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Multivariate calibration algorithms and statistical methods are typically required in quantitative near 

infrared (NIR) spectroscopic methods to relate NIR spectral response to chemical or physical properties 

of the samples. Based on two different version of particle swarm optimization (PSO) algorithms, an 

adaptively configured wavelet packet transform (WPT) based support vector machine (SVM) was 

developed and applied to quantitative near-infrared (NIR) spectra data analysis. WPT has been proved 

to be an effective method in extracting feature information from raw NIR spectra. It is also useful in 

noise suppression and data compression. SVM is famous for its ability of function approximation and 

remarkable generalization performance. For SVM modeling on the basis of WPT, discrete PSO and 

continuous PSO were used synchronously to optimize the structure of a WPT tree and the parameters 

of SVM synergistically according to the performance of the total model. It, thus, enables an adaptive 

and parameter-free model construction technology for NIR spectral data analysis. The performance of 

the proposed Ad-WPT-SVM is investigated using two real data sets. The results of different methods 

are compared, indicating the proposed method holds great potential for robust and reliable 

quantitative NIR spectral data analysis. 

. 

1. Introduction 

Near-infrared (NIR) spectroscopy is an invaluable tool which 

provides cheap and rapid estimation of sample components in 

diverse fields like pharmaceutical industry1-3, medical 

diagnostics (including blood sugar and oximetry)4 food and 

agrochemical quality control5 and so on. Commonly, regression 

modeling is necessary in quantitative NIR spectral analysis6. 

Nevertheless, it is not easy to reveal the concealed quantitative 

relationship between spectral information and sample properties 

because in most NIR spectra broad, weak, non-specific and 

overlapping bands may result in significant noises, serious non-
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linearity or poor relevant information. An effective way to 

solve this problem is variable selection or information 

extraction. Some methods including stepwise regression 

analysis (SRA)7, uninformative variables elimination (UVE)8-10, 

interval partial least squares (iPLS)11,12 and moving window 

partial least squares regression (MWPLSR)13-15 were developed 

to extract parts of relevant wavelengths or informative 

wavelength intervals for modeling. Variable-weighting was 

also suggested to magnify the utility of the relevant 

wavelengths and restrain the impact of irrelevant ones16. 

However, it is still a great challenge in quantitative analysis of 

NIR. 

Discrete wavelet transform (DWT) is a great useful time-

frequency analysis tool with many successful applications in 

NIR analysis17, such as describing and clarifying local data 

structures, suppressing noise, correcting baseline, compressing 

database, et al. What’s more, wavelet packet transform (WPT), the 

generalization of DWT, has been proved to be even more versatile18. 
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Rather than DWT only decomposing approximation coefficients 

each time, WPT continuously decomposes detail coefficients as well 

by passing a signal through more filters than DWT19, which makes 

WPT more flexible for the analysis of smooth signals typically like 

NIR spectra. Nevertheless, because continuously decomposing of 

approximation and detail coefficients is enabled in WPT, it will 

result in different wavelet packet trees. Different wavelet packet 

trees determine different combinations of coefficients for original 

signals and the combinations of coefficients impact the performance 

of the quantitative model straightforwardly, therefore, it is critical to 

find out the best decomposition tree in terms of a convenient 

criterion. 

To solve this problem, herein, it is developed that adaptive 

wavelet packet transform followed by support vector machine (Ad-

WPT-SVM) modeling as globally optimized by particle swarm 

optimization (PSO) algorithm for NIR spectral data analysis. In this 

method, the introduction of global stochastic optimization technique 

PSO allows flexible wavelet packet tree construction according to 

the performance of the total quantitative model, compared with a 

commonly used approach constructing a decomposition tree just via 

analyzing the signal itself based on Shannon entropy. The problem 

of wavelet packet decomposition tree construction can be processed 

as a discrete optimization issue using a discrete version of PSO. 

Besides using a discrete version of PSO to seek the optimal wavelet 

packet tree for a WPT-SVM model in NIR spectra analysis, PSO 

also can be used to search the other parameters of the model, such as 

penalty constant, kernel width in kernel transform20,21. The direct 

benefit is that it makes WPT-SVM to be an adaptive parameter-free 

method for NIR spectra analysis, without any parameters to be 

adjusted. To demonstrate the performance of the developed Ad- 

WPT-SVM, two real NIR spectra data sets were used as case studies. 

We also compared the performance of the developed method with 

that of WPT-SVM models whose decomposition trees were 

determined using a decision rule of Shannon entropy and other 

parameters were estimated by gird search. 

2. Theory 

2.1 Wavelet packet and wavelet packet tree 

The idea of wavelet packet transform is the same as wavelet 

transform. In wavelets, via using a set of basis functions any 

arbitrary signal is decomposed into a series of coefficients 

(approximation coefficients and detail coefficients) in a new time-

frequency space to exhibit some features in the new feature space 

that are inconspicuous in the initial domain. The difference of 

wavelet packet from wavelets is detail coefficients and 

approximation coefficients are decomposed continuously rather than 

only approximation coefficients further decomposed in wavelets. In 

other words, wavelet packet transform provides appropriate time 

resolution as well as frequency resolution simultaneously, which 

makes WPT more flexible to balance the time resolution and 

frequency resolution than DWT. Because of this difference, WPT 

accordingly describes the original signal better and more exactly 

when treating smooth signals. The decomposition procedure of WPT 

from a standpoint of signal processing is shown in Figure 1. An 

original signal, on the first decomposition level, is first decomposed 

into two parts, lower frequencies and higher frequencies. 

Though this, the information in lower frequency part is 

represented by approximation coefficients (A1), while that in 

higher frequencies is depicted by detail coefficients (D1). Then, 

the part of higher frequencies as well as the part of lower 

frequencies is decomposed respectively on the second 

decomposition level. This procedure can be carried out up to 

the maximum decomposition level. 

 

Figure 1. wavelet packet transform(WPT) decomposition. 

In the view of information, the information contained in the 

original signal is equal to A1 + D1, A1 + AD2 + DD2, AA2 + 

DA2 + D1, or AA2 + DA2 + AD2 + DD2 in Figure 1. That is, 

an original signal could be decomposed into different ways 

through WPT. While the final tree adopted determines the 

coefficients which would be used for modeling and influence 

the performance of regression model directly, it is extremely 

critical to find out the optimal decomposition mode (wavelet 

packet tree) in terms of a convenient criterion. In general, 

Shannon entropy that describes information-related property of 

the signal is chosen as the criterion. The best tree is considered 

as the one with minimum entropy, or in other words, the one 

whose regularity or information approaches the maximum. This 

criterion works well in many applications. However, it is 

obvious a Shannon entropy criterion decides a tree independent 

of the final quantitative model. Thus, it is difficult for Shannon 

entropy criterion to provide desirable decomposition tree 

according to the performance of the total model. In the present 

study, a new criterion based on a modified PSO is proposed for 

flexible and convenient tree structural design in consideration 

of the performance of the total quantitative model built using 

SVM technique. 

2.2 Support Vector Machine 

Support vector machine (SVM)22 is gaining popularity due 

to many attractive features and promising empirical 

performance. Consider the problem of approximating the set of 

data with a linear function,  
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y=wTX + b                                                                                         

(1) 

where w is the weight vector to be identified in the function, and b is 

the threshold. Based on structural risk minimization (SRM) 

principle, the optimal regression function is given by the minimum 

of the cost function Φ, 

Φ=
1

2
WTW+C

1

I
∑ Lε
	I
i=1 	(��		 −	���)                                                    

(2)               

where， 

��		�� − ���
= �		|	�� 	− 	���	| − 		|�� 	− ���| ≥ 
0              otherwise

                               (3)                           

is the ε-insensitive loss function measuring the error between the 

given observations (yo) and the estimated ones (y) and ε is the 

tolerance zone. I is the number of the training compounds; 1/2wTw is 

used as a measure of the model complexity, defining the structure 

risk of a SVM model. A penalty constant C is introduced to 

determine the trade-off between the empirical error and the model 

complexity. Minimizing the cost function Φ under penalty constant 

C is to reduce the complexity as well as the empirical error of a 

model. As defined above, the w and b in Eq. (1) can be obtained by 

solving a quadratic programming problem. Extension of this linear 

technique to nonlinear regression can be performed in a 

straightforward manner by substituting a so-called kernel function 

K(xi, x) for the inner product <xi, x>. Although many functions can 

be used as the kernel function, Gaussian radial basis function 

transform is frequently utilized if the knowledge of a problem dealt 

with is lacking, K(xi, x)=exp(-||xi - x||2/(2σ2)). To determine the 

parameters in a SVM model, such as penalty constant C, tolerance 

zone ε and kernel width σ in Gaussian function transform, a 

continuous version of PSO is considered. 

2.3 Particle Swarm Optimization Algorithms 

PSO23,24is an evolutionary computation technique derived from 

simulating the behavior of birds searching food. In PSO, the 

potential solutions called particles fly through the problem 

space by following the current optimum particles. Each particle 

keeps track of its coordinate in the problem space which is 

associated with the best solution (fitness) it has achieved so far. 

This value is called personal best position (pBest) for particle i 

represented as pi = (pi1, pi2, …,piD). Another best value that is 

tracked by the particle swarm optimizer is the best value 

obtained so far by all particles in the solution space, called 

global best position (gBest) which is represented as pg = (pg1, 

pg2, …, pgD).Each particle updates its velocity vi = (vi1, vi2, 

…,viD) and position xi = (xi1, xi2, …, xiD) by tracking these 

two best values according to the following equations: 

vid(new) = w × vid(old) + c1 × r1 × (pid- xid) + c2 × r2 × (pgd- xid)     (4) 

xid(new) = xid(old) + µ × vid(new)                                                   (5) 

where w is an inertia weight which is brought into Eq. (4) to balance 

the global search and local search, r1 and r2 are random numbers 

between 0 and 1. Two positive constants, c1 and c2, called learning 

factors are introduced, and generally both take the integer value 2. In 

Eq. (5), µ is the time parameter determining the different flying time 

for each particle. The particle swarm optimization concept consists 

of, at each time step, changing the velocity of each particle toward 

its pBest and gBest locations. Acceleration is weighted by a random 

term, with separate random numbers being generated for 

acceleration toward pBest and gBest locations. 

Mostly, PSO is carried out in a continuous real-number space as 

described above, so-called a continuous version of PSO. For discrete 

optimization issues which can be expressed in an integer string 

varying from 0 to k, a discrete version of PSO is developed by Yu et 

al. Such PSO is still on the basis of the information-sharing 

mechanism of the continuous PSO and the pattern of updating 

particle by following two best positions. In a different way, a particle 

of discrete PSO represents changes of its site that should be an 

integer, and the velocity represents the probability of site xid taking 

the integer value from 1 to k respectively. The velocity vid of every 

individual is a random number in the range of (0,1). The resulting 

change in position is then defined by the following rule, 

If (0<vid≤a),                 then  xid(new) = xid(old)                               (6) 

If (a<vid ≤(1+a)/2),      then  xid(new) = pid            (7) 

If ((1+a)/2<vid≤1),       then  xid(new) = pgd            (8) 

where a is a random value in the range of (0,1) named static 

probability. Static probability a starts with a value of 0.5and 

decreases to 0.33 when the iteration terminates. Though the velocity 

in the modified discrete PSO is different from that in continuous 

PSO, an information sharing mechanism and updating model of 

particle by following the two best positions is the same in the two 

versions of PSO. 

2.4 WPT-SVM as Globally Optimized by PSO (Ad-WPT-

SVM) 

The WPT analysis provides us the feature coefficient spaces of NIR 

spectra, where we can relate the quantitative property with the NIR 

spectra using a modeling technique of SVM. To build a WPT-SVM 

model which can display good performances both in model training 

and prediction, we should provide optimal decomposition tree for 

WPT and optimal parameters for SVM first. Rather than using a 

strategy that estimates decomposition tree and SVM parameters 

separately, we optimize the WPT-SVM quantitative model globally 

via invoking PSO algorithms. The problem of constructing the 

wavelet packet decomposition tree actually can be solve as a discrete 

optimization issue by using a discrete version of PSO, and on the 

other hand the parameter determination of SVM can be treated as a 

continuous optimization issue by using a continuous version of PSO. 

While building a WPT-SVM model in NIR spectra analysis, as 

two different versions of PSO are simultaneously employed, each 

particle in the solution space, accordingly, consists two parts: one is 

encoded as a string of integers representing the construction of the 

wavelet packet tree and the other is encoded as a string of continuous 

real numbers representing the parameters of SVM. 

When using discrete integers to encode the wavelet packet 

decomposition tree, it is treated as a completely symmetrical 

tree for some conveniences, shown in Figure 2. For a full 

symmetric tree with L levels, the number of nodes of the tree 

can be easily measured as	∑ 2l-1L
l=1 , and for any node with child 

nodes, the sequence number of its two child nodes would be 

twice and twice plus 1 as that of itself (named parent node). 
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Because of these attributes of a completely symmetrical tree, it 

will be extremely convenient to coding and decoding particles 

in a discrete version of PSO. To represent the tree structure, the 

discrete part of each particle is encoded as a binary bit with a 

length of ∑ 2l-1L
l=1  for a tree with L levels, indicating whether 

the corresponding node exists or not. A bit of 0 in this part 

implies that the corresponding node does not exist at all. Of 

course, its descendent nodes are automatically excluded in the 

final decomposition tree. This also means that the wavelet 

packet coefficients associated with these nodes are useless, and 

vice versa, a bit of 1 indicates the existence of the associated 

node. According to the information provided by the 

corresponding wavelet packet decomposition tree, the wavelet 

packet coefficients for these nodes also will be reserved. By 

restoring the tree via decoding the optimal particle, the 

coefficients of all the bottom nodes of this optimal wavelet 

packet decomposition tree should be kept to build the optimal 

quantitative model. For enhancing the optimization efficiency, 

the first three bits in this part of a particle are always set to be 1 

to guarantee the decomposition of the first level of a signal. 

 

 

 

 

 

 

 

 

 

 

Figure 2.  A full symmetric tree with 4 levels. 

The second part coding as continuous real numbers of each 

particle is made up of three subparts representing the parameters of 

SVM, the penalty constant C, the tolerance zone ε and the kernel 

width σ in a Gaussian function transform, respectively. In addition, 

for further improving the ability of the PSO to overcome local 

optima, ten percent of particles are randomly selected and forced to 

fly at random, not following the two best positions. 
Simultaneously employing the two versions of PSO to 

synchronously optimizing the particles makes the construction of 

decomposition tree and model parameter selection to be an entirety. 

Moreover, as PSO determines the optimal decomposition tree in 

accordance with the model performance, the noise in the NIR 

spectra (usually related to the detail coefficients of the highest 

frequency) will be automatically suppressed corresponding to 

the modeling requirements via giving the related node to be 1 

or 0 in the tree optimizing process. Therefore, other noise 

suppression method is not required any more. In short, using 

the two versions of PSO for WPT-SVM enables the 

construction of an adaptive parameter-free quantitative model 

for NIR spectra analysis according to the performance of the 

total model. 

To measure the particles of PSO in the solution space of WPT-

SVM, an objective function also should be designed. Since the 

present method is oriented to improve the performance of a 

quantitative model, it is considered to both enhance the training of a 

calibration set and the prediction of an independent validation set by 

minimizing the following objective function: 

Re=�RSSC+RSSV

I+	Iv

                                                                                (9) 

where RSSC is the sum of squared residual of the original 

calibration set and RSSV the sum of squared residual of the 

independent validation set, I and	�v are the size of calibration 

set and validation set, respectively.According to this objective 

function, the two versions of PSO optimize the model 

simultaneously, until the minimum error criterion is attained or 

the number of cycles reaches a user defined limit. 

3. Data sets 

3.1 Meat data 

The data containing 240 samples of meat are recorded on a 

Tecator Infratec Food and feed analyzer working in the 

wavelength range 850–1050 nm by the near infrared 

transmission (NIT) principle25. Each sample contains finely 

chopped pure meat with different contents of moisture, fat and 

protein. For quantitative model building and evaluating, the 

total 240 samples are split into a calibration set with 120 

samples, a validation set with 60 samples and a prediction set 

with 60 samples using a DUPLEX method26. 

3.2 Corn data 

The corn data consists of 80 samples measured on NIR 

spectrometers with a wavelength range of 1100-2498nm 

recorded27. The protein and moisture contents for each sample 

are included. According to DUPLEX, the whole samples are 

divided into a calibration set, a validation set and a prediction 

set with 40, 20 and 20 samples, respectively. 

4. Results and discussion 

4.1 Meat data 

The performance of Ad-WPT-SVM was firstly examined by 

modeling the protein, fat and moisture of meat data. As 

comparisons, partial least square (PLS), back propagation 

neural network (BPNN), and WPT-SVM using Shannon 

entropy criterion for tree structure determination were also 

employed to build the quantitative models. Table 1 summarizes 

the results of all the four modeling methods for protein, fat and 

moisture content prediction in meat.  
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a) b) 

c) 

 
d) 

 

 

Table 1. The RMSE value of each model for the content 
analysis of protein, fat and moisture in meat. 

 Protein Fat Moisture 

 Cal set Pre set Cal set Pre set Cal set Pre set 

PLS 0.9754 0.9573 2.2376 2.0119 1.3372 1.4233 

BPNN 1.6337 1.4486 4.1960 4.0982 2.6545 2.8042 

WPT-

SVM 
0.8107 0.8673 1.4333 1.5226 1.1589 1.2245 

Ad- 

WPT-

SVM 

0.6724 0.7566 0.3820 0.4918 0.7491 0.8128 

note: RMSE represents for root mean square error; Cal set represents for 

calibration set and Pre set for prediction set. 

For PLS models, the number of latent variables is determined 

using the prediction performance of calibration and validation sets. 

The root mean square error (RMSE) of PLS in protein content 

analysis was 0.9754 for the calibration set and was 0.9573 for the 

prediction set. The correlation between the calculated and observed 

values of protein content is shown in Figure 3a. For BPNN, 20 

hidden nodes were used for each model, and validation set was used 

to estimate the proper iteration number for reducing the risk of over 

fitting or under fitting of the models. However, the results of BPNN 

were poorer than those obtained by PLS, as shown in Table 1 and 

Figure 3b. The RMSE was 1.6337 for the calibration set and 1.4486 

for the prediction set, both much larger than those of PLS. WPT-

SVM, of which the decomposition tree was determined using a 

decision rule of Shannon entropy and the parameters of SVM were 

estimated by gird search, gave RMSEs of 0.8107 and 0.8673 for the 

calibration set and prediction set, respectively. The correlation 

between the calculated and observed values of content was shown in 

Figure 3c. Such results were better than those of PLS and BPNN. 

This improvement may benefit from the feature extraction of WPT 

and the modeling technique of SVM.  

To be an adaptive modeling method, the best decomposition tree 

and whole of the parameters of SVM including the variables 

weights, kernel width σ, penalty constant C and tolerance zone ε 

were optimized by discrete and continuous versions of PSO 

algorithms via minimizing the objective function defined in Eq. (7). 

Parameter optimization of multivariate calibration aims at finding 

the best available values of a function or a set of functions, and 

automatic parameter optimizing is able to provide an objective 

solution to a problem. The parameters optimized by PSO for both 

WPT and SVM were list in Table S1 in supporting information. 

With the optimal decomposition tree, RMSE for calibration set of 

0.6724 was obtained by Ad-WPT-SVM and that for the prediction 

set was 0.7566. The correlation between the calculated and 

experimental values is shown in Figure 3d.  

 

 

 

 

 

 

Figure 3. Correlation between the calculated values acquired from each model 

and the observed values of the protein in meat: (a) PLS, (b) BPNN, (c) WPT-SVM, 

(d) Ad-WPT-SVM. 

Compared with WPT-SVM, Ad-WPT-SVM provided further 

enhanced performance for both the calibration set and the 

prediction set which displayed as much smaller RMSEs and 

better correlation between the calculated and experimental 

values, exhibiting that the proposed algorithm had better 

precision in modeling and superior generalization in prediction. 
Additional, Ad-WPT-SVM also exhibited the best performance 

in fat and moisture content prediction of meat data set as shown 

in Table 1. The R-square scores of all the models were also 

summarized in Table S2 in supporting information. As 

expected, the proposed Ad-WPT-SVM had the best R-square 

scores compared with the models built using other methods. It 

can be concluded that since the structure of the decomposition 

tree and the parameters were optimized synergistically using 

the PSO algorithm according to the performance of total model, 

it guaranteed Ad-WPT-SVM to be an automatic method with 

desirable performance in quantitative analysis of NIR spectral 

data.  

4.2 Corn data 

The same modelling strategies, PLS, BPNN, WPT-SVM with 

Shannon entropy criterion and Ad-WPT-SVM were used for 

the corn data to fit the contents of protein and moisture. The 

statistical results were included in Table 2. 

Table 2. The RMSE value of each model for the content 
analysis of protein and moisture in corn.  

 Protein Moisture 

 Cal set Pre set Cal set Pre set 

PLS 0.0582 0.0678 0.1021 0.0900 

BPNN 0.1520 0.1486 0.1468 0.1587 

WPT-

SVM 
0.0152 0.0148 0.0740 0.0983 

Ad-

WPT-

SVM 

0.0066 0.0081 0.0067 0.0060 

note: RMSE represents for root mean square error; Cal set represents for 

calibration set and Pre set for prediction set. 
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For the quantitative analysis of protein in corn, it could be found 

that PLS gave a RMSE of 0.0582 for the calibration set and a RMSE 

of 0.0678 for the prediction set. BPNN showed worse results than 

PLS, a RMSE of 0.1520 for the calibration set and that of 0.1496 for 

the prediction set. Such comparison is clearly exhibited in Figure 4a 

and 4b. Improved results were obtained using WPT-SVM, of which 

the model used Shannon entropy as the criterion for decomposition 

tree decision. A RMSE of 0.0152 for the calibration set and that of 

0.0148 for the prediction set were obtained. Ad-WPT-SVM 

displayed even better performance both for modeling and prediction 

with the PSO optimized parameters listing in Table S1 in supporting 

information. Low RMSEs for the calibration set and prediction set 

were achieved with the values of 0.0066 and 0.0081, respectively. 

The correlation between the calculated and experimental values of 

protein contents is exhibited in Figure 4d, which is correspond to the 

results in Table 2. Compared with WPT-SVM with Shannon entropy 

as shown in Figure 4c, Ad-WPT-SVM improved the performance of 

the quantitative model further. Also, Ad-WPT-SVM exhibited the 

best performance in moisture content analysis with RMSE of 0.0067 

for calibration set and 0.0060 for prediction set, both lower than 

those of PLS, BPNN and WPT-SVM. Table S3 in supporting 

information shows the R-square scores of all the models. These 

results further demonstrated that optimizing synergistically the 

structure of WPT and SVM parameters improved the performance of 

adaptive WPT-SVM, then exhibiting a great potential in NIR 

spectral quantitative analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. correlation between the calculated values acquired from each model 

based on NIR data and observed values of the protein in corn: (a) PLS,  (b) BPNN, 

(c) WPT-SVM, (d) Ad-WPT-SVM. 

5. Conclusion 

In this paper, it was proposed adaptive wavelet packet 

transform for support vector machine modeling as globally 

optimized by particle swarm optimization for NIR spectral data 

analysis. Wavelet packet transform is very effective in 

information extraction especially for smooth singles like NIR 

spectra, and the use of PSO enabled synergistic optimization of 

the WPT structure and all parameters of SVM according to the 

performance of the total model. The performance of Ad-WPT-

SVM was evaluated by using two NIR data sets. The results 

revealed that the proposed method offered enhanced 

performances both in model training and prediction due to the 

option of synergetic optimization of WPT-SVM according to 

the performance of the total model via synchronously using 

discrete and continuous versions of PSO. Therefore, it may 

provide a promising tool for flexible and robust NIR spectra 

analysis. 
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