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Hexangular ring-core NiCo2O4 porous nanosheet/NiO 
nanoparticle composite as advanced anode material for 
LIBs and catalyst for CO oxidation applications 
Yanyan He, Liqiang Xu*, Yanjun Zhai, Aihua Li and Xiaoxia Chen

Porous hexangular ring-core NiCo2O4 nanosheet/NiO 
nanoparticle composite has been synthesized by a hydrothermal 
method followed an annealing process in air. The as-obtained 
composite as anode material exhibits a high initial discharge 
capacity of 1920.6 mA h g-1 at a current density of 100 mA g-1 

and the capacity is retained at 1567.3 mA h g-1 after 50 cycles. 
When it is utilized as catalysts for CO oxidation, the complete 
CO conversion is achieved at 115 � and the catalytic life test 
demonstrates the good stability of the composite. 

In recent years, Lithium-ion rechargeable batteries (LIBs) have 
become one of the most important power sources of portable 
electronic devices because of their high energy density and high 
voltage. Much effort have been concentrated on anode materials 
especially transition metal oxides, such as Co3O4,

 [1] NiO,[2] Fe2O3,
 [3] 

have drawn great concern due to their high theoretical specific 
capacities. For example, Co3O4 shows almost the highest capacity 
among them (theoretical capacity: 890 mA h g−1). The capacity of 
porous Co3O4 nanocages maintained at 1465 mA h g-1 after 50 
cycles at a current density of 300 mA g-1.[4] Meanwhile, Co3O4 has 
been one of the most promising catalysts for CO oxidation in room 
temperature even at low temperature.[5] However, Co3O4 cannot be 
perfect candidate as anode material or catalyst for CO oxidation due 
to its toxicity and high cost, therefore，it is necessary to explore 
cheaper and eco-friendly alternative metals replace Co3O4 partially, 
such as NiCo2O4,

[6] CuCo2O4
[7]

 and MnCo2O4
[8] materials, which are 

all isostructural to Co3O4. 

Among these materials mentioned above, NiCo2O4 has almost the 
same capacity (theoretical capacity: 884 mA h g−1) to Co3O4 and 
improved electrical conductivity (Co3O4: 3.1×10-5 S cm-1, NixCo3-

xO4:0.1-3 S cm-1). [9] Meanwhile, it has easy electrolyte penetration 
and low diffusion resistance ability to cations. [10] On accounting of 
these advantages compared with Co3O4, NiCo2O4 material has been 
considered as promising anode material for LIBs. In addition, it has 
been utilized as catalyst for CO oxidation and as excellent selectivity 
and high sensitivity to various gases such as ethanol and SO2

 [11].  Up 
to now, there are two reports about NiCo2O4 as catalyst for CO 
oxidation. [12, 13] However, the large volume changes and aggregation 
during discharge/charge processes caused the poor stability of 
NiCo2O4 material. Besides NiCo2O4, NiO material (theoretical 
capacity is 718 mA h g−1) has lower cost, higher natural abundance 
and more friendly to the environment than Co3O4 and NiCo2O4, but 
it has poor electrical conductivity. As we all know, electrochemical 
performance of LIBs highly depends on the structure of the electrode 
materials, including morphologies, sizes and the conditions of 
surface and so on. Accordingly, it is necessary to exploit NiCo2O4 

with novel stable nanostructure or build NiCo2O4 nanocomposite 
with other suitable materials. 

Hexangular ring or ring-core structured materials, such as CuFeO2 
hexagonal platelets/rings, [14] Ni (OH)2@Co(OH)2 hollow 
nanohexagons [15] have been reported and the results showed their 
better electrochemical performance than those of common 
morphologies. Ring-core structured materials own uniform 
hexangular size and large surface area due to the inner core and 
hexagonal ring, they are favourable to effectively buffer the volume 
changes and aggregation of particles during discharge/charge 
processes. Therefore, it is feasible to design and fabricate similar 
structured NiCo2O4 to enhance electrochemical performance. In 
addition, NiCo2O4 nanocomposite has been studied widely and the 
result showed that the synergistic effect between NiCo2O4 and 
another material effectively improved the performance. For instance, 
NiCo2O4/RGO nanosheet composite materials show a reversible 
capacity of 816 mAhg−1 after 70 cycles at a current density of 100 
mA g−1;[16] NiCo2O4/Fe2O3 porous nanocages exhibit a reversible 
capacity of 1079.6 mA h g-1 after 100 cycles at a current density of 
100 mA g-1.[10] Nevertheless, the electrochemical performances of all 
these NiCo2O4 materials especially their capacity retention and 
cycling stability are far away from satisfaction. 

In this study, hexangular ring-core porous NiCo2O4 nanosheet 
/NiO nanoparticle composite has been synthesized through a facile 
hydrothermal process followed an annealing process in air. As far as 
we know, NiCo2O4 material with similar core-ring structure has been 
applied in the fields of electrocatalysis[17] and photocatalysis[18]. 
However, to the best of our investigation, NiCo2O4 material with 
unique ring-core structure has not been applied as anode electrode 
material for LIBs and catalyst for CO oxidation. As an anode 
material for LIBs, the ring-core NiCo2O4/NiO composite delivered  
the initial discharge capacity of 1920.6 mA h g-1 and the specific 
capacity could be maintained at 1567.3 mA h g-1 after 50 cycles at a 
current density of 100 mA g-1, much higher than those in previous 
reports (see Table S1). In addition, the comparisons between the 
NiCo2O4/NiO composite and previously reported anode materials are 
shown in Table S2, indicating obvious advantages in capacity and 
cycle life of the composite has been achieved. On the other hand, the 
CO oxidation catalytic activities indicated that complete CO 
conversion was achieved at 115 �, the catalysts demonstrated good 
stability with almost no changes relative in the 75% CO conversions 
after 120 min on stream and the temperatures for the catalytic life 
tests was 108 �, respectively. According to its enhanced 
performance, the NiCo2O4/NiO composite has great promise for its 
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has lower  reduction temperature of Ni2+, Co3+, Co2+ than the 
previously reported individual NiCo2O4 (Co3+ to Co2+, 315 ℃; Co2+  

 

 

 

 

 

 

 

 

Fig. 4 (a) Nitrogen adsorption /desorption isotherm and the corresponding 

pore size distribution (inset) (350 �); (b) Percentage conversion of CO as a 

function of reaction temperature of the composites obtained at different 

temperatures; (c) CO conversion versus time on stream plots；(d) The H2-

Temperature-programmed reduction (H2-TPR) profile of the composite. 

to Co, 367 ℃ and Ni2+ to Ni, 257 ℃) [24] and individual NiO (Ni2+ to 
Ni, ~360 ℃), [25] the lower reduction temperature of the composite 
might be mainly attributed to the synergistic effect of the two 
components. In the composite, NiCo2O4 belongs to cubic system and 
isostructural to Co3O4 with spinel structure. According to the 
previous reports,[26, 27] Co3+ is the active site of the CO oxidation, 
large amounts of Co3+ cations provide sufficient sites for CO 
adsorption, which occurs easily. The reaction between the adsorbed 
CO and the nearby active oxygen species to form CO2 might be the 
rate-determining step. Similarly, NiO belongs to cubic system, Ni2+ 
is the active site of the CO oxidation according to the previous report, 
[28] and the CO adsorbed to Ni-O reacting with the active oxygen 
species to form CO2. In addition, the results of the TEM images (Fig. 
S8) and XRD pattern (Fig. S9) of the NiCo2O4/NiO catalyst after CO 
oxidation reaction reveal the relative high stability of the composite. 
The preliminary catalytic data show that the NiCo2O4/NiO catalyst 
exhibits enhanced activity and good stability toward CO oxidation, 
which might be attribute to the porous ring-core structural NiCo2O4 
with sufficient area surface for the adsorbing of gases and the NiO 
nanoparticles with small size (15-30 nm) for decreasing of 
inner diffusion resistance. Therefore, the NiCo2O4/NiO composite is 
promising as catalytically active material in heterogeneous catalysis. 

In summary, hexangular ring-core NiCo2O4 porous nanosheets 
/NiO nanoparticles are successfully synthesized through a facile 
hydrothermal reaction followed by a calcinations process. The as-
obtained composite as anode material exhibits a high initial 
discharge capacity of 1920.6 mA h g-1 at a current density of 100 
mA g-1 and the capacity is retained at 1567.3 mA h g-1 after 50 
cycles. The enhanced electrochemical capability could be ascribed to 
the unique porous hexangular ring-core structure and the synergetic 
effect of NiO nanoparticles and porous hexangular ring-core 
NiCo2O4. At the same time, the CO oxidation catalytic activity of the 
composite are tested, and complete CO conversions is achieved at 
115 �. The catalyst demonstrates good stability with almost no 
changes relative in the 75% CO conversions after 120 min on stream 
and the temperatures for the catalytic life tests are 108 �, 
respectively. Accordingly, the hexangular ring-core NiCo2O4 porous 
nanosheet/NiO nanopaticle composite is promising as anode material 
for LIBs and catalyst for CO oxidation catalytically. 
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