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monitored only spectroscopically. Therefore, a dual-channel 
readable barcode module could be created by using LIFM-17(Pr) as 
simple single-component and homo-metallic complex luminescent 
material, which might find potential applications in high encryption 
technique for anti-counterfeit technology and true-or-false 
identification for senior security bills, vouchers, certificates, and so 
on.11 

In summary, both visible and near infrared emissions are highly 
sensitized in Pr(III)-MOF crystals from TMPBPO ligand possessing 
broad ILCT and triplet energy levels. Especially, efficient single 
component white light can be obtained in the homo-metallic Pr(III)-
MOF, and a dual-channel readable barcode module is designed 
according to the tunable emission of Pr(III)-MOF in both visible and 
NIR regions, which offers a new approach to synthesize demanding 
Ln-MOFs with good and applicable luminescent performance. 
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