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The first example of ‘spontaneous resolution by 

crystallization’ in allene chemistry, by means of crystal 

structures and solid state CD spectra for the R and S 

enantiomers, is presented. These allenes are prepared by the 

simple reaction of Ph2PCl with o-nitro functionalized 

propargyl alcohols. 

Allenes, in particular optically active allenes, are important building 
blocks in organic synthesis due to the transfer of axial to central 
chirality in the final pharmaceutically useful products.1 Since chiral 
allenes are present in many natural products, pharmaceuticals2 and 
molecular materials,3 their synthesis and reactivity is a prime area of 
research activity.4 Allenylphosphonates/ allenylphosphine oxides, a 
subclass of allenes, are also versatile precursors in synthetic 
chemistry.5 An interesting case of asymmetric addition of 
arylboronic acids to α-keto esters using phosphine containing chiral 
allenes as ligands to Rh(I) is also reported recently.6 Several 
methods for the synthesis of chiral allenes7 including phosphorylated 
allenes,8 by using a chiral auxiliary/source have been developed. In 
order to obtain chiral allenes from propargylic substrates, there are 
primarily two major approaches: one by chirality transfer from chiral 
propargylic substrate (Scheme 1a),9 and the other from racemic 
propargylic substrate by using a chiral ligand (Scheme 1b).10 In these 
cases, a chiral source is a must to obtain chiral allenes. A third 
possibility is by spontaneous resolution by crystallization (Scheme 
1c) without using any chiral source, a point not mentioned in the 
literature so far. Spontaneous resolution through crystallization itself 
is an important topic in organic synthesis and origin of life.11-12 
Herein we disclose our results on the formation of bis-
phosphinoylated allenes by using achiral substrates Ph2PCl (1) and 
o-nitro functionalized propargyl alcohols 2a-f, 3a-c and 4 (Chart 1). 
More importantly, in the reaction using propargyl alcohols 2a, 2d 

and 3a, the chiral allene crystallized spontaneously and in one case 

both the enantiomers could be successfully separated. 
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Scheme 1 Formation of chiral allenes using propargylic substrates 
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Chart 1 Precursors 1-4 used in the present study 

Page 1 of 4 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



COMMUNICATION Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

The normal reaction of P(III)-Cl with an equimolar quantity of 
functionalized propargyl alcohols is expected to lead to mono-
phosphinoylated allene.13 However, the presence of o-functionality 
leads to novel cyclization leading to rather unexpected 
heterocycles/fused carbocycles.14 Interestingly, when we performed 
the reaction between Ph2PCl (1) and o-nitro functionalized propargyl 
alcohol (2a) using 2:1 molar stoichiometry (Scheme 2), the resulting 
product is the allene 5, with a phosphinoyl group at α position and a 
phosphine group at γ position [X-ray, Figure S1, Supplementary 
Information]. We could not get good 1H/13C NMR spectra for this 
compound, because of its oxidative instability that led to the bis-
phosphinoyl-allene 6 (X-ray, Figure S1, ESI).15 Both the compounds 
5 and 6 crystallized in the chiral space group P212121 and showed 
absolute configurations of R and S respectively (Figure 1). However 
we were unable to separate both the enantiomers in this case. 
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Scheme 2. Reaction of 1 with 2a leading to allenes 5 and 6. 
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Fig. 1 A diagram showing the (R)-configuration for compound 5 and (S)-
configuration for 6. Note: The view taken is along the C=C=C axis. The 
numbers 1, 2 and 3 on the structures show the ordering of atoms for 
deciphering the configuration. 

 
 Because of the possibility of spontaneous resolution of 
enantiomeric allene by crystallization in cases similar to the above, 
we became interested in this topic and synthesized some more 
derivatives. In addition, it may be noted that the substitution of 
allenic CH by a phosphorus moiety is not common. Thus, we treated 
o-nitro functionalized propargyl alcohols 2a-f, 3a-c and 4 with 
Ph2PCl (1) (Scheme 316) to obtain the allenyl-(bis)phosphine oxides 
(6-15). Among these structures, 9 and 12 crystallized in the chiral 
space group P212121. More interesting is the fact that for compound 

12, we were able to isolate both the enantiomers (R and S). These 
two forms were separated by means of hand-picking. This separation 
was facilitated by slightly different morphology of these crystals. 
The overall yield (including R and S forms) was > 80%. The 
presence of two sterically interactive tetrahedral Ph2P(O)C and 
electron withdrawing o-nitro groups may be responsible for the 
separation of enantiomers with axial chirality. Some carbon atoms 
of the phenyl groups corresponding to the two phosphorus 
moieties do come close enough (~3.5 Å). In the general case, it 
may be possible to observe similar phenomenon wherein sterically 
interacting substituents are present on the allene. Judgement 
regarding this effect may have to come from more analogous 
systems. In the case of compound 12, we could obtain the CD 
spectra in the solid state for both the R and S enantiomers (Figures 2-
3). However, we were not able to get significant optical rotation in 
solution, mainly because of difficulty in separating enough pure 
crystals. Use of an additional chiral base like Tröger’s base 
[(5R,11R)-enantiomer] in the case of 10, however, did not produce 
chiral samples. 
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Scheme 3 Formation of allenyl-bis-phosphine oxides 6-15 
 

 

Fig. 2 A picture showing the R (left) and S (right) configurations in the 
two enantiomers of 12 separated by hand-picking. 
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Fig. 3 CD spectra of R and S forms of crystals of 12 

 
 The bis-phosphinoylated allenes of the type described above 
are not reported so far in the literature. Hence we wanted to 
check whether the o-NO2 group on propargyl alcohol is 
essential or not for the second substitution. However, the 2:1 
stoichiometric reaction of 1 with propargyl alcohols 16 or 18 
afforded only the mono-phosphinoyl allenes 17 or 19 
respectively (Scheme 4). Thus, for the above reaction, o-NO2 
group is necessary for the bis-phosphinoylation. The strong 
electron-withdrawing capacity of the o-NO2 group on this ring 
and a possible C-H•••O hydrogen bonding interaction with the 
allenic C-H (at γ-carbon) most likely enhances the acidity of the 
corresponding C-H so that even triethylamine is able to effect 
further substitution at this carbon.  
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Scheme 4. Formation of mono-phosphinoylated allenes 17 and 19 from 
the reaction of Ph2PCl (1) with propargyl alcohols 16 and 18. 
 
 In summary, we have separated R and S enantiomers of allenyl-
bis-phosphine oxides via spontaneous resolution by crystallization 
for the first time. X-ray structures as well as CD spectra for R and S 
enantiomers of compound 12 have been presented. 
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