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 15 

The aim of the present work was to estimate fixed-carbon, volatile matter content and 16 

ash in Brazilian commercial charcoal by using attenuated total reflectance-Fourier 17 

transform infrared (ATR-FTIR) together with multivariate calibration methods. Several 18 

multivariate calibration techniques, including partial least squares (PLS), interval partial 19 

least squares (iPLS), genetic algorithm (GA), were compared and validated by 20 

establishing significance testing. Charcoal samples (n = 72) were divided into 21 

calibration (n = 52) and validation sets (n = 20) by applying the classic Kennard-Stone 22 

(KS) selection algorithm to the ATR-FTIR spectra. For fixed-carbon content, the result 23 

obtained using PLS-GA for the root mean square error of cross validation (RMSECV) 24 

and prediction (RMSEP) were 3.77% and 4.29%, respectively. For volatile matter, 25 

RMSECV and RMSEP of 4.36% and 4.65% was achieved by PLS model using seven 26 

latent variables (LV). Finally, for ash, RMSECV and RMSEP of 0.58% and 0.38% was 27 

achieved by PLS model using eight latent variables (LV). A t-test and Quantile-quantile 28 

(Q–Q) plot were performed to compare the results of the models with each other and 29 

with a reference method. These results suggest that ATR–FTIR spectroscopy and 30 
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multivariate calibration can be effectively used to determine fixed-carbon, volatile 31 

matter content and ash content in Brazilian charcoal. 32 

Key-Words:charcoal; Attenuated total reflectance Fourier transform infrared 33 

spectroscopy; Near Infrared Spectroscopy; Partial Least Squares; interval-Partial Least 34 

Squares; Genetic Algorithm; 35 
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Introduction 46 

 47 

Charcoal is the residue of solid non-agglomerating organic matter, of vegetable 48 

or animal origin, that results from carbonization by heat in the absence of air at a 49 

temperature above 300 degrees celsius.
1,2

The characteristics of wood charcoal are 50 

effectively associated to the chemical structures formed during the heating process.
3,4

 51 

The structure of charcoal is believed to be closely related to that of activated carbon 52 

(AC), which is primarily composed of short stacks of graphene sheets rimmed with O-53 

containing groups (-OH, -CO2H, -O-, =O, -CHO, etc.) to form a microporous network.
5
 54 

Chemical (fixed-carbon, volatile matter, ash, sulfur and phosphorus) and physical 55 

(hardness, specific weight, yield and moisture) properties are greatly influenced by three 56 

factors – raw material type,
6
 process characteristics, and after-treatment.

7
 57 

Most of the techniques used for chemical and physical properties in charcoal are 58 

time-consuming and expensive, while rapid methods that require little or no sample 59 

preparation are needed for large scale surveys. Alternative methods such as X-ray 60 

photoelectron spectroscopy,
8
emission scanning electron microscopy,

9
Near Infrared 61 

spectroscopy,
10

 Nuclear Magnetic Resonance spectroscopy,
11

 Raman spectroscopy
12

 62 

and Infrared spectroscopy
13–15

can suitably replace usual physico-chemical analysis. 63 

Specifically, one recent development in FTIR techniques applied to coal is the 64 

incorporation of an attenuated total reflectance (ATR) crystal (∼100 µm in diameter), in 65 

which the standard polished block samples can be used without further sample 66 

preparation.
16

 67 

Furthermore, ATR-FTIR spectroscopy can distinguish components (macerals) of 68 

charcoal which have diverse chemical compositions and physical properties, quantifying 69 

the abundance of chemical functional groups.
13

 Limited studies have applied ATR-FTIR 70 
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spectra for qualitatively evaluating charcoal. For instance, Guo and Bustin
17

 have used 71 

ATR-FTIR to establish the relationships between both temperature and duration of 72 

heating of charcoal formation, reflectance values and spectral characteristics of 73 

charcoals such as coalification maturation. In addition, reflectance and FTIR spectra 74 

indicate that fungal-decayed wood is particularly susceptible to formation of charcoal 75 

and thus inertinite. Labbé and colleagues
13

 employed ATR-FTIR to investigate the 76 

chemical structure of charcoal made from different maple species: sugar maple (Acer 77 

saccharum), red maple (Acer rubrum), and silver maple (Acer saccharinum).In the 78 

second part of the study, the authors investigated the effect of thermal treatments on the 79 

chemical structure of white oak to have a better understanding of maturation process in 80 

toasted charred white oak barrels. 81 

However, the use of appropriate tools for multivariate calibration is mainly 82 

responsible for the advancement of the ATR-FTIR technique to give a complete and fast 83 

characterization of charcoal or coal including partial least squares (PLS)
18

 and methods 84 

based on the selection of variable intervals or spectral bands, such as iPLS (interval 85 

partial least squares),
19

 GA (genetic algorithm)
20

 and successive projection algorithm 86 

(SPA).
21

These last methods eliminate variables that do not directly correlate with the 87 

property of interest. They also eliminate potential interferences and variables that 88 

generate a lower signal/noise ratio, which is indicative of low sensitivity. 89 

 Herein, we have attempted to make a comparison of the full-spectrum PLS (full-90 

PLS), interval PLS (iPLS), successive projection algorithm (SPA), and genetic 91 

algorithm-PLS (GA-PLS), using ATR-FTIR for estimating the properties of charcoal 92 

made from wood such as volatile matter, fixed carbon content and ash. The topic of 93 

wavelength selection is of particular importance in ATR-FTIR spectra since it generally 94 

shows relatively high sensitivity to small perturbations in the experimental conditions, 95 

Page 4 of 23Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



5 

 

as well as the physical and chemical properties of samples. To our knowledge, there is 96 

no report presenting ATR-FTIR-based calibrations for estimating the properties of 97 

charcoal made from wood such as volatile matter, fixed-carbon content and ash. 98 

Wavelength selection with interval base algorithms such as iPLS, SPA and GA are also 99 

not mentioned for charcoal analysis. 100 

 101 

Materials and methods 102 

Samples of charcoal 103 

 104 

 In this study, seventy-two commercial charcoal samples acquired from some 105 

locations in and around the Natal-Brazil region are the whole sample set. All samples 106 

were ground to a particle size of 40 mesh with a Wiley mill (Thomas Scientific, 107 

Philadelphia, PA).  108 

Chemical properties 109 

 Fixed-carbon, volatile matter and ash content were determined using the 110 

proximate chemical analysis of wood charcoal according to the procedure D-1762-84 of 111 

ASTM
22

 and ABNT NBR 8112/83
23

,while fixed carbon content was calculated 112 

following the equation of Anon.
24

 To determine volatile matter, the furnace was then 113 

preheated to 950°C with the vent port capped. Samples were introduced into the furnace 114 

as quickly as possible, rather than preheating crucibles by placing them on the outer 115 

ledge of the furnace for 2 min, then on the edge of the furnace for 3 min, as described in 116 

the ASTM method.  It should be noted that the furnace temperature would not rebound 117 

to 950°C until approximately 8 min after the samples had been introduced.  Samples 118 

were removed from the furnace after 10 min and placed on a refractory brick to cool 119 

until they could be safely transferred into dessicators, at a point above 200°C.  Covered 120 
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crucibles were weighed after cooling to ambient temperature and volatile matter content 121 

was calculated as follows: 122 

100%
105

950105
×

−
=

°

°°

driedC

zeddevolatiliCdriedC

weight

weightweight
matterVolatile                                     (1) 123 

For determination of ash contents, covers were removed from the crucibles and the 124 

furnace vent port was connected to the fume hood exhaust. Following this, samples 125 

were placed in the furnace and the temperature was increased from 105°C to 750°C at 126 

5°C/min, and then held at 750°C for 6 hours.  The furnace was allowed to cool to 105°C 127 

before samples were transferred to dessicators.  Ash content was determined by weight 128 

loss according to the following: 129 

100%
105

750
×=

°

°

driedC

Cafterresidue

weight

weight
Ash                                                                                  (2) 130 

Volatile and ash contents were used to calculate the fixed carbon content according 131 

to the following: 132 

100%
105

750950105
×

−−
=

°

°°°

driedC

CafterresiduezeddevolatiliCdriedC

weight

weightweightweight
carbonFixed       (3) 133 

 It should be noted that the so-called fixed carbon content is given as the mass 134 

residue, and is not strictly a C content. All analyses were done in duplicate. Further 135 

details of the samples, including chemical analysis of the individual charcoal and 136 

reference method used in each parameter, are summarized in Table 1. 137 

ATR-FTIR spectra measurement 138 

Spectral measurements were performed using a Bruker ALPHA FTIR 139 

spectrometer equipped with an ATR accessory. Spectra (8 cm
−1

 spectral resolution 140 
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giving 4 cm
−1

 data spacing equivalent to 258 wavenumbers, co added for 32 scans) were 141 

converted into absorbance by Bruker OPUS software. For the infrared measurements, 142 

the powder for each sample was placed on the diamond crystal of an ATR accessory. 143 

The average value from two different measurements of each sample was properly 144 

stored, and the mean spectrum was then calculated for each sample, giving a total of 72 145 

ATR-FTIR spectra. After each measurement, the ATR plate was washed with ethanol 146 

(70% v/v) and dried using tissue paper. Cleanliness of the ATR plate was verified by 147 

collecting an absorbance spectrum of the crystal using the most recently collected 148 

background as a reference. Spectral measurements were done in an acclimatized room 149 

under controlled temperature of 22
o
C, and 60% relative air humidity. 150 

Chemometrics procedure and software 151 

All the data set were exported to MATLABversion7.12 (The Math-Works, 152 

Natick, USA). Data analysis was performed using the PLS-toolbox (Eigenvector 153 

Research, Inc., Wenatchee, WA, USA, version 7.8). Cross validation was employed to 154 

optimize the number of PLS factors and to guide the selection process in PLS models. 155 

Before computing variable selections and calibrations, different preprocessing methods 156 

were used, including the multiplicative scattering correction (MSC), first and second 157 

derivative and smoothing Savitzky-Golay methods by varying the number of window 158 

points (3,5,7,9 and 11 points) using a first-order polynomial. Mean centering was 159 

applied to all spectra before performing variable subset selection and calibration. 160 

All the samples were divided into calibration and prediction sets using the SPXY 161 

algorithm.
25

 Then, ncalibration = 52 and nprediction = 20 samples were used. To verify the 162 

capability of the calibration models based on the selected region by different methods 163 

(full-PLS, iPLS, GA-PLS and SPA), each model mentioned above was used to predict 164 

the calibration data set and the prediction data set. The RMSEC (root mean square error 165 
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of calibration), RMSEP (root mean square error of prediction) and correlation 166 

coefficients of each model for calibration data set (rc) and prediction data set (rp) were 167 

taken into account. For an ideal model, correlation coefficients (rc and rp) should be 168 

close to 1 while RMSECV/RMSEP is close to 0. Furthermore, root mean square error of 169 

both calibration and prediction samples was proposed for assessing the overall 170 

performance of the model. Smaller RMSECV/RMSEP value indicates better model 171 

quality. Additionally, we used t-pared statistic for a significant (P < 0.05) difference or 172 

trend in the concentration of each parameter with reference method. If the t calculated is 173 

higher than the critical t-value at the 95% confidence level, there is evidence that the 174 

bias included in the multivariate model is significant. The Quantile-quantile (Q–Q) plot 175 

compares the ordered distribution of a test sample with the quantiles of a standard 176 

Normal distribution indicated by the straight line. If the sample is Normally distributed, 177 

the points will lie along this line.
26

 178 

 179 

Results and discussion 180 

ATR-FTIR spectroscopic charcoal properties 181 

 182 

 The original spectra (calculated from the average between the two readings) 183 

giving a total of 72 ATR-FTIR spectra, are shown in Fig. 1a. As can be seen in the 184 

ATR-FTIR spectra of charcoal containing information regarding its chemical 185 

composition and molecular structure, there were clear variations in the IR spectra of the 186 

charcoal samples. Although the direct interpretation of IR spectrum is complicated, it is 187 

possible to assign some bands (inorganic structures) such as O–H stretching modes 188 

(3700−3600 cm-1
), aliphatic C–H stretching modes (2900−2800 cm-1

), Si–O stretching 189 

modes (1100−900 cm-1
) stretching modes of aromatic rings and carbonyl groups (1600 190 
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and 1400 cm
-1

), C−O−C stretching (1030 cm
-1

), aromatic C–H (900−700 cm
-1

), Si–O–Si 191 

and Si–O–Al bending modes (700−400 cm-1
). 192 

In addition, Fig. 1a shows baseline shifts and bias present in the spectra; 193 

undesirable features which need to be removed using some pre-treatments, such as 194 

smoothing (first-order), multiplicative scattering correction (MSC) and first- and 195 

second-order derivatives (Savitzky-Golay). Fig. 1b shows 72 ATR-FTIR obtained 196 

during the pretreatment stage utilized Savitzky-Golay smoothing (with a window of 5 197 

points), MSC and the first derivative of the Savitzky-Golay polynomial (with a window 198 

of 5 points). Mean centering was also applied to all spectra before performing variable 199 

subset selection and calibration. 200 

Fixed-carbon content 201 

 202 

 Fixed carbon content in the charcoal specimen was determined following 203 

Equation 3,
24

, as the difference between 100 and the sum of moisture content, volatile 204 

matter and ash content. In other words, the carbon content can be estimated as a 205 

difference; all the other constituents are deducted from 100 as percentages and the 206 

remainder is assumed to be the fixed carbon. The results obtained for the calibration and 207 

predicted models in the ATR-FTIR region for the fixed-carbon content of commercial 208 

charcoal are displayed in Table 2. In addition to the full PLS models, the results of the 209 

iPLS, PLS-SPA and PLS-GA models are shown. Only the best results from the tested 210 

pre-processing techniques are presented. The number of Latent Variables (LV) 211 

calculated for each model corresponded to the first minimal residual variance. As can be 212 

shown in Table 2, the performance of the full PLS model is slightly  better than that of 213 

the iPLS, GA and SPA models for fixed-carbon content. The correlation coefficient for 214 

the prediction set ranged from 0.60 to 0.80. In addition, it was also observed that models 215 
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with wavelength selection in the ATR-FTIR spectral region(iPLS, GA and SPA) 216 

achieved RMSEP values between 3.01 and 4.56 (%). The number of LV used for the 217 

PLS, iPLS, SPA and GA models using ATR-FTIR spectra for fixed-carbon content 218 

varied between 5 and 8. The calibration set was optimized by the exclusion of the 219 

samples that presented leverage, non-modeled residuals in the parameter (fixed-carbon 220 

content). Five outliers were excluded from the calibration set, and the best PLS model 221 

for fixed-carbon content achieved RMSECV and RMSEP of 3.06 and 3.05, 222 

respectively. In addition, the correlation coefficient for the calibration and validation set 223 

for this model were 0.77 and 0.78, respectively, using 5 latent variables. 224 

 These results are corroborated by the graph of predicted versus reference values 225 

obtained by full PLS using 1666 spectral variables and a correlation coefficient of 0.78 226 

for the prediction set using 5 LV, as shown in Fig. 2a. Moreover, to obtain a better 227 

inside of improvement in predictive ability for this model, t-test suggested by ASTM 228 

E1655-00
27

 and normal (P < 0.05, Quantile-quantile (Q-Q) plot)were calculated. The 229 

results showed that the bias included in the model was not significant, since the t value 230 

obtained 0.67 for fixed-carbon content was lower that the critical value of 2.14 with 231 

95% of confidence. The Q–Q plot is an excellent graphical test of the Normality of a 232 

sample and is commonly used for that purpose. The full PLS model for fixed-carbon 233 

content was subjected to the Q–Q plot univariate normality test, and indicated a 234 

univariate normal data distribution as show in Fig.2b. It therefore was concluded that 235 

the dataset could be multivariate normally distributed. 236 

Volatile matter content 237 

  238 

 Volatile matter was extracted by pre-heating the specimen in a tube furnace for 2 239 

min at 300°C, then heating for 3 min at 500°C and for 6 min at 950°C. Volatile matter 240 
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content was determined as a proportion of the oven-dry weight of the charcoal 241 

specimen. Table 3 displays the results for the analysis of the volatile matter of the 242 

charcoals. As can be seen for PLS models, better values were obtained for the RMSEP 243 

with smoothed data and MSC treatment compared to the models obtained with original 244 

raw. For this parameter, the variable selection using the iPLS, the GA and SPA 245 

algorithms produced inferior results to those of full PLS. The best model found for this 246 

parameter was achieved using full PLS after exclusion of the outliers.  When 1666 247 

spectral variables were used to build the full PLS (6) model, we found a correlation 248 

coefficient of 0.85 for the prediction set. The plot of laboratory-determined volatile 249 

matter versus ATR-FTIR-predicted volatile matter is given in Figure 3a, using 6 VL. 250 

We tested the presence of relevant bias with the prediction results for the prediction 251 

samples using the full PLS of the t-test suggested by ASTM E1655-00. The results 252 

showed that the bias included in the model was not significant (tcalculated= 0.94, tcritical = 253 

2.14, 95% confidence level).Volatile matter content was also subjected to the Q–Q plot 254 

univariate normality test, and indicated a univariate normal data distribution as shown in 255 

Fig.3b.  256 

Ash content  257 

 Ash content was calculated as a proportion of the oven-dry weight of the residue 258 

to the oven-dry weight of charcoal specimen. Table 4 presents the model statistics of the 259 

ATR-FTIR models for ash content. As can be seen in Table 4, the performance of the 260 

full PLS model was better than the wavelength selection models (iPLS, GA and SPA) 261 

for ash content. The correlation coefficient for the prediction set ranged from 0.01 to 262 

0.88. The number of LV used for the PLS, iPLS, SPA and GA models using ATR-FTIR 263 

spectra for ash content varied between 3 and 9. The best model found for ash content 264 

was achieved using full PLS after exclusion of the outliers and smoothing (5 points 265 
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window) and MSC as preprocessing methods. When 1662 spectral variables were used 266 

to build the full PLS (8) model, a correlation coefficient of 0.75 for the prediction set 267 

was achieved. These results are corroborated by the graph of predicted versus reference 268 

values obtained by full PLS, as shown in Fig. 4a. 269 

In addition, to obtain a better inside of the improvement in predictive ability for 270 

this full PLS model, the model was not significantly different using prediction samples 271 

for ash content when compared with the reference values according to a paired t-test 272 

(tcalculated=0.39, tcritical = 2.09, 95% confidence level). Lastly, the full PLS model for ash 273 

content was subjected to the Q–Q plot univariate normality test, and indicated a 274 

univariate normal data distribution as shown in Fig.4b. It therefore was concluded that 275 

the dataset could be multivariate normally distributed. 276 

 277 

Conclusions 278 

 279 

 In this study, we demonstrated ATR-FTIR based in full PLS and wavelength 280 

variable models (iSPA, GA and SPA) for estimating fixed-carbon, volatile matter 281 

content and content of commercial charcoal. It can be concluded that ATR-FTIR is a 282 

very promising technique for the non-destructive quantification of important parameters 283 

in charcoals. An advantage of the ATR method applied to charcoal is that standard 284 

polished block samples can be used without further sample preparation. For instance, 285 

the full PLS models developed for each parameter can be useful for monitoring charcoal 286 

quality in steel industries. These models were validated by cross-validations and 287 

independent statistic tests. The findings presented in this paper provide a detailed 288 

analytical view of real ATR-FTIR data and they could be applied to other spectral 289 

signals as well. 290 
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Captions for Figure 351 

 352 

Figure 1: (a) Original ATR-FTIR average spectra of 72 samples of commercial 353 

charcoals. (b) First derivative spectra of the original 72 samples of charcoal after 354 

pretreatment (Savitzky-Golay smoothing, MSC and a Savitzky-Golay derivatives). 355 

 356 

Figure 2 (a) Predicted concentration vs. reference measured concentration of calibration 357 

and validation samples for fixed-carbon content in commercial charcoals using full PLS 358 

model after outlier test, (○) calibration set and (●) prediction set. (b) Quantile-quantile 359 

(Q-Q) plot normal distribution for fixed-carbon content. 360 

 361 

Figure 3 (a) Predicted concentration vs. reference measured concentration of calibration 362 

and validation samples for volatile matter content in commercial charcoals using full 363 

PLS model after outlier test, (○) calibration set and (●) prediction set. (b) Quantile-364 

quantile (Q-Q) plot normal distribution for volatile matter content. 365 

 366 

Figure 4 (a) Predicted concentration vs. reference measured concentration of calibration 367 

and validation samples for ash content in commercial charcoals using full PLS model 368 

after outlier test, (○) calibration set and (●) prediction set. (b) Quantile-quantile (Q-Q) 369 

plot normal distribution for ash content. 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 
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Figure 1 382 
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Figure 2 386 
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Figure 3 389 
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Figure 4 392 
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Table 1: Statistical results of full set sample Brazilian charcoal analysis (72 samples) 395 

and the reference method applied in each case. 396 

 397 

Property Minimum Maximum Mean S.D. Reference method 

Fixed carbon (%) 59.2000 87.5000 73.9042 6.6124 ASTM D 1762-84 

Volatile matter (%) 11.5000 39 23.5028 6.5554 ASTM D 1762-84 

Ash (%) 0.3000 8.7000 2.3681 1.7368 ASTM D 1762-84 
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Table 2: Results for calibration and the external validation set for fixed-carbon content 418 

(%): root mean square error of cross validation (RMSECV) and prediction (RMSEP), 419 

correlation coefficient for calibration set (rc) and prediction set (rp) and the number of 420 

used spectral variables (Size). The number of variable latent in PLS, iPLS, PLS-SPA 421 

and PLS-GA models are shown in brackets.  422 

 423 

Models  Calibration  Prediction  

 rc RMSECV (%) rp RMSEP (%)   Size 

PLS (6) 0.65 

 

3.92 0.63 4.37 1666 

 

PLS (6)
a
  0.66 3.91 0.63 4.37 1656 

PLS (8)b  0.57 4.18 0.77 3.99 1658 

PLS (8)
c
 0.57 4.59 0.66 3.09 1658 

PLS (5)d 0.54 4.37 0.71 3.67 1666 

iPLS (5) 0.44 5.06 0.80 3.01 166 

iPLS (5) 0.61 4.18 0.65 4.08 833 

PLS-SPA (7) 0.72 3.50 0.60 4.56 20 

PLS-GA (7) 0.68 3.77 0.66 4.29 407 

PLS (7)
e
 0.62 4.04 0.79 3.35 1666 

PLS (5)f 0.77 3.06 0.78 3.05 1666 

asmoothing (11 points); bfirst derivative (9 points);csmoothing (5 points), first derivative (5 points) and 424 

MSC; 
d
MSC; 

e
One application of outlier detection; 

f
second application of outlier detection.  425 

 426 
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Table 3: Results for calibration and the external validation set for volatile matter 438 

content (%): root mean square error of cross validation (RMSECV) and prediction 439 

(RMSEP), correlation coefficient for calibration set (rc) and prediction set (rp) and the 440 

number of used spectral variables (Size). The number of variable latent in PLS, iPLS, 441 

PLS-SPA and PLS-GA models are shown in brackets.  442 

 443 

Models  Calibration  Prediction  

 rc RMSECV (%) rp RMSEP (%)      Size 

PLS (7) 0.57 4.36 0.55 4.65 1666 

PLS (6)
a
  0.56 4.46 0.56 4.50 1656 

PLS (9)
b
 0.61 3.98 0.66 4.33 1656 

PLS (8)c 0.44 5.09 0.72 3.10 1658 

PLS (5)
d
 0.47 4.67 0.81 3.18 1666 

iPLS (5) 0.56 4.42 0.53 4.59 166 

iPLS (6) 0.53 4.57 0.58 4.22 833 

SPA (7) 0.59 4.28 0.53 4.75 20 

GA (7) 0.60 4.23 0.54 4.75 403 

PLS (5)
e
 0.65 3.87 0.74 3.43 1666 

PLS (6)
f
 0.70 3.51 0.85 2.83 1666 

a
smoothing (11 points); 

b
first derivative (9 points); 

c
smoothing (5 points), first derivative (5 points) and 444 

MSC; 
d
MSC; 

e
One application of outlier detection; 

f
second application of outlier detection.  445 
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Table 4: Results for calibration and the external validation set for ash content (%): root 461 

mean square error of cross validation (RMSECV) and prediction (RMSEP), correlation 462 

coefficient for calibration set (rc) and prediction set (rp) and the number of used spectral 463 

variables (Size). The number of variable latent in PLS, iPLS, PLS-SPA and PLS-GA 464 

models are shown in brackets.  465 

 466 

Models  Calibration  Prediction  

 rc RMSECV (%) rp RMSEP (%) Size 

PLS (7) 0.72 1.00 0.34 0.65  1666 

PLS (8)
a
 0.73 0.97 0.20 0.76 1662 

PLS (3)
b
 0.62 1.11 0.79 0.81 1664 

PLS (3)
c
 0.64 1.10 0.88 0.71 1658 

PLS (6)
d
 0.75 0.96 0.65 0.46 1662 

PLS (5)
e
 0.73 1.00 0.38 0.63 1666 

iPLS (3) 0.65 1.13 0.65 0.57 166 

iPLS (5) 0.53 1.33 0.01 1.42 831 

SPA (5) 0.68 1.09 0.34 0.65 20 

GA (9) 0.89 0.63 0.67 0.48 413 

PLS (8)
f
 0.83 0.77 0.74 0.41 1662 

PLS (8)
g
 0.89 0.58 0.75 0.38 1662 

a
smoothing (5 points); 

b
first derivative (3 points); 

c
smoothing (5 points), first derivative (5 points) and 467 

MSC; 
d
smoothing (5 points) and MSC; 

e
MSC; 

f
One application of outlier detection; 

g
second application 468 

of outlier detection.  469 
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