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Abstract 
Recently, age-related changes in functional connectivity have gained more attentions in an 

attempt to investigate the functional changes across development. In this study, we examined 

functional connectivity, as derived from resting state functional magnetic resonance imaging (R-

fMRI), in 90 cortical and subcortical regions for two healthy groups in young adulthood (ages 18-

28 y) and late adulthood (ages 63-73 y). Comparing the process for constructing a functional 

network, we found that the network in young adulthood was more easily fully connected than 

that in late adulthood’, indicating that the central regions, frontal lobe, parietal lobe and limbic 

lobe possibly occupy more resources in late adulthood. We confirmed that both the young 

adulthood’ and late adulthood’ brain had a “small-world” organization, and that there was a 

further loss of small-world characteristics in late adulthood. Additionally, we found that late 

adulthood exhibited a more social-like organization of the brain functional network than young 

adulthood. Further, connectivity density showed a general decrease in most brain areas, but only 

the temporal lobe and occipital lobe showed a decrease in connectivity strength in late adulthood.  

Conversely, the parietal lobe showed an increase in connectivity density in late adulthood. Our 

study provides additional support for elucidating the functional changes of the brain across 

development, and characterizing these changes will lead to a better understanding of the 

cognitive decline that occurs with advanced aging.  

1. Introduction 
Normal aging is a complicated biological phenomenon and is accompanied by cognitive decline.  

In general, ageing is characterized by a progressive loss of muscle, working memory, executive 
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function and by motor impairment, etc. [1]. As the brain is one of the most sophisticated and 

important organs, its aging has naturally drawn wide public attention. Especially in recent 

decades, anatomical and functional neuroimaging techniques such as diffusion tensor imaging 

(DTI), functional MRI (fMRI), electroencephalography (EEG), magnetoencephalography (MEG), etc. 

have been widely applied to brain research; for a review, see Ed Bullmor and Olaf Sporns [2].  

Structural image studies examining the development of white-matter pathways have reported an 

increase in anisotropy and a decrease in the overall diffusion in major white-matter fiber tracts. 

Functional image studies have also shown that connectivity and network integrity decline with 

age [3-5]. 

Resting-state functional connectivity MRI (R-fMRI) is widely acknowledged to be a powerful 

technique for investigating the functional organization of the human brain. This method was 

applied to exploring brain functional connectivity, through detecting associated changes in blood 

flow, based on the spontaneous low-frequency (< ~0.1 Hz) blood oxygen level dependent (BOLD) 

signal fluctuations found in some correlated brain regions. Commonly, these low frequency BOLD 

fluctuations have been reported to be of physiological importance and have been suggested to 

relate to spontaneous neural activity [6,7]. A rapidly growing number of studies adopting this 

BOLD method have investigated the age-related functional changes of the human brain with the 

use of graph theory. In the context of a graph, brain regions (voxel/area) are described by nodes 

and connections, structurally denoting anatomical links. Functionally, the symmetrical statistical 

association or dependency between elements is referred to as edges on the graph. A recent study 

by Detsje and colleagues of childhood and young adult development investigated whole-brain 

functional connectivity using independent component analysis (ICA). They reported that both 

children and young adults showed similar spatial patterns of functionally connected regions and 

that the strength of the functional connectivity between brain regions was significantly different 

in these two groups [8]. Previous studies of development have reported that from childhood to 

adulthood, there was a general decrease in correlation strength between regions close in 

anatomical space but an increased correlation strength between selected regions distant in space; 

although, the functional brain network of both showed “small-world” properties [9,10]. The use 

of graph theory along with R-fMRI to characterize the organization of complex networks provided 

a useful approach for investigating the brain functional network in normal human aging. 

Small-world networks, as characterized by high clustering and short path length, were originally 

proposed by Watts and Strogatz [11]. It was revealed that the small-world metrics derived from 

R-fMRI, MEGs and EEGs data could describe the integrated and special functional organization of 

the human brain [12-14]. Furthermore, the effects of normal aging, development and 

neurological diseases on small-world networks have been largely assessed with R-fMRI. In prior 

studies, it was reported that functional brain networks showed a loss of small-world properties in 

Alzheimer ’s disease [15,16], disrupted small-world networks in schizophrenia [17,18] and altered 

quantitative values in the global properties in major depressive disorder (MDD) [19]. In addition, 

previous work examined the small-world metrics between children and young adults, with both 

showing “small-world” like properties that are significantly different in their hierarchical 

organization and interregional connectivity [9,10]. However, only a small number of studies have 

compared the small-world metrics between young adulthood and late adulthood. A few recent 

studies have shown that age impairs the economical performance of small-world brain networks 

[20,21]. One of the goals of the present study was to lend more support to these findings. Over a 
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wide range of sparsity values, we examined the small-world properties between young adulthood 

and late adulthood using several datasets to validate whether all the young adulthood groups 

could be significantly distinguished from the late adulthood group.  

Previous studies suggested that analyzing the degree correlations of a network could predict the 

modularity, and it was also reported that the assortative mixing in task-related brain activation 

showed a positive correlation between a node’s degree and the average of its direct neighbors’ 

degrees [22,23]. Luca and his colleagues reported that in brain functional connectivity maps, the 

highly connected nodes tend to link to other highly connected nodes [24]. To our knowledge, the 

degree correlation between young adulthood and late adulthood has not yet been investigated. 

Additionally, there were several studies investigating the strength of region inter-connectivity, 

brain activity and functional connectivity between young adulthood and late adulthood. These 

studies suggested that there was a tendency toward reduced resting-state brain activity in the 

‘default-mode’ network (DMN)[25,26], decreased modularity and decreased local efficiency 

[27,28]. However, few studies have explored these comparisons from perspective of the process 

of constructing functional networks. Therefore, we attempt to address this issue by using our 

method and expect to provide more information about normal aging.  

In the current study, 1) we investigated the brain functional connectivity in young adulthood (18 ~ 

26 years) and late adulthood (63 ~ 73 years) during the process of constructing fully connected 

functional networks; 2) we explored the small-world properties between groups with one late 

adulthood group and several young adulthood groups from different laboratories; 3) we 

examined the social-like organization of the brain functional network, using the approach 

described by Eguiluz et al.; and 4) we further examined the connectivity density and connectivity 

strength within anatomically distinct brain areas between these groups. As numerous studies 

have examined the intrinsically distinct functional networks, e.g., auditory, PCC/vmPFC, language, 

primary visual cortex and especially DMN using R-fMRI [29], we explored the functional networks 

within anatomically distinct brain areas. In general, we expected to find different patterns of 

functional connectivity between young adulthood and late adulthood.  

2. Materials and methods 

2.1  Ethics statement 

We performed our analyses on publicly available imaging data from the 1000 Functional 

Connectomes Project (all data are available at http://fcon_1000.projects.nitrc.org). TRT reliability 

was assessed on the NYU TRT dataset. The corresponding institutional review boards approved or 

provided waivers for the submission of anonymized data, which were obtained with written 

informed consent from each participant. 

2.2  Data 

All the data used in this study were selected from the 1000 Functional Connectomes Project  

(http://fcon_1000.projects.nitrc.org/), the purpose of which is to provide a large-scale functional 

imaging dataset through collecting resting-state functional magnetic resonance imaging (R-fMRI) 

datasets from its member sites around the world. This study included 229 healthy young adults 

from Zang, Y.F. (n = 198, ages 18 ~ 26, 76M/122F) and Rombouts, S.A.R.B (n = 31, ages 18 ~ 28, 

23M/8F) and 16 late adulthood from Sorg, C./Riedel, V. (n = 16, ages 63~73, 10M/6F). After pre-
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processing, 206 subjects were finally selected to be analyzed in the following sections. All the 

neural images were acquired from right-handed subjects who were guided to lie down without 

moving, close their eyes, and to not think of anything but to stay awake. 

2.3  Pre-processing and extraction of resting state timeseries 

The pre-processing of neural images was mainly based on the toolbox Data Processing Assistant 

for Resting-State fMRI (DPARSF) and some functions in the REST software (REST) and the 

statistical parametric mapping software (SPM) [30]. DPARSF provides a user-friendly “pipeline”  

for data analysis of R-fMRI datasets, including noise signal reduction, image normalization and 

extracting time courses from regions of interest, etc. In general, to assure signal equilibrium and 

the participant adapting well to the scanning environment, the first few volumes of each of the R-

fMRI images should be discarded. Each dataset was corrected for head movement by realignment 

and regression and any subjects presenting excessive motion (greater than 3.0 mm of translation 

or 3.0 degrees of rotation in any dimension) were discarded. Given that each researcher had 

originally discarded the first 5 time points of these selected R-fMRI datasets, we did not remove 

any volumes during the following preprocessing with DPARSF. First, the R-fMRI time series 

datasets were separately corrected for slice timing because of different time points used by the 

three laboratories, with the temporal middle volume as a reference. Second, the images from 

each subject were spatially normalized into Montreal Neurological Institute (MNI) space using 

unified segmentation on the T1 image, which requires three steps in DPARSF – coregistration, 

segmentation and writing normalization parameters. After normalization, spatial smoothing was 

performed. Third, the systematic drift or trend of the blood oxygen level-dependent (BOLD) signal 

was removed using a linear model and a band-pass filter (0.009 Hz ~ 0.08 Hz) was applied to the 

BOLD signal to reduce the effect of both low-frequency and high-frequency physiologic noise.  

Finally, from the filtered data, using a default mask, we regressed out the effect  of nuisance 

covariates including head motion parameters, global mean signal, white matter signal and 

cerebrospinal fluid signal.  

The preprocessed R-fMRI datasets above were then parcellated into 90 regions, defined by the 

Automated Anatomic Labeling atlas, to extract the mean time series by averaging all the voxels in 

each region of interest (ROI) throughout the whole brain [31]. After manually and automatically 

examining all the process of preprocessing and the mean timeseries, we selected 206 subjects in 

total for our following analysis. 

2.4  Construction of the R-fMRI network 

To examine functional connectivity and network characteristics, an interregional correlation 

matrix (90 X 90,  after Fisher z-transformation) was obtained for each of the 206 subjects by 

calculating the Pearson’s correlation coefficients between all possible pairs of the AAL regions.  

According to Table 1, each average group of correlation matrices was then created by averaging 

each corresponding correlation Z value throughout each group, thus generating 7 representative 

correlation matrices. Then, these correlation matrices were thresholded to create adjacency 

matrices, the element of which is either 1 if the z value is greater than the selected threshold or 0 

if it is not. To accurately reflect the alterations in the R-fMRI network, sparsity (S), instead of the 

same correlation threshold, was applied to thresholding the correlation matrices above, assuring 

that the network had the same number of edges. In this study, the sparsity is the ratio of the 
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number of existing edges of the R-fMRI network and the possible maximum edges (90 X 89/2 

=4005). e.g., if the sparsity was 5%, it means that the network had 200 edges. A wide range of 

sparsity (6% ≤ S ≤ 30%) was used to threshold the correlation matrices and estimate the 

functional connectivity in the fully connected network. Furthermore, we investigated the other 

graph characteristics with a fixed sparsity (15%) [32]. Finally, the R-fMRI networks were created, 

in which nodes represent the AAL regions and edges represent functional connections between 

regions. 

2.5  Small world analysis of the R-fMRI network 

The small-world organization of a network was originally described by Watts and Strogatz [11] 

and is characterized by a higher local clustering and a shorter path length. In this study, the 

clustering coefficient (Cp) is the average of the clustering coefficient over the 90 AAL regions, 

where the clustering coefficient of the region i (Ci) is defined as the proportion of edges among 

the immediately connected neighbors of a region divided by the number of edges that could 

possibly exist between them. The absolute path length (Lp) is the average of the mean shortest 

absolute path length over the 90 AAL regions of our brain network, where the mean shortest 

absolute path length of a region i (Li) is defined as the total shortest absolute path length 

between node I and all the others are divided by N-1 (i.e., 90 - 1). Given that isolated areas may 

exist in the network and that we would like to explore the small-world parameters throughout a 

wide range of sparsity values, we used δ (δ = 2
-Lp

) to indicate the absolute path length between 

two regions. 

2.6  Analysis of the degree correlations in the R-fMRI 

network 

To investigate the difference between the young adulthood network and the late adulthood 

network from the aspects of degree, we estimated the correlation between each node’s degree 

(K) and the average degree of its direct neighbors (Ki) throughout the 7 representative correlation 

matrices with a sparsity of 15%. The same parameters of matched random networks, the average 

over 200 random networks with the same node and degree, were calculated. The linear trend of 

each group was calculated. 

2.7  The functional connectivity within anatomically distinct 

brain regions 

Prior studies suggest that anatomically distinct  brain regions are functionally connected. In this 

study, we investigated the graphic alteration of R-fMRI from young adulthood to late adulthood, 

in which the above 90 AAL brain regions were anatomically assigned to seven brain areas, i.e., the 

central region, the frontal lobe, the temporal lobe, the parietal lobe, the occipital lobe and the 

insula/sub cortical gray nuclei. Due to having only one node of insula, for the convenience of 

analysis, it was incorporated into the sub cortical gray nuclei and they were grouped into the 

insula/sub cortical gray nuclei. First, the connections within each brain area, grouped by the 

above criteria, were calculated throughout all of the individuals. By using this method, we 

attempted to discover whether there were significant changes of connectivity density within each 
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anatomically distinct brain region. Second, we estimated the average node strength within each 

brain area, with the sum of the correlation coefficients (Z value) within corresponding brain areas 

being divided by the total node number in that brain area.  

3. Results 

3.1. Data 

The demographic data for the young adulthood and the late adulthood groups are shown in Table 

1. To assure mutual authentication and to overcome the problem of imbalanced data, we 

performed all the analyses based on the datasets shown in Table 1, in which the participants 

were grouped by the original experimenters. Besides, we technologically accommodated this 

issue with Bootstrapping in the selected part to further verify our results. 

3.2  Brain functional networks in young adulthood are more 

easily fully connected than those in late adulthood’ 

We first examined the characteristics of 7 representative interregional correlation matrices by 

calculating the Pearson correlation matrix (R) and its corresponding Fisher-transformation matrix 

(Z). (See materials and methods). As shown in Table 2, after sorting by correlation coefficient (R/Z) 

in descending order, the minimum number of edges required to assure that all the Anatomical 

Automatic Labeling (AAL) regions are fully connected in late adulthood is significantly greater 

than in young adulthood’(Z value matrix: 275 vs 123±17.3; R value matrix: 276 vs 121±16.1). In 

addition, we discovered that the corresponding minimum values of correlation coefficients in late 

adulthood are significantly lower than the minimum correlation coefficients in young adulthood 

(Z value: 0.38 vs 0.62±0.02, R value: 0.29 vs 0.53±0.01). Furthermore, we explored a 

correlation coefficient (R/Z) in young adulthood and late adulthood, by keeping the edges the 

same among the groups (Z value matrix: 275 edges; R value matrix: 276 edges). As predicted, the 

corresponding minimum correlation coefficients, when keeping the same edges among all the 

groups, in late adulthood were also markedly lower than in young adulthood (Z value: 0.33 vs 

0.44±0.01; R value: 0.29 vs 0.40±0.01). To confirm this result, we drew the correlation 

coefficient pattern (see Figure S1). Importantly, all the above criteria showed separately obvious 

distinctions between all the young adulthood groups and the late adulthood group, as opposed 

to just the average values between the young adulthood groups (As shown table 2). 

To explore these differences, we further examined the node frequency of each of the AAL regions 

of a representative network from Munchen and Leiden Part1, as shown in figure 1A. After sorting  

by node frequency in descending order, we discovered that the values of approximately 20 of the 

AAL regions in late adulthood were apparently higher than in young adulthood. As shown in 

figure 1B, these regions are primarily located in four brain areas, i.e., central regions (4/6, 

precentral gyrus.L, precentral gyrus.R, postcentral gyrus.L, postcentral gyrus.R), the frontal lobe 

(7/24, superior frontal gyrus, dorsolateral.L, superior frontal gyrus, dorsolateral.R, middle frontal.L, 

middle frontal.R, Inferior frontal gyrus, opercular part.R, supplementary motor area.L, 

supplementary motor area.R), the parietal lobe (4/10, superior parietal gyrus.L, superior parietal 

gyrus.R, IPL.L, IPL.R) and the limbic lobe (median cingulated and paracingulat.L). It is worth noting  

that the highest proportion is located in central regions and most regions in the frontal lobe and 
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that the least and lowest proportion of regions were located in the limbic lobe. 

These results suggest that the brain functional network in late adulthood is less likely to be fully 

connected than that in young adulthood’, with a higher node frequency of the 20 AAL regions 

mainly located in the central regions, the frontal lobe, the parietal lobe and the limbic lobe. 

3.3  Comparison of small-world metrics in young adulthood 

and late adulthood 

The human brain is a complicated system, showing extraordinary abilities to rapidly transmit, 

integrate and precisely process information derived from either the external environment or the 

organism’s internal environment. A small-world network, to some extent, meets this particular 

requirement with higher clustering coefficients than random networks and similar shortest 

absolute path length to  random networks, and a small-world network has high global and local 

efficiency with low cost. Over a wide range of sparsity values (6% ≤  S ≤  30%), the clustering 

coefficients and absolute path lengths of brain functional networks in each participant 

throughout all the groups were calculated. As shown in figure 2, compared with a matched 

random network, all the cortical networks (both the late adulthood group and the young 

adulthood groups) showed similarly identical absolute path lengths (λ ≈1, as a few regions in 

some individuals were not included in the network in case where 6% ≤  λ ≤ 8%, and the value of λ 

was slightly lower than 1). The cortical networks also showed larger clustering coefficients (γ > 2).  

Importantly, the γ values among all the young adulthood groups were apparently higher than for 

the late adulthood group over a wide range of sparsity values. Additionally, we investigated the 

clustering coefficient and the absolute path length among all the groups. As shown in figure 2, 

the clustering coefficient was higher for the late adulthood groups and the absolute path length 

was lower for the young adulthood groups. As in the prior studies, our findings suggest that the 

brain functional network had a further loss of small-world characteristics between young 

adulthood (~20 y) and late adulthood (~60 y).  

3.4  Late adulthood exhibits a more social-like organization 

for brain functional networks than young adulthood 

To examine assortative mixing in task-related brain activation, Eguiluz and his colleagues 

discovered a positive correlation between a node’s degree and the average degree of its direct 

neighbors. This property is not typical of biological networks but is rather distinctive of social 

networks [22]. As shown in Figure 3, with the data of the late adulthood group (Munchen) and a 

young adulthood group (Leiden Part1), we calculated each node’s degree and average degree of 

its neighbors for two brain functional networks and 200 matched random networks. Our findings 

showed that random networks did not present any correlation between node degree and 

neighbor degree (C = -0.16, R2 = 0.57); nevertheless, both of the two brain functional networks 

clearly presented a positive correlation. Importantly, the network for the late adulthood group (C 

= 0.51, R2 = 0.57) showed a more positive correlation for node degree and neighbor degree than 

the young adulthood group (C = 0.17, R2 = 0.65). As shown in the upper right of Figure 3, a few 

regions in the late adulthood group with higher degree (> 20) tended to connect with other well-

connected nodes, primarily influencing the characteristics of positive correlation compared with 
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the young adulthood group. After examining these regions with the 20 AAL regions mentioned 

above, we discovered that the overlap was very common in the central regions, the frontal lobe 

and the parietal lobe. To confirm this result, we applied the same method to the other groups 

(Figure S2).  

Furthermore, we calculated correlations (C), as mentioned above, of the late adulthood group 

(Munchen) and the other five young adulthood group with Boostrapping, in which 11 subjects 

were respectively resampled from each group and t hen the average networks were constructed 

as above. The above process was repeated 100 times and the results showed C in late adulthood 

group was significantly (p < 0.05) higher than that in each young late adult group.  

As in prior studies, our findings provided additional support for the hypothesis that brain 

functional networks exhibit the typical properties of social networks, with a highly connected 

node tending to connect to other well connected nodes, rather than the properties of biological 

networks. Furthermore, we found that the late adulthood group exhibited a more social-like 

organization of the brain functional network than the young adulthood group, partly due to a few 

AAL regions located in the central regions, the frontal lobe and the parietal lobe, where these 

regions had a higher node degree. 

3.5  Comparison of connectivity within anatomically distinct 

brain areas in the young adulthood groups and the late 

adulthood group 

To assess functional connectivity, there are three widely used methods:  seed-based, ICA 

(independent components analysis) and graph theory. Here, to analyze intrinsic connectivity 

networks (ICNs) and facilitate group comparisons, we considered the third method: graph theory.  

First, all the AAL regions were anatomically assigned to seven brain areas: central regions, the 

frontal lobe, the temporal lobe, the parietal lobe, the occipital lobe, the limbic lobe and the 

insula/sub cortical gray nuclei, as shown in Table 3. With a 15% sparsity value, we illustrated the 

brain functional network map of the representative network of the Munchen group and the 

Leiden Part1 group, with the different colors representing different brain areas and different node 

sizes representing different degrees (See F igure 4 and Table S1). As shown in Figure 4, the 

topological properties of a few regions changed significantly from young adulthood to late 

adulthood, such as the paracentral lobule.L, paracentral lobule.R, superior parietal gyrus.L, and 

superior parietal gyrus.R, etc. (L: left, R: right). Second, within each of the anatomically distinct  

brain areas in each individual throughout the late adulthood group (Munchen) and the young 

adulthood group (Leiden Part1), the average internal connections and the average node strength 

were calculated. As shown in Figure 5, the average internal connections of most anatomically 

distinct brain areas in the Leiden Part1 group were significantly higher than those in late 

adulthood, such as in the central regions, frontal lobe, temporal lobe, occipital lobe  and  

insula/Sub cortical gray nuclei (P < 0.01). Interestingly, only the parietal lobe areas (P < 0.01) 

showed the opposite case. Then, we explored the average node strength within each of the  

anatomically distinct brain areas. Surprisingly, the node strength showed neither the same 

pattern nor an opposite pattern with the connection maps mentioned above. There were no 

significant changes of the average node strength in most of the anatomically distinct brain areas, 
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such as the central regions, the frontal lobe, the parietal lobe and the insula/sub cortical gray 

nuclei, etc. there was comparable average node strength within each area (Figure S3, figure S4 

and Table S2). Only the average node strength of the occipital lobe (P < 0.01) could distinguish 

between the two age groups.  

Furthermore, we calculated average internal connections within each of the anatomically distinct  

brain areas of the late adulthood group (Munchen) and the other five young adulthood group 

with Bootstrapping, in which 11 subjects were respectively resampled from each group. The 

above process was repeated 100 times and the results were compatible with the description 

above. With the same method, it also presented consistent result for connectivity density.  

In summary, we observed that the connectivity density within most of the anatomically distinct  

brain areas in the young adulthood was significantly higher than that in the late adulthood, 

except for the parietal lobe, which conversely showed a lower level of connectivity density in 

young adulthood. Given that we estimated the connectivity density at the same sparsity (15%), 

which guarantees the same number of connections for networks in young adulthood and late 

adulthood, our findings indicated that the external interconnections travelling out of the 

anatomically distinct brain areas should increase from young adulthood to late adulthood. Our 

finding is compatible with the findings of previous studies. Additionally, our results showed that 

the average node strength in young adulthood and late adulthood were comparable for most 

anatomically distinct brain areas, except for the occipital lobe. As shown in Table 2 and Figure S1, 

the total correlation coefficient in late adulthood was significantly lower than in young adulthood.  

Therefore, the strength of interconnections traveling out of the anatomically distinct brain areas 

should become weaker from young adulthood to late adulthood.  

4. Discussion 
Resting state functional magnetic resonance imaging (R-fMRI) detecting spontaneous low-

frequency BOLD signal fluctuations in the human brain, along with graph theory, allowed for the 

examination of age-related changes of functional connectivity between young adulthood and late 

adulthood. In the current study, we applied several graph-theoretical metrics, e.g., clustering 

coefficient, average shortest path, connectivity density, correlation coefficient, etc., to 

characterize and measure brain functional organization in young adulthood and late adulthood.  

The main findings of our study were as follow: 1) considering the processes for constructing a 

functional network, brain functional networks in late adulthood are more difficult to fully connect 

than those in young adulthood, with a lower average correlation coefficient and higher degree 

regions mainly located in the central regions, the frontal lobe, the parietal lobe and the limbic 

lobe; 2) the functional networks in young adulthood and in late adulthood both showed “small-

world”-like properties, whereas loss in the small-world characteristics occurred from young 

adulthood to late adulthood; 3) compared to young adulthood, functional brain networks in late 

adulthood exhibited a more social-like organization; 4) the connectivity density within most 

anatomically distinct brain areas showed significantly difference s between young adulthood and 

late adulthood; however, for connectivity strength only two out of the seven regions showed a 

significant difference.  

Overall, our findings provided additional new insights into the aging of brain functional networks.  

In the following sections, these results are discussed further. 

Prior studies have suggested that age-related overactivations were caused by less use of neural 
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resources, for which one of persuasive explanation was the compensation hypothesis which 

claims that  the network in elderly individuals has to work harder to make up for either its own 

declining function or to process deficiencies elsewhere in the brain. More recent studies have 

shown that the human connectome follows an inverted U-shape pattern of connectivity 

throughout a  life span, with an increasingly integrated functional network occurring over the 

course of development, followed by a  plateau lasting for the majority of adulthood and an 

increasingly localized topology in late life [9,33]. In the current study, we found that some regions 

located mainly in the central regions, the frontal lobe, the parietal lobe and the limbic lobe 

showed to be more ‘active’ (i.e., higher connection number) in late adulthood and  were similar 

to the regions displaying the compensation effect mentioned above. This suggests that these 

regions had a greater influence on the dynamic changes of functional networks in late adulthood.  

Moreover, overactivation was largely observed in late adulthood, frequently in prefrontal sites 

[34], and this prefrontal overactivation was accompanied by medial temporal lobe 

underactivation [35,36], which was consistent with our findings that a mass of regions located in 

the frontal lobe were more ‘active’ and that all regions located in the occipital lobe were 

‘ inactive’ (lower connection number). We speculated that these more ‘active’ regions, mainly 

located in the central regions, the frontal lobe, the parietal lobe and the limbic lobe occupied 

more resources in late adulthood, perhaps partly due to a compensatory function, where that the 

functional network showed a loss of integrated topology and an increased localized topology.  

However, this explanation has not yet been considered directly. Because we identified ‘active’ 

regions in late adulthood and further proposed the above explanation, we expect that this 

possibility will be addressed in future studies.  

The small-world network organization was originally described by Watts and Strogatz [11] and is 

characterized by a higher local clustering and a shorter path length. This small-world topology 

was shown to allow higher rates of information processing and learning, which meets the 

requirements of functional segregation and functional integration for rapidly combining 

specialized information from distributed brain regions. Collectively, the small-world properties of 

a brain functional network are conserved throughout the life span – from early childhood to 

young adulthood and into late adulthood [9,10,12,15]. We confirmed this small-world property in 

both young adulthood and late adulthood using several data sets and further noted that the 

functional network had a slight loss in the small-world characteristics from young adulthood to 

late adulthood. These results are consistent with prior studies [20,21]. Although numerous 

studies have investigated the relationship between small-world characteristics and development, 

there was a lack of a definitive understanding of the biological interrelationship between them.  

We believe that this issue deserves to be further addressed to better understand the dynamic 

changes of functional networks during aging. 

Many complex networks consist of a number of modules that have dense intra-modular 

connectivity but with relatively sparse inter-modular connectivity. Since Girvan and Newman 

introduced the concept of modularity, graph-partitioning problems have attracted extensive 

attention. Collectively, it was clear that brain networks had a modular organization [2,37]. After 

investigating the modular structure of functional networks, David Meunier and colleagues 

demonstrated that both young and older brain networks had significant non-random modularity, 

both of which could be decomposed into three major modules: the superior central, posterior 

and dorsal fronto-striato-thalamic modules [38]. Briefly, analyzing the degree correlation of a 
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network could predict its modularity. Based on this approach, Eguiluz et al. and Luca et al. 

showed a positive correlation between a node’s degree and the average degree of its direct 

neighbors in a functional network. Using the same methods, we estimated this correlation in 

young adulthood and late adulthood. Our findings confirmed those observations and further 

showed a higher correlation in late adulthood than in young adulthood. After a basic analysis, we 

thought that those regions shown to be ‘active’ should mainly account for the change from young 

adulthood to late adulthood.  However, this analysis provided only a qualitative analysis for 

modularity in the network.  In summary, we provided a new insight into the modularity of 

functional networks between young adulthood and late adulthood. 

Shirer W.R et al. reported that the human brain could be intrinsically organized into fourteen 

distinct function networks, e.g., auditory, secondary visual cortex (V2) and language, etc. [39]. 

Numerous studies explored the functional connectivity within and between these networks, 

collectively indicating an increase in internetwork connections and a decrease in intra-network 

connections from younger to older, showing a less distinct or dedifferentiated property with 

advancing aging [27,40-42]. Specifically, a recent study showed that there was a general decrease 

in correlation strength between regions close in space and an increase in correlation strength 

between regions more distant in space from children to young adults [9]. In the current study, we 

examined the connectivity density and connectivity strength within anatomically distinct brain 

areas. Synthesizing several experimental results, we discovered that most anatomically distinct  

brain areas (6/7) could significantly distinguish between young adulthood and late adulthood 

through connectivity density and that a few anatomically distinct brain areas (2/7) could 

effectively distinguish between age group by connectivity strength. Furthermore, for connectivity 

density there was a general decrease in density throughout most of the brain areas (central 

regions, temporal lobe, occipital lobe, limbic lobe, insula/sub cortical gray nuclei) but an increase 

within the parietal lobe with advancing  aging. For connectivity strength, the temporal lobe and 

the occipital lobe showed a decrease in strength from young adulthood to late adulthood. Our 

findings were compatible with prior reports that functional brain networks in the elderly become 

less distinct. Here, our results further showed that the temporal lobe, involved in 

auditory/language functions, presented an opposite change (for connectivity density and 

connectivity strength), that the occipital lobe, involved in visual processing, presented a similar 

change and that others presented other patterns. Although, a more recent study explored age-

related changes in functional connectivity and showed that connectivity decreased w ith age 

within the default mode, the cingulo-opercular and fronto-parietal control networks, connectivity 

was conserved within the somatomotor and visual networks. We believed that this functional 

connectivity analysis, using our measures and anatomically distinct brain areas, will be 

meaningful for understanding the dynamic changes of the functional networks. We expect a 

future research to further elucidate our findings.   

Conclusion 
In the current study, we confirmed that human brain functional networks, studied by R-fMRI, 

presented a further loss of small-world characteristics from young adulthood to late adulthood.  

Moreover, our findings suggest that brain functional networks in young adulthood are more 

easily fully connected than those in late adulthood, possibly due to several regions in late 

adulthood occupying more resources, such as the frontal lobe, central regions, the parietal lobe 
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and the  limbic lobe. Additionally, our results implied that late adulthood exhibited a more social-

like organization for brain functional networks than that in young adulthood. Finally, we showed 

that the connectivity density of most of the anatomically distinct brain areas presented a general 

decrease in density and that the connectivity strength of the temporal lobe and the occipital lobe 

presented a decrease in strength from young adulthood to late adulthood. However, considering 

these two measures, there are some different patterns of variability. Together with other 

observations, we believed that our findings would be useful for further understanding the brain 

aging process.  
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Figure Legends 
Figure 1. The degree distribution of the exactly right fully connected functional network.  

 

The degree distributions of the mean functional network were mapped, during which all of the 

regions in the late adulthood group were rightly included and the young adulthood networks had 

the same edges. A – The region was sorted by its degree in descending order. The black line 

represents the degree distribution of the late adulthood group and the grey lines represent the 

degree distribution in the young adulthood groups. B – The region was ordered by the rules in 

table S3. As above, the lines represent the corresponding groups. The regions possessing the 

highest degree, approximately 20 regions, showed a higher degree in the late adulthood group 
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than in the young adulthood groups. These regions were mainly located in the central regions, 

the frontal lobe, the parietal lobe and the limbic lobe. 

Figure 2. Small-world properties of the brain functional network.  

 
In this figure, the mean absolute path lengths (Lambda λ = δreal/δrand) and mean clustering 

coefficients (Gamma γ = Cpreal/Cprand) were calculated from each matrix over a wide range of 

sparsity values (6% ≤  S ≤ 30%). For details see Materials and Methods.  A – All the networks 

showed γ > 1 (the light grey line and dark grey lines) and λ ≈ 1 (the black line), which indicated 

small-world properties. B - The black line represents the mean clustering coefficient in late 

adulthood and the grey lines represent the mean clustering coefficient in young adulthood. C –  

The black line represents the mean absolute path length in late adulthood and the grey lines 

represent the mean absolute path length in young adulthood. The young adulthood data have a 

higher γ value over a wide range of sparsity values. The mean absolute path length was shorter in 

young adulthood and the mean clustering coefficient was lower in young adulthood.  

Figure 3. Comparison of the correlation between the degree of each region and its direct 

neighbors.  
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In this figure, the correlation between the degree of each region and its direct neighbors was 

estimated based on the mean network, with a sparsity value (15%) from the mean correlation 

matrix of young adulthood and late adulthood. Averaging over 200 random networks (in green) 

did not show any correlation. Conversely, the brain functional network in young adulthood (in red) 

and late adulthood (in blue) both showed a significant positive correlation between degree and 

neighbor degree. Moreover, this correlation is present more strongly in late adulthood, perhaps 

intuitively due to the regions in the upper right of the figure.  

Figure 4. Graphical visualization of the brain functional networks in young adulthood and late 

adulthood.  
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The graph was drawn based on the mean functional network of young adulthood and late 

adulthood. Each node represents an AAL region. The size of the nodes indicates their degrees. 

The color of the nodes indicates an anatomical location: central regions (dark blue), frontal lobe 

(blue), temporal lobe (light blue), parietal lobe (green), occipital lobe (yellow), limbic lobe (blood 
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red), insula/sub cortical gray nuclei (crimson). (See details in table S1).  

Figure 5. The comparison of functional connectivity within anatomically distinct brain areas .  

 

The connectivity density and connectivity strength within anatomically distinct brain areas were 

separately calculated through each participant.  A – The connectivity density within anatomically 

distinct brain areas was calculated in young adulthood (in black box) and late adulthood (in grey 

box) (y-axis, connectivity density;  x-axis, seven anatomically distinct brain areas).  B – The 

connectivity strength within anatomically distinct brain areas was separately calculated. As above,  

the boxes represent corresponding groups (y-axis, connectivity strength; x-axis, seven 

anatomically distinct brain areas). Most anatomically distinct brain areas showed a general 

decrease of connectivity density but no obvious change of connectivity strength. (For details see 

Results). I: Central region; II: Frontal lobe; III: Temporal lobe; IV: Parietal lobe; V: Occipital lobe; VI: 

Limbic lobe; VII: Insula/Sub cortical gray nuclei.  

Tables 
Table 1. Demographic data for the participants 

Group Age Gender 
Munchen (n = 11) 66.64 (rang: 63 to 73, SD: 3.20) 7 males, 4 females 
Leiden Part1 (n = 12) 23.00 (rang: 20 to 27, SD: 2.38) 12 males, 0 females 
Leiden Part2 (n = 19) 21.68 (rang: 18 to 28, SD: 2.49) 11 males, 8 females 
Zang Part1 (n = 40) 21.40 (rang: 18 to 26, SD: 2.10) 17 males, 23 females 
Zang Part2 (n = 41) 21.17 (rang: 18 to 26, SD: 1.61) 15 males, 26 females 

Zang Part3 (n = 40) 20.98 (rang: 18 to 25, SD: 1.84) 17 males, 23 females 
Zang Part5 (n = 43) 21.21 (rang: 18 to 26, SD: 1.80) 15 males, 28 females 
 

 

Table 2. The minimum edges to assure all the AAL regions could be fully connected 

Group Minimum edges (Z, R) Minimum Z/R value 275th/276th Z/R value 
Munchen 275, 276 0.38, 0.29 0.33, 0.29 
Leiden Part1 102, 107 0.65, 0.54 0.44, 0.39 
Leiden Part2 144, 144 0.58, 0.51 0.43, 0.39 
Zang Part1 102, 102 0.64, 0.55 0.44, 0.39 
Zang Part2 116, 113 0.62, 0.53 0.45, 0.40 
Zang Part3 133, 120 0.61, 0.53 0.45, 0.40 
Zang Part4 141, 141 0.60, 0.52 0.45, 0.41 

Page 18 of 19Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



The connection number and its correlation strength (Z/R) to assure a fully-connected network 
were estimated. 
 

 

Table 3. All the AAL regions were anatomically assigned to seven distinct brain areas 

Distinct Areas AAL regions/Nodes 
Central regions (I) PreCG.L, PreCG.R, ROL.L, ROL.R, PoCG.L, PoCG.R 
Frontal lobe (II) SFGdor.L, SFGdor.R, ORBsup.L, ORBsup.R, MFG.L, MFG.R, 

ORBmid.L, ORBmid.R, IFGoperc.L, IFGoperc.R, IFGtriang.L, 
IFGtriang.R, ORBinf.L, ORBinf.R, SMA.L, SMA.R, OLF.L, OLF.R, 
SFGmed.L, SFGmed.R, ORBsupmed.L, ORBsupmed.R, REC.L, 
REC.R 

Temporal lobe (III) HES.L, HES.R, STG.L, STG.R, MTG.L, MTG.R, ITG.L, ITG.R 
Parietal lobe (IV) SPG.L, SPG.R, IPL.L, IPL.R, SMG.L, SMG.R, ANG.L, ANG.R, 

PCUN.L, PCUN.R 
Occipital lobe (V) CAL.L, CAL.R, CUN.L, CUN.R, LING.L, LING.R, SOG.L, SOG.R, 

MOG.L, MOG.R, IOG.L, IOG.R, FFG.L, FFG.R 
Limbic lobe (VI) ACG.L, ACG.R, DCG.L, DCG.R, PCG.L, PCG.R, HIP.L, HIP.R, PHG.L 

PHG.R, TPOsup.L, TPOsup.R, TPOmid.L, TPOmid.R 
Insula/Sub cortical gray neclei 
(VII) 

INS.L, INS.R, AMYG.L, AMYG.R, CAU.L, CAU.R, PUT.L, PUT.R, 
PAL.L, PAL.R, THA.L, THA.R 
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