
 For a proper interpretation of the results, it should be taken 
into account that the performance of homology models in VS 
experiments may depend on other factors not related to the 10 

modelling process itself, such as the availability of template 
structures, the docking program of choice, the ligand and decoy 
dataset161, 166, small-molecule preparation, the specific target167, 
the presence/absence of water molecules161, 162, and whether 
receptor flexibility is accounted or not in the docking process103, 

15 

121, 168, 169 .   

2.5 Useful web-servers in GPCR modelling 

Today, many resources and tools aiding homology modelling of 
GPCRs are available, e.g. repositories of models, servers to 
perform homology modelling, and ligand databases, among 20 

others. Assessment meetings of protein structure prediction 
methods, particularly CASP170 and GPCR-Dock70-72, paved the 
way for the improvement of these services and have become the 
prediction of the protein structure an attainable work.  
 GPCRM171 is an online platform for predicting GPCR 25 

structures, which combines several strategies for template 
detection, alignment generation, model building, loop refinement 
and model filtering based on the Z-coordinate, with the option of 
human intervention. Homology models are created by utilizing 
multiple template structures and profile-profile comparison. 30 

GPCRM provides the 10 top-scored models according to the 
Modeller DOPE score177 and the Rosetta total score178.  The URL 
corresponding to the GPCRM server, and the homology 
modelling web tool described in this section are listed on Table 1. 

 The GPCR-Sequence-Structure-Feature-Extractor (GPCR-35 

SSFE)172 is a server that offers template predictions, sequence 
alignments, structure motifs and homology models of the 
transmembrane helices of 5025 class A GPCRs. The pipeline is 
based on a fragment approach that takes advantage of available 
family A crystal structures. Users are able to access the models 40 

stored either by browsing the GPCR dataset in accordance with 
their pharmacological classification or searching for results using 
a UniProt identifier.  

 The GPCR Online Modeling and Docking server (GOMoDo) 
173 carries out automatic homology modeling, and either a blind 45 

or an information-driven ligand docking of GPCRs by combining 
different bioinformatic tools. It utilizes the HHsearch179 for 
performing sequence alignment, MODELLER180 for building a 
3D model of a given sequence, the VADAR server181 for 
verifying the obtained 3D model, AutoDock VINA182 or 50 

HADDOCK183 for docking small-molecules uploaded by users, 
Fpocket184 for binding sites prediction, and LovoAlign185 for 
conducting structural alignment of models needed for VINA 
docking.  
 GPCR-ModSim174, 175 is a web-based service for homology 55 

modeling and all-atom MD equilibration of GPCRs. This server 
is intended to obtain the most accurate structural and dynamic 
information for a given GPCR, and it provides a stand-alone 
protocol for all modelling steps. 
 The GPCRautomodel176 site is aimed at conducting automatic 60 

homology modeling of GPCR structures. In a first step, it uses a 
threading-based method to obtain a 3D model. In a second stage, 
it performs docking of selected small-molecules with the 
modelled receptor by utilizing VINA182.  
 The GPCR-I-TASSER method has been already mentioned in 65 

section 1.3  
 These web-servers have been used in several applications. By 
way of illustration, to study protein-protein interaction of the 
human 2CR with the human Filamin-2 protein186, to rationalize 
SAR of A2AR ligands187, and even in the GPCR Dock 2013 70 

assessment in the sequence alignment and template selection for 
the successful prediction of the 5-HT1B and 5-HT2B receptors in 
complex with ergotamine188. 
 Other web tools which may aid in the homology modelling 
process, such as model and motif databases, chemical libraries, 75 

docking portals, among others, are listed in Table 2. 

3. Structure-based drug design using GPCR 
homology models 

3.1. Discovery of new ligands through virtual screening 

Using GPCR crystal structures, ligands have been discovered for 80 

various receptors with both high hit rates (actives/tested) and 
structural novelty15. New antagonists for 2AR189-191, A2AR162, 192, 
D3R

99, and H1R
193 with hit rates between 20% and 73%, and at 

least 2 new scaffolds per receptor, were discovered (for a review 
of recent SBDD approaches using GPCR crystal structures cfr. 85 

Ref. 16, 194, 195).  Furthermore, in GPCR docking campaigns, hit 
rates and affinities in GPCRs were two to three log-orders better 
than those against soluble proteins15. It has been suggested that 
two main elements may be responsible for this: i) supposedly 
unbiased chemical libraries actually possess a large quantity of 90 

molecules with structural features in common with GPCR 
ligands; ii) the well-buried GPCRs orthosteric binding sites 
favours the identification of small molecules with high LE15. 
 The use of homology GPCR models has been also instrumental 
for the discovery of new ligands even since bRho was the only 95 

available template.  Early successfully prospective SBVS 
campaigns included bioaminergic receptors (α1AR196, D3R

137, 
H4R

197), chemokine receptors (CCR4198, CCR5199), peptide 
receptors [NK1R115,  formylpeptide receptor (FPR1R)200, 

Table 1:  On-line tools for GPCR homology modelling 

Resource Name URL Ref.

GPCRM gpcrm.biomodellab.eu/  171 

GPCR-SSFE www.ssfa-7tmr.de/ssfe/  172 

GOMoDo molsim.sci.univr.it/cgi-bin/cona/begin.php  173 

GPCR-ModSim gpcr-modsim.org/  
174, 

175 

GPCRautomodel genome.jouy.inra.fr/GPCRautomdl/cgi-bin/welcome.pl 176 

GPCR-I-
TASSER 

zhanglab.ccmb.med.umich.edu/GPCR-I-TASSER/ 80 
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MCH1R116, 117], cannabinoid receptors (CB2201), and purine 
receptors [free fatty acid receptor 1 (FFAR1)164, 202].  The cascade 
of new GPCR structures triggered by the release of the 2AR in 
2007 not only dramatically enhanced SBVS on crystal 
structures16, 194, 195, but also provided structurally diverse 5 

templates for further improving GPCR models, and thus greatly 
expanding its use in drug design. 
 Inspired by the challenge of the GPCR Dock 2010 
assessment71, in which the modelling community aimed to predict  
the structure of the D3R-eticlopride complex, Carlsson et al. 10 

developed a homology model of D3R and docked more than 3.3 
million molecules against it, repeating this experiment on the 
crystal structure of the D3R-eticlopride complex once it had been 
released99. Concerning the model, six compounds were 
discovered with binding affinities in the range 0.2-3.1 M, and 15 

one of them was subsequently optimized to 81 nM. With respect 
to the crystal structure, five compounds were found in the 0.3-3.0 
M range. Moreover, the hit rate for the screening on the 
homology model was 23% and on the crystal structure was 20%.  
Thus, the hit rates using the model and the crystal structure were 20 

basically equivalent. Each VS returned two novel scaffolds, 
different from known ligands, and among themselves. 
Furthermore, the active molecules found in the screening from 
the homology model displayed no measurable affinity for the 
template used in the modelling (β2AR). 25 

 In the same context as the previous work, Mysinger et al. 
docked over 3 million molecules against a homology model of 
the CXCR4 and the crystal structure100.  A single antagonist was 
found in docking against the model, which was similar to known 
ligands and possessed a modest specificity. The hit rate using the 30 

model was 4%, while the screening on the crystal structure 
yielded not only a higher hit rate (17%), but also four antagonists 
that were different from known scaffolds, substantially smaller 
than most known ligands, and specific for CXCR4. One of them 
had an IC50 value of 0.31 M and a LE of 0.36 (placing it in the 35 

lead-like range of compounds for oral drugs), and all ligands 
inhibited CXCR4-mediated chemotaxis in cell culture. When 
comparing these two targets (D3R and CXCR4) and these four 
virtual screening campaigns, the Authors drew two conclusions: 
first, an important factor was the ligand bias in the used database 40 

Table 2:  On-line tools useful in the GPCR homology modelling process 

 

Resource Name Application URL Ref.

GPCRpred 
Server for prediction of GPCR families and 

subfamilies 
www.imtech.res.in/raghava/gpcrpred/   203 

GPCRHMM 
Server for putative GPCR detection from 

sequence and TM segment localization prediction
gpcrhmm.sbc.su.se/  204 

GPCR-HGmod 
Database that contains 3D structural models of 

GPCRs in the human genome 
zhanglab.ccmb.med.umich.edu/GPCR-HGmod/  - 

GLASS 
Repository for experimentally-validated GPCR-

ligand interactions 
zhanglab.ccmb.med.umich.edu/GLASS/  205 

GPCR-exp 
Database of experimentally-solved GPCR 

structures 
zhanglab.ccmb.med.umich.edu/GPCR-EXP  - 

Adenosiland 
Integrated bioinformatics and chemoinformatics 
web-resource dedicated to adenosine receptors 

mms.dsfarm.unipd.it/Adenosiland/  
206, 

207 

GPCRserver 
Server for GPCR identification and TM region 

prediction 
genomics.fzu.edu.cn/GPCR/index.html  208 

GPCR structure 
and VS library 

GPCR modelling and virtual screening database cssb.biology.gatech.edu/skolnick/webservice/gpcr/index.html  209 

GPCRdb Contains data, diagrams and web tools for GPCRs gpcrdb.org/  210 

GLL/GDD 
Ligand libraries (GLL) and docking decoy 

databases (GDD) for 147 GPCRs 
cavasotto-lab.net/Databases/GDD/  161 

PDBTM Protein data bank of transmembrane proteins pdbtm.enzim.hu/  211 

TinyGRAP GPCR mutant database www.cmbi.ru.nl/tinygrap/credits/  212 

MPSTRUC Database of membrane protein of known structure blanco.biomol.uci.edu/mpstruc/  - 

MPtopo 
Database of membrane proteins with 

experimentally-validated TM segments 
blanco.biomol.uci.edu/mptopo/  213 

GPCR network Portal of the PSI:Biology GPCR network gpcr.scripps.edu/  - 

GPCR-OKB 
Information management system for GPCR 

oligomerization  
filizolalab01.mssm.edu:8080/gpcr-okb/  214 

GPCR NaVa 
Database that describes sequence variants within 

the GPCR family 
nava.liacs.nl/  215 

IUPHAR GPCR 
database 

Expert-driven knowledgebase of GPCR drug 
targets and their ligands 

www.guidetopharmacology.org/GRAC/ReceptorFamiliesForward?type=GPCR 216 

GLIDA GPCR-ligand database pharminfo.pharm.kyoto-u.ac.jp/services/glida/  217 

GPCR-RD Database for experimental restraints of GPCRs zhanglab.ccmb.med.umich.edu/GPCR-RD/  218 

GPCR SARfari 
Integrated chemogenomics workbench focussed 

on GPCRs 
www.ebi.ac.uk/chembl/sarfari/gpcrsarfari  - 
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(ZINC219) toward biogenic amine mimetics, rather than to 
CXCR4-like ligands; unlike D3R ligands, there are relatively few 
molecules sharing the same size and charge properties as known 
CXCR4 ligands. Second, the relatively poorer result of screening 
against CXCR4 homology models might be related to the 5 

sequence identity with the structural templates. They suggested 
that accurate models may be developed for GPCRs that share 
~40% or higher sequence identity, and with enough mutagenesis 
information (as for D3R). On the contrary, for targets with 
significantly lower sequence identities, ranging from 18 to 25% 10 

(as for CXCR4), homology models suitable for drug discovery 
might be “out of reach”. 
 On a homology model of A2AR built from the rβ1AR, an array 
of agonists with diverse ligand efficiencies was discovered 
through SBVS, with a hit rate of 9%220.  Hits were furthered 15 

optimized for affinity and selectivity (cf. section 3.2). 
 Ligand- and protein-based molecular fingerprints were applied 
in a virtual screening of fragment-like molecules on the H3R

221. 
The FLAP (Fingerprint of Ligands And Proteins)222-224 method  
was used in a H3R model based on the H1R crystal structure, and 20 

refined by means of molecular docking and MD simulations with 
H3R actives. The best structures for each complex were chosen 
on the basis of the ability to distinguish between known 
fragment-like H3R actives and inactive ones in retrospective VS 
studies. Using a collection of 156,090 molecules filtered from the 25 

ZINC database, a prospective VS on FLAP models resulted in 18  
experimentally confirmed hits, with affinities in the range of 0.5-
10 M. Moreover, these confirmed H3R hits did not show affinity 
for H4R. 
 Multiple homology models were developed for the A1R, using 30 

the crystal structure of A2AR as template, and approximately 2.2 
million lead-like compounds were docked into the models225. 
With the aim of examining the intrinsic selectivity of the models, 
all high-ranking molecules were tested in binding assays not only 
on the A1R but also on A2AR and A3AR. The screening exhibited 35 

a hit rate of 21% and the most potent compound had a Ki of 400 
nM, although it yielded few selective compounds. The Authors 
drew three conclusions from this study: i) Even when screening is 
performed with the same library, distinct models of the same 
receptor return distinct sets of ligands; in this sense, model 40 

performance varied widely in terms of both the absolute number 
of actual ligands and their selectivity; ii) homology models seem 
to work well in GPCR docking, as evidenced by the outcomes; 
iii) by means of applying docking to solely one receptor subtype, 
obtaining selective compounds is a difficult task for targets with 45 

high degrees of similarity, e.g. the adenosine receptors. 
 A homology model of the D2R in the active conformation 
based on the active β2AR crystal structure was built, and a 
prospective VS of 2.7 million “lead-like” and 400K “fragment-
like” molecules from the ZINC database was conducted against 50 

it226. Out of three actives found in functional assays, two were 
agonists and one was an inverse-agonist. However, these three 
hits had low affinity, the agonism was weak, and they were 
similar to known dopamine receptor ligands, indicating that the 
active β2AR structure might not be a proper template for the 55 

active D2R. These outcomes suggested that although the β2AR 
structure possesses a high sequence identity and it was the right 
template for the inactive conformation99, structural information 

obtained from the active β2AR was not transferable to the active 
D2R structure. The Authors argued that this fact might be either a 60 

singular case, or related to their modelling approach. Thus, the 
agonist state might be specific for any given GPCR−ligand pair. 
 A VS on CXCR7 homology models was undertaken using a 
dataset of commercially available compounds and a new 
modelling method based on multiple GPCR crystal structures227. 65 

The CXCR4 structure, and the structures of bRho, β2AR, β1AR, 
and A2AR, were used as the “principal template” and  
“supplementary templates”, respectively. Twenty-one novel hits 
with IC50 values ranging from 1.29 to 11.4 M and a variety of 
scaffolds were determined. Furthermore, salt bridges between 70 

Asp4.61 and Asp6.58 and protonated nitrogen atoms of the ligands, 
as well as π–π stacking interactions between Trp2.61 and ligands 
were found relevant for CXCR7 ligand binding. 
 Schmidt et al. docked over 2 million compounds from the 
ZINC database to CXCR3 homology models and to the CXCR4 75 

crystal structure, respectively, in order to find both dual 
modulators and selective compounds for each target228. They 
identified selective and non-selective ligands, which were 
confirmed by in vitro assays for both receptors. Eleven novel 
ligands for both targets were found, with high hit rates of 57% 80 

(CXCR3-selective), 50% (CXCR4-selective), and 50% (dual 
binders). Most of these hits exhibited binding constants in the 
low-nanomolar range, and very good LE indices. It is worth 
noting that high hit rates were achieved in each category, even the 
hit rate for the CXCR3 model was higher than the one for the 85 

CXCR4 crystal structure. Moreover, the CXCR3 model did not 
seem to suffer template bias according to the number of potential 
dual modulators and the hit rate found in that category. 
Furthermore, all but one binder detected in this study possessed 
chemistry features different from known ligands of both targets 90 

from the ChEMBL database229. 
 A combined ligand- and structure-based strategy for 
identifying H4R antagonists was recently developed, where 
initially, a ligand-based VS of the ZINC database was conducted 
to select potential H4R antagonists (focused library), and several 95 

H4R homology models were built using the H1R crystal structure 
as template and refined with MD in a fully atomistic lipid 
membrane environment230. Structural models were validated by 
their ability for discriminating active from non-active H4R 
antagonists in docking using a validation set extracted from the 100 

ChEMBL database. Finally, the best model was used to screen 
the focused library, and thus 11 drug candidates were obtained 
and presented as novel lead compounds. 
 A hybrid strategy combining a structure- and ligand-based 
method was developed and used to identify novel nociceptin 105 

(NOP) ligands231. Homology models of the binding site of the 
active-state NOP receptor were built based on the opsin structure 
using simulated annealing, and then ranked according to the EF 
in retrospective docking. A structural refinement followed 
employing a shape-based similarity strategy along with molecular 110 

docking of known NOP agonists. Virtual screening of the CNS 
Permeable subset of the ZINC database was undertaken utilizing 
a ligand pharmacophore- and shape-based protocol, followed by a 
structure-based step using the refined NOP active-state 
conformations obtained in the enrichment calculation. Molecules 115 

containing a piperazine ring were eliminated due to off-target 
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effects. Small-molecules were ranked according to a consensus 
score, and 20 compounds were purchased and tested in binding 
affinity assays. From the better six compounds, four had binding 
affinities less than 50 M. Further, one had a Ki of 1.5 M and 
represented a NCE. 5 

 A structure-based virtual fragment screening was carried out 
both on the D3R crystal structure and on a H4R homology model 
(based on the H1R crystal structure)232. By means of all-atom 
membrane-embedded MD simulations, representative receptor 
conformations for both targets were generated, and a library 10 

consisting of 12,905 fragments was docked on the conformational 
ensemble of both structures. In vitro assays showed hit rates in 
the range of 16-32%, and Ki values in the range of 0.17-2.8 M 
for D3R, and 8.4-75 M for H4R. Moreover, the hits possessed 
high LE, with values in the 0.31-0.74 range, and an admissible 15 

lipophilic efficiency. The crystal structure, homology model, and 
ensemble docking provided all valuable hits with little overlap. 
Moreover, the single homology model outperformed the single 
crystal structure in terms of hit rate.  However, in this particular 
case, the ensemble docking strategy was not better than the single 20 

structure docking method, both approaches thus being 
complementary.  The Authors thus concluded that a combined 
approach should be followed to maximize hit retrieval. 
 A structure-based VS and a functional cell-based screening 
were undertaken in order to identify adrenergic 2CAR receptor 25 

agonists233. A homology model of the activated 2CAR was built 
based on the human active-state 2AR crystal structure, and the 
best conformation for VS was chosen based on retrospective 
docking. A library of 3071 fragments was experimentally 
screened, and also docked to the model, exhibiting a hit rate of 30 

6.7% and an EF of 12. Moreover, 2 fragments out of the 16 
detected hits were identified by VS at the top 1% of the screened 
library, and showed themselves as specific ligands of 2CAR. 
 A structure-based virtual fragment screening along with an IFP 
scoring method was performed against optimized homology 35 

models of the H4R built using the β2AR and H1R crystal 
structures as templates234. On the basis of the retrospective VS 
analysis, two β2AR-based H4R models and their corresponding 
IFP references were employed in the VS using molecules 
extracted from ZINC. Six compounds were confirmed as H4R 40 

ligands, with pKi values ranging from 5.2 to 6.8. None of the hits 
possessed detectable binding affinity for β2AR, proving that the 
method did not suffer from template bias. Afterwards, the VS was 
conducted against the H1R-based H4R models and three hits were 
found. Altogether, nine compounds were confirmed as hits with 45 

binding affinities for H4R in the range of 0.14-6.9 M, 
representing five distinct scaffolds.  

3.2. Getting it better:  Hit-to-lead optimization 

Although several hits discovered through SBVS have been 
optimized for affinity117, 164, 235, there are not too many actual 50 

structure-based guided optimization studies (cf. Refs. 14, 236 for a 
review of early uses of GPCR models in lead optimization).  
 As described in section 3.1, Carlsson et al. performed a 
structure-based guided optimization of a D3R SBVS hit, reaching 
an affinity of 81 nM99.  Hit molecules discovered  through SBVS 55 

against an A2AR model based on the β1AR were optimized to 
selective and potent lead molecules using a structure-based 
design, and synthetized220.  Substitution of the propenyl-

thiophene ring237, and replacement of the chromone ring220 
resulted in molecules with improved affinity and selectivity 60 

toward A2AR, and selectivity toward A2AR, respectively. 
 With the aim of identifying H1-H3 dual antagonists suitable for 
intranasal administration from phthalazinone analogues, a H1R 
homology model based on the crystal structure of bRho was built 
and complexed with the second-generation of anti-histamine 65 

azelastine, what furnished evidence that the incorporation of 
certain fragments related to H3R antagonism should bring about 
dual H1-H3 antagonism238. A series of H1-H3 dual antagonists 
were synthesized and two compounds showed a slightly lower 
potency toward H1R, but a much higher potency toward H3R than 70 

azelastine, the clinical gold-standard. Moreover, one of them 
exhibited improved in vivo pharmacokinetic properties compared 
to azelastine. 
 Novel selective CysLTR2 antagonists were discovered using a 
homology model of CysLTR2 built from the crystal structure of 75 

bRho as template, and refined by MD simulations239. Based on 
the proposed binding mode of the selective lead antagonist 
HAMI3379, a series of dicarboxylated chalcones was docked 
within the binding site, and six promising hits were synthesized 
and tested for CysLTR2 antagonism, two out of which showed 80 

potent and selective CysLTR2 antagonism with IC50 values of 7.5 
and 0.25 M. 
 Using a homology model of the CB2 constructed using the 
crystal structure of β2AR as template, and refined by MD 
simulations, 3D-QSAR models were generated from comparative 85 

molecular field analysis (CoMFA240) using 2-quinolone and 2-
pyridone coumarin CB2 leads241. In accordance with 
pharmacophoric features derived from the 3D-QSAR model, a 
series of coumarin derivatives was subsequently designed, and 
SAR studies were carried out. Several compounds showed high 90 

selectivity for CB2 against CB1, among which one CB2 agonist 
[EC50 = 0.103 M, selectivity index (SI) > 97], and one CB2 
antagonist (IC50 = 0.019 M, SI >500). 
 Homology models of the human (h) and mouse (m) A3ARs 
based on a hybrid template (crystal structures of agonist-bound 95 

hA2AAR, and active hβ2AR) were designed in order to develop 
sulfonated nucleoside ligands for A3AR with affinity independent 
on the species242. Molecular docking studies of (N)-methanocarba 
derivatives were undertaken to model key interactions between 
these nucleosides series and the h- and m-A3ARs, and thus guide 100 

substitutions at the C2 and N6 positions for chemical synthesis. 
Based on this interaction analysis, the sulfonate groups on C2-
phenylethynyl substituents would produce high affinity at both h- 
and m-A3ARs, whereas a N6-p-sulfophenylethyl substituent 
would exhibit higher hA3AR than mA3AR affinity.  Insights 105 

gained from modelling were confirmed by pharmacological 
studies, wherein one agonist analogue is bound selectively to h/m 
A3ARs [Ki (hA3AR) = 1.9 nM] and the corresponding p-sulfo 
isomer showed mixed A1/A3AR agonism. Subsequently, using 
the same A3AR hybrid model, the Jacobson group243 conducted 110 

molecular docking studies of (N)-methanocarba adenosine 5′-
uronamides derivatives with the aim of identifying highly 
selective agonists of the A3AR, but lacking the arylethynyl group, 
linked to potential liver toxicity.  A planar C2-triazole linker in 
place of an ethynyl group showed to be the best substitution 115 

which favours selective binding to the A3AR. Several analogues 

Page 10 of 18ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |11 

with N6 and C2 substitution were synthesized, and 
pharmacologically and in vivo characterized. All of the 
derivatives exhibited Ki values ranging from 0.3 to 12 nM at the 
A3AR and one of them achieved a highly prolonged and full  
efficacy in controlling mechano-allodynia (> 90% protection up 5 

to 4 h). 
 Yaziji et al.244 synthesized two series of diaryl 2- or 4-
amidopyrimidines and determined their affinities for the four 
human adenosine receptors (A1R, A2AR, A2BR, and A3R). Based 
on the results of the first series, the design of both the second set 10 

of compounds and new derivatives exploring the alkyl substituent 
of the exocyclic amide group was performed. This synthesis was 
assisted by means of an approach that combined molecular 
docking to a hA3R homology model (built using the crystal 
structure of A2AR as template) and 3D-QSAR analysis. As a 15 

result, four compounds displayed both remarkable affinities (Ki  
6 nM) and selectivity toward the A3R subtype.  Subsequently, the 
same research group examined the impact of methoxyaryl 
substitution patterns on N-(2,6-diarylpyrimidin-4-yl)acetamides 
with the aim of modulating the A3R antagonistic profile245. A 20 

homology model of the hA3R was developed using as template 
the inactive structure of A2AR and molecular docking as well as 
3D-QSAR studies were carried out. Guided by the modelling 
results, a focused compounds library was synthesized and its 
pharmacological profile was studied for the four human 25 

adenosine receptor subtypes. Novel A3R antagonists were 
reported, which showed excellent potency (Ki < 20 nM), wherein 
two ligands are highlighted with a Ki < 7 nM and highly selective 
profiles among ARs. The most important features of the pipelines 
used in the research projects aimed at targeting the A3Rs by 30 

Sotelo and coworkers are explained in Ref.  246. 

3.3 Recent applications of GPCR homology models in other 
structure-based drug design scenarios 

Besides the use in ligand discovery through VS (section 3.1) and 
structure-based lead optimization (section 3.2), GPCR homology 35 

models are invaluable to study off-target effects using docking, 
guide the design of small-molecule and peptide ligands, 
rationalize SAR data, design SDM experiments, characterize 
receptor-ligand interaction, and complemented with MD, to 
understand ligand binding mechanisms and protein dynamics.  In 40 

Table 3 we present recent applications of GPCR models in 
several structure-based drug design scenarios. 

4. Modelling and docking accuracy  

Although homology models are usually used when experimental 
structures are not available, retrosprospective modelling and 45 

comparison with crystal structures, and retrosprospective docking 
analysed in terms of ligand RMSD (if known) and enrichment 
data, furnish valuable information in terms of methodology,  
strategies, and further developments needed. 
 Using the experimentally solved structures of bRho, β2AR, 50 

A2AAR, the LSHM method (section 2.2) was validated through 
cross-modeling, and performance of the thus generated models 
investigated in docking experiments101.  This methodology was 
able to generate quality models of the receptors complexed with 
their co-crystallized ligands (~1 Å for β2AR modelled using bRho 55 

or A2AAR as templates; 2.8 Å for A2AAR using β2AR as 

template). It was also observed that: i) LSHM performed better 
than templates, crude models, and random ligand selection in 
small-scale high-throughput retrospective docking; ii) higher 
quality models typically displayed better enrichment in docking.  60 

Interestingly, homology models were found to be reliable for 
selectivity prediction.  Clearly, these results support the fact that 
the LSHM method can successfully characterize GPCR binding 
sites through a fully flexible ligand- receptor approach.  It should 
be noted, however, that models underperformed with respect to 65 

crystal structures in terms of docking enrichment and selectivity 
prediction, likely because of inaccuracies at the backbone level. 
 The community-wide GPCR modelling and docking (GPCR 
Dock) assessment was established to monitoring and stimulate 
the advancement of GPCR structure prediction and ligand 70 

docking, as well as emphasizing areas for methodological 
improvement. The rationale and organization of GPCR Dock is 
analogous to the way of CASP (Critical Assessment of methods 
of Protein Structure)247 and CAPRI (Critical Assessment of 
PRediction of Interactions)248, 249. In the GPCR Dock blind 75 

prediction assessment, the participants predict and submit models 
of a receptor-ligand complex from the sequence of the receptor 
and a 2D representation of the ligand prior to the public release of 
the 3D coordinates of the complex. 
 The first round of GPCR Dock was carried out in October 80 

2008 in conjunction with the public release of the crystal 
structure of the human A2AAR bound to the high-affinity 
antagonist ZM24138535, 72, where 29 groups participated.  The 
most successful models, which had an average heavy-atom 
RMSD of 2.8 Å for the ligand, and 3.4 Å for the residues of the 85 

binding site, were constructed by homology modelling taking into 
account the β2AR structure as template, which shares ~35% 
sequence identity with A2AAR, and using experimental 
information derived from SDM.  However, they could not 
account for most of the receptor-ligand contacts (only ~50%) and 90 

rank models properly.  In fact, most of the participants were far 
from accurately predicting the native ligand pose and the correct 
conformation of EL2, which has a lower degree of sequence 
similarity and structural conservation.  The EL2 was de novo 
modelled in many predictions, although the best approach (S. 95 

Costanzi) utilized a combination of homology modelling (in a 
short segment around a conserved cysteine residue) along with de 
novo modelling for the remainder residues of the loop.  The 
crystal structure also revealed four well conserved water 
molecules around the ligand, but none was included in the 100 

submitted predictions.  Even though it can be shown that 
ZM241385 pose can be recovered upon docking with no waters72, 

161, waters may be necessary for a more accurate binding pose 
prediction and for binding free energy calculations. 
 The second round, GPCR Dock 201071, was performed in 105 

parallel with the solution of the crystal structures of the D3R
37 

and the CXCR443 so as to model three different classes of 
complexes showing three levels of difficulty: i) the small-
molecule antagonist eticlopride bound to hD3R, which has two  
close structural templates; ii) the small-molecule antagonist 110 

isoithiourea IT1t bound within a large peptide binding site of 
hCXCR4, which has more distant templates; and iii) the CVX15 
peptide [RR-Nal-CTQKdPPTR-Cit-CRGdP, where Nal 
represents the non-natural amino acid L-3-(2-naphthyl)alanine, 
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and Cit, citrulline] bound to the hCXCR4, which constitutes the 
first crystallized GPCR target complexed with a peptide-
analogue.  For each of the three targets, participant groups were 
allowed to submit up to 5 models. Thirty-five groups took part of 
the assessment. It was found that achieving accurate homology 5 

models requires at least a 35-40% target/template similarity 
coupled with the use of biochemical and QSAR data. This fact is 
useful to help prioritize the GPCRs to be crystallized in the 

future. As with the previous GPCR Dock assessment, modelling 
the EL2 represented the biggest challenge, though in both the 10 

D3R-eticlopride and IT1t-CXCR4 complexes, where the binding 
site is mainly defined by TM residues, ligand pose and contacts 
may be correctly predicted using a loop-less model.  On the 
contrary, modelling the CXCR4-CVX15 system, where the 
peptide makes extensive contacts with highly flexible loops and 15 

the N-term, represented the most challenging case.  The 2010 

Table 3: Recent applications of GPCR homology models in the context of structure-based drug design 

Target Template structure(s)a Aim Ref. 

RXFP3 CXCR4 [3OE0] Recognize potential sites of interaction for binding of the native ligand human relaxin-3 250 

CCR4 CCR5  [4MBS] 
Identify the active site, and the residues involved in CCR4–naphtelene-sulphonamide 

derivatives interaction using MD 
251 

GPR84 active β2AR [3P0G] Investigate GPR84-ligand molecular recognition, and comparison with other lipid receptors 252 

CXCR7 CXCR4 [3ODU] 
Assess the binding mode within CXCR7 of the agonist cyclic peptide TC14012b, and detect 
essential residues involved in the interaction with synthetic agonists using MD and SDM 

253 

H4R H1R [3RZE] 
Study the binding pathway of histamine from the extracellular side to the orthosteric 

binding site of the H4R using unconstrained MD 
254 

A3AR A2AR [2YDO] 
Understand the positive allosterism mediated by imidazoquinoline toward A3AR using 

supervised MD 
255 

FPR2 OR [4DKL], CXCR4 [3ODU] Study the binding mode of non-peptide and formyl peptide ligands 256 

D1R 2AR [3P0G] Understand D1R-agonist interaction using SDM and MD of D1R-cathecol-amines 257 

H4R 2AR [2RH1] Determine ligand binding modes to the H4R binding site using 3D-QSAR, SDM and MD 258 

2AR 2AR [2RH1] and others 
Study differences at local and global conformational dynamic level of the N-terminal 

variants of the 2AR using MD 
259 

D4R D3R [3PBL], M2R [3UON] 
Analyze conformational dynamics induced upon ligand binding (dopamine and spiperone) 

using MD simulation in a lipid environment 
260 

FFA2 2AR [2RH1] 
Determine residues involved in recognition and function of potent and selective orthosteric 

agonists within FFA2 
261 

CB1, CB2 S1P1 [3V2Y], A2AAR [3QAK] SAR rationalization of tricyclic ring systems binding to CB receptors 120 

A3AR A2AAR [3QAK] Structure-guided design of A3AR selective nucleosides 262 

5-HT7 
5-HT1B [4IAR], 5-HT2B [4IB4],  

bRho [1F88] 
Analyze the interactions involved in binding of long-chain arylpiperazine derivatives to 5-

HT7 and 5-HT1A 
263 

Apelin (APJ) CXCR4 Design of cyclic peptide analogues (biased agonists) for APJ 264 

5-HT6 2AR Correlate binding pose with 5-HT6 the affinity of designed ligands 265 

5-HT2C 
Inactive 2AR [2RH1], active 
2AR [3SN6], 5-HT2B [4IB4] 

Probe the binding modes selectives phenylcyclopropylmethylamines 5-HT2C agonists 266 

A1AR, A3AR 
Active A2AAR [3QAK],  inactive 

A2AAR [3UZC] 
Understand molecular bases of the A1AR and A3AR recognition and activation of 5’-C-

ethyl-tetrazolyl derivatives 
267 

TGR5 S1PR1 [3V2Y], 2AR [3SN6] 
Investigate potential binding sites for naturally occurring bile acid derivatives TGR5 

agonists 
268 

A3AR A2AAR [3QAK], 2AR [3SN6] Investigate molecular interaction between A3AR and C2-arylethynyl nucleosides agonists 269 

OX1R, OX2R D3R [3PBL] 
Develop binding poses of orexin peptides in the hOX1R and hOX2R, with the aim of 

explaining SDM data and the molecular basis of agonist binding 
270 

CB1, CB2 S1P1 [3V2Y] SAR rationalization of biphenylic carboxamides within CB receptors binding sites 271 

A2BAR A2AAR [3EML] 
Assess structural similarities and differences in the molecular interactions and dynamics of  

A2AAR and  A2BAR using MD 
272 

α2BAR, α2CAR, 
h5HT2C, h5HT7, 

β3AR 
Several templates 

Structural probing of off-target GPCR activities within a series of adenosine/adenine 
congeners 

21 

a PDB code in brackets 

b RR-Nal-CT-Cit-K-Dcit-PTR-Cit-CR-NH2 
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assessment confirmed that the use of biochemical, biophysical, 
QSAR and other experimental data is of the utmost importance in 
high quality homology modelling, even considering the limitation 
in the interpretation of SDM, where allosteric effects could be 
mistakenly taken as direct receptor-ligand interaction35, 273. 5 

 In 2013, the last round of GPCR Dock70 was conducted in 
coordination with the elucidation of crystal structures of 5HT1B

40 
and 5HT2B

41, both in complex with the agonist ergotamine, and 
the TM domain of the human SMO receptor (class F GPCR) 
complexed with two different small-molecule antagonists, LY-10 

294068060 and SANT-161. Forty-four groups were involved in the 
evaluation. Modellers faced several challenges such as the 
prediction of activation states (agonism and biased agonism), the 
allosteric ligand interaction in 5-HT1B and 5-HT2B, and homology 
modelling using remote templates for SMO (less than 15% 15 

sequence identity with any of the available template structures). 
In spite of the high sequence similarity to templates, the 
prediction of the serotonin-ergotamine complexes achieved a 
modest accuracy since ergotamine makes extensive and distinct 
interactions with the ELs. This relative success was in line with 20 

the moderate precision in EL predictions.  Instead, more accurate 
predictions resulted for the ergoline core, which interacts mainly 
with TM regions.  The best predictions for the serotonin receptors 
often used the MODELLER software180 and multiple templates of 
aminergic structures, while many of the  25 

top-ranking complexes were refined by MD.  Model selection by 
using subfamily-specific receptor-ligand interaction patterns, 
ligand SAR, and SMD, coupled with visual inspection proved to 
be a valid strategy. Furthermore, while several submitted models 
successfully detected the activation state of 5HT1B, this was not 30 

the case for the biased state of 5HT2B.  This situation showed that 
there is still a need to further expand the crystallization of 
multiple functional states of GPCRs, and the improvement of 
computational methods for their prediction. The case of SMO, a 
class F GPCR with very low sequence similarity to existing 35 

structures, illustrated that target-template sequence alignment 
represents the main obstacle in distant homology modelling. In 
this sense, composite strategies including threading, fragment 
assembly, and energy-based refinement (e.g. I-TASSER274) 
showed its benefits for finding the correct residue matching.  In 40 

addition, whereas alignment uncertainties may be addressed with 
modern methods, the structural precision of the remote homology 
models still require further developments. 

5. The latest milestone: modelling GPCR classes B 
and C 45 

Even though attempts were made to model classes B and C 
GPCRs, including GPRC6A275, calcitonin gene-related peptide 
(CGRP) receptor276, and metabotropic glutamate receptor 8 
(mGluR8)277, based on the crystal structures of class A GPCR, it 
has only recently been possible to model them using templates of 50 

the same family, that is to say, with classes B and C GPCR 
crystal structures. The construction of the homology models for 
non-class A GPCR have faced various challenges such as lack of 
structural data for the helical bundle and low TM sequence 
identity and 3D similarity for ELs and termini regions (class F 55 

GPCR dealt with the same issues70) with respect to class A 
templates275-277.   

 However, in 2015, several structural models built on the basis 
of classes B and C X-ray structures were developed. Homology 
models of the corticotropin releasing factors receptor-2 (CRF2R) 60 

were constructed using the crystal structure of CRF1R as 
template, and both unbiased MD and well-tempered 
metadynamics simulations were conducted in order to probe the 
selectivity of an antagonist (CP-376395) towards CRF2R and 
CRF1R

278. The Authors observed that a hydrogen bond between 65 

His3.40 and Tyr6.63 (using the Wootten et al. universal numbering 
scheme for class B GPCRs279) in CRF1R, which is not present in 
CRF2R, has a key role in explaining the difference of the 
antagonist selectivity towards both receptors. 
 With the aim of modelling the glucagon-like peptide-1 (GLP1) 70 

bound to the GLP1 receptor (GLP1R), homology models were 
built by utilizing the crystal structures of the CRF1R, the 
glucagon receptor (GCGR), and the ligand-bound ECD of 
GLP1R and the gastric inhibitory polypeptide receptor (GIPR) as 
templates280. The Authors found that the residues Asp9 and Gly4 75 

in GLP-1 interacted with the conserved residues in EL3, while the 
binding site of GLP1R is constituted by conserved amino acids in 
the core domain. 
 Homology models of TM region of the metabotropic glutamate 
receptor 5 (mGluR5) were created based on the crystal structure 80 

of mGluR1, and refined using an MD-based methodology281. 
Guided by modelling insights, a novel benzoyl-2-benzimidazole 
scaffold was design and SAR studies were performed. A new 
positive allosteric modulator (PAM) for mGluR5 was discovered, 
which exhibited an IC50 value of 6.4 M, i.e. about 20 fold more 85 

potent than DFB (a known mGluR5 PAM). 
 Homology modelling and MD simulations were undertaken in 
six mGluRs (mGluR2, mGluR3, mGluR4, mGluR6, mGluR7, 
and mGluR8) by using the crystal structure of mGluR5 as 
template, where the Authors reported predicted allosteric binding 90 

sites, and key residues for receptor selectivity282. Interesting, 
most of the findings in mGluR5, for example the "ionic lock" and 
some amino acid linked with receptor activation, were in 
accordance with the findings in class A GPCR.  

6. Conclusions and Perspectives 95 

With over 800 members in humans, receptors from the GPCR 
super-family are the target for ~30% of the marketed drugs.  The 
first GPCR structure, bovine rhodopsin covalently bound to 
retinal was crystallized in 2000.  However recent novel 
crystallization techniques allowed the solution of ~30 different 100 

druggable GPCR structures since 2007.  This boosted the 
discovery of novel ligands and new chemical entities through 
structure-based virtual screening and lead optimization 
endeavours, using both crystal and modelled structures.  This 
breakthrough also brought new templates for homology 105 

modelling, and a wealth of information regarding GPCR-ligand 
interaction patterns, clues about activation mechanisms, evidence 
for sequence-induced structural changes at the backbone level, 
and illustrated conformational loop diversity.  
 Still, the number of solved GPCR structures represents a very 110 

small part of the human GPCRs, and in spite of the tremendous 
effort and progress in crystallization, a complete coverage of the 
druggable GPCR structural space in the near- and mid-term does 
not seem likely.  Thus, homology modelling appears as a reliable 
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and efficient tool to expand the GPCR structural map, and thus 
the horizons of hit identification and lead optimization in the 
coming years.  Throughout this work, we have shown beyond any 
doubt from retrospective and prospective studies –including the 
three GPCR Dock community-wide assessments, that in spite of 5 

current limitations of, and standing challenges in homology 
modelling, in silico GPCR models have been invaluable for 
discovering and optimizing drug leads, characterizing GPCR-
ligand interaction, rationalizing existing SAR data, aiding in the 
design of SDM experiments and SAR studies, and assessing off-10 

target effects. 
 In the years ahead, the development of more accurate 
modelling techniques accounting for the wealth of biochemical, 
biophysical and QSAR data available, coupled with the validation 
of these methods in retrospective and prospective structure-based 15 

drug lead identification and optimization projects, should 
translate into a growing number of potent, selective and efficient 
GPCR ligands with high therapeutic value. 
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