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Template-directed construction of conformational su-
pramolecular isomers for bilayer porous metal–organic 
frameworks with distinct gas sorption behaviors† 

Min Chen,a Hui Zhao,a Chun-Sen Liu,a Xi Wang,ab Heng-Zhen Shi*a and Miao Du*ab 

A pair of supramolecular isomers of Co(II)-based metal–organic 
frameworks can be directionally constructed in virtue of solvent 
templates, which show diverse bilayer networks and lattice pack-
ing with the same Co3 SBUs and organic linkers. The two porous 
materials show distinct gas sorption behaviors at different tem-
peratures, especially their CO2 sorption selectivity. 

Metal–organic frameworks (MOFs) are a new class of crystalline 
porous materials, which have great potentials in various applications 
such as gas storage and separation,1 magnetism,2 catalysis3 and drug 
delivery.4 Since the properties of MOFs will be mainly influenced by 
their compositions and a series of structural features, the comparison 
of structure-functionality differences for isomeric MOFs can provide 
a nice platform for profoundly understanding the intrinsic structure-
functionality relationship.5–9 Supramolecular isomerism or polymor-
phism for coordination networks refers to the existence of different 
architectures with the same building blocks (metal ions and organic 
linkers) and identical stoichiometry, which can be classified to struc-
tural, conformational, catenane, and optical isomerism.10 Normally, 
the flexible ligands can engender conformational changes to generate 
different but often related networks, namely, conformational isomer-
ism.10 The changes in spatial and linking arrangements of the spacers 
in such isomers may be induced by temperature,5 reaction time,6 and 
template (solvent,7 auxiliary neutral molecule,8 or anion9) effect. The 
structural features of pores, such as their sizes, shapes, and environ-
ments, have been found to play an important role in designing MOFs 
with different functional applications. Generally, the pores of MOFs 
will be initially filled with solvent guests used in synthesis. Thus, the 
structures and chemical properties of such template molecules can be 
transcribed into the resulting porous characteristics. In this work, we 
used 4,4',4''-(benzene-1,3,5-triyl-tris(oxy))tribenzoic acid (H3BTTB), 
bearing three flexible rotatable –O– motifs, to successfully construct 
a pair of conformational supramolecular isomers directed by solvent 
templates, which show significantly different gas sorption behaviors.  

In a typical synthesis, single crystals of 470-MOF (Fig. S1, ESI†) 
were obtained by heating a 1:2 mixture of H3BTTB and CoCl2·6H2O 

at 120 °C for 72 h in DMF. Similarly, 471-MOF (Fig. S1, ESI†) can 
be synthesized by adding 1,4-diethylene dioxide during this reaction. 
The phase purity for bulk materials was confirmed by powder X-ray 
diffraction (PXRD, see Fig. S2, ESI†). Based on thermogravimetric 
analysis (TGA, Fig. S3, ESI†) and elemental analysis (ESI†), the two 
materials were formulated as [Co3(BTTB)2(H2O)2]·(DMF)4.5·(H2O)4 
for 470-MOF and [Co3(BTTB)2(H2O)2]·(DMF)3·(H2O)4·(dioxane)2.5 
for 471-MOF, respectively. Obviously, the solvent molecules act as 
the templates and play an important role in controlling the supramo-
lecular isomerism in this case. 

Single-crystal X-ray diffraction analysis indicates that 470-MOF 
and 471-MOF crystallize in the trigonal P-31c and R-3c space group 
(see Table S1, ESI†), respectively. Interestingly, both materials have 
the same framework formula but with different lattice guest solvents, 
which thus can be classified as a pair of supramolecular isomers. The 
asymmetric coordination units for both structures contain two inde-
pendent Co(II) ions (with 1/3 and 1/6 occupancy, respectively), 1/3 
BTTB ligand, and one water ligand with 1/3 occupancy (see Fig. S4, 
ESI†). In each structure, the Co1 center is octahedrally coordinated to 
six oxygen atoms from the bridging carboxylate groups of six BTTB 
ligands, while the tetrahedral sphere of Co2 is fulfilled by three oxy-
gen atoms from the bridging carboxylates of three BTTB ligands and 
one terminal water ligand. The axial Co–Owater length for the CoO4 
tetrahedron in 470-MOF (2.203(2) Å) is markedly stretched in com-
parison with that in 471-MOF (2.080(8) Å). Moreover, two pairs of 
triple carboxylate bridges are further converged to the central Co1 
and two terminal Co2 atoms to give a trinuclear [Co3(O2CR)6(H2O)2] 
SBU. The Co1···Co2 distances are 3.61 and 3.60 Å in 470-MOF and 
471-MOF, respectively, and such three Co(II) centers are collinear in 
both structures, where each μ2-carboxylate group of the fully depro-
tonated BTTB ligand connects two Co(II) ions (Fig. S5, ESI†). The 
dihedral angles between three sloping benzene arms and the central 
benzene group in BTTB are 71.3° for 470-MOF and 83.0° for 471-
MOF (Figs. 1a and 1f), as a result of different extending fashions for 
the isomeric networks. The isomerism also arises from the symmetry 
of Co3

 SBUs (see Figs. 1b and 1g). In fact, the Co3
 SBUs in both 470- 
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Fig. 2 Sorption isotherms of 470-MOF (a–d) and 471-MOF (e–h). N2 and H2 at 77 K; O2 and Ar at 87 K (a, e). N2, H2, O2, Ar, CH4, and CO2 
at 195 K (b, f), 273 K (c, g), and 293 K (d, h). 

Table 1 Calculated IAST selectivity (1 atm) for binary gas mixtures at 273 and 293 K.a 

  CO2/CH4 CO2/H2 CO2/O2 CO2/Ar CO2/N2  CO2/CH4 CO2/H2 CO2/O2 CO2/Ar CO2/N2

273 K 
470-MOF 

2.7 6.2 4.6 4.4 5.3 
471-MOF

1.4 3.3 2.3 2.6 2.7 

293 K 3.2 6.0 3.9 8.9 7.6 4.5 15.7 7.0 10.0 9.3 

a 15% for CO2 and 85% for the other gas in each case. 

MOF exceeds that of 471-MOF. The isosteric heats for CO2 sorption 
calculated based on the adsorption data collected at 273 and 293 K,16 
indicate that the Qst values for 470-MOF and 471-MOF are 35.4 and 
20.8 kJ mol–1, respectively. The high Qst value for 470-MOF is com-
parable to those for known MOFs such as bio-MOF-1,17a TEA@bio-
MOF-1 (TEA = tetraethylammonium),17a TMA@bio-MOF-1 (TMA 
= tetramethylammonium),17a PCN-6,17b MIL-53(Al),17c and HKUST-
1.17d Meanwhile, 471-MOF shows a moderate Qst value among those 
for MOFs, including CuBTTri,18a Ni2(BDC)2(DABCO) (BDC = 1,4-
benzenedicarboxylate; DABCO = triethylenediamine),18b Zn4(OH)2- 

(1,2,4-BTC)2 (1,2,4-BTC = 1,2,4-benzenetricarboxylate),18c and Zn2-

(bpy)(TCM) (bpy = 4,4’-bipyridyl; TCM = tetrakis[4-(carboxyphen-
yl)-oxamethyl]methane).18d Further, we performed the IAST calcula-
tions and adsorption simulations for both isomers,19 and the resulting 
IAST selectivity (Table 1) of CO2 over other gases for 470-MOF and 
471-MOF are in 2.7−6.2 and 1.4−3.3 at 273 K and 3.2−8.9 and 4.5− 
15.7 at 293 K, respectively. Interestingly, the adsorption selectivity at 
293 K is higher than that at 273 K for all gases for 471-MOF, espe-
cially CO2/H2 and CO2/Ar selectivity, while in the case of 470-MOF, 
only slight changes are observed for sorption selectivity at different 
temperatures. Moreover, at 273 K, the adsorption selectivity of 470-
MOF is higher than that of 471-MOF for all gases, whereas at 293 K, 
the opposite results will be observed. Actually, the different sorption 
behaviors for 470-MOF and 471-MOF at lower temperatures (77 and 
87 K) should be ascribed to the aperture size, where the smaller size 
for 470-MOF will allow fewer gas to be adsorbed, while those at 195 
K can be attributed to both the aperture size and pore volume, that is, 

besides the above-mentioned point, the higher uptake of CO2
 for 470-

MOF is caused by its larger pore volume. The sorption difference for 
CO2 at 273 and 293 K may arise from the synergic influence of aper-
ture size, pore volume, and host−guest interactions in both MOFs.20 
In fact, the smaller aperture size will usually lead to the higher sorp-
tion enthalpy, which indicates the stronger interactions between the 
coordination framework and CO2. Therefore, the sorption amount of 
CO2 decreases more slowly for 470-MOF against the temperature in 
comparison with that for 471-MOF. 

In conclusion, we have synthesized two bilayer porous materials 
based on Co(II) and a flexible tricarboxylate ligand, which represent 
a pair of unique supramolecular isomers induced by the solvent tem-
plates. It should be noted that both structures have the similar Co(II) 
coordination geometry and ligand binding, and their subtle structural 
difference only originates from the arrangement and conformation of 
BTTB ligands and Co3 SBUs. Further, their different porous features 
in crystallography can also be confirmed by their gas sorption behav-
iors at different temperatures. These results will offer more insights 
into the intricate structure-functionality relationship of porous MOFs 
and the rational design of new crystalline materials. 
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