
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Analytical
 Methods

www.rsc.org/methods

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Analytical 
Methods RSCPublishing 

ARTICLE 

 

This journal is © The Royal Society of Chemistry 2015 Anal. Methods, 2015, 00, 1-3 | 1  

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2015, 
Accepted 00th January 2015 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Variable Selection Based on Information Tree for 

Spectroscopy Quantitative Analysis 

Hui Caoa,b , Xingyu Yana,b, Shuzhi Sam Geb, Hongliang Renb 

Spectroscopy is a fast and efficient component analysis method, and full spectrum prediction model may be redundant and inaccurate. 

This paper proposes a variable selection method based on information tree for spectroscopy quantitative analysis. Firstly, a feature 

training set that indicates the information of the selected variables is generated. Then, the partial least squares (PLS) is performed on 

the spectral calibration set, and root-mean-square error of cross-validation is used to evaluate the feature training set. According to 

the corresponding evaluation results, the information gain of each wavelength is calculated. The wavelength with maximum 

information gain is defined as the root node, and an information tree is built based on the information gain where each leaf node 

represents a wavelength. The final selection result is a conjunction path of the leaf nodes that has bigger information gain. The full 

spectrum PLS, the uninformative variable elimination with PLS method, the genetic algorithm with PLS method and the proposed 

method are conducted on the real spectral dataset of flue gas, and the effectiveness of the methods are compared and discussed. The 

experimental results verify that the prediction precision and the compression ability of the proposed method is higher. 

1 Introduction 

Spectroscopy studies the spectrum data to tell the related 
information precisely and swiftly and is used in a wide range of 
applications, such as colorimetric thermometer1 and 
quantitative analysis, et al.2-6 One pivotal task of spectral 
quantitative analysis is to build up a model that takes the 
spectral data on different wavelengths as inputs and 
consequently predict the amount of chemical species according 
to regression results.7,8 The most commonly used regression 
modelling method for spectroscopy is partial least squares 
(PLS) as it can solve the multicollinearity problem between the 
variables to a certain extent.9 Nevertheless, the PLS model with 
all wavelength data included is not able to filter the useless 
information that complicates the program and lowers the 
precision.10 

In order to deal with the useless information and meanwhile 
simplify the quantitative calibration model, several methods 
have been proposed for the purpose to study the characteristic 
wavelengths instead of using the full spectrum.11-13 The 
Correlation coefficient method was used on spectral data to 
search for the relevant similarity from data with noise14 and the 
sulphur emissions with spectral data was detected by combining 
correlation coefficients.15 Competitive adaptive reweighted 
sampling method for the key wavelength selection was 
proposed for wavelength selection.16 A randomization test 

method for wavelength selection was proposed.17 An method 
which can select the variable by an index of stability that is 
defined as the absolute value of regression coefficient divided 
by its standard deviation was used for variable selection.18 
Latent projective graph method was proposed to find the 
informative variables.19 An influential variables method was 
proposed for multivariate calibration.20 Uninformative variable 
elimination with PLS (UVE-PLS) method21 has long been used 
and studied by researchers. UVE-PLS was adopted and 
estimated on near-infrared spectral quantitative analysis, and a 
successive projection algorithm of UVE-PLS was presented to 
find the effective variables in the pesticide spectral data.22 
Moreover, as wavelength selection could be considered as a 
combinatorial issue, genetic algorithm, which mimics the 
natural selection and genetic mechanism, together with PLS 
(GA-PLS), is widely used for spectral quantitative analysis.23 
the method was used for wavelength selection of visible and 
near-infrared spectral calibration to construct robust and 
predictive regression models24 and a more advanced parallel 
GA-PLS was presented for wavelength selection.25 All these 
methods show their ability of searching and approaching the 
optimal solution in a certain period of time (or a certain number 
of iterations). However, these algorithms may easily lead the 
solutions to a local optimum and a big number of iterations are 
time consuming. Meanwhile the convergence rate and optimal 
solutions will vary from time to time according to the 
randomness of these algorithms. Decision tree method is a kind 
of inductive learning algorithm that is able to reason out a tree-
like classification rule from unordered data-sets without 
randomness. Tree uses the descending speed of information 
entropy as an index to select the attributes as former nodes.26 
However, the decision tree method cannot be directly applied to 
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wavelength selection because too many attributes will bring 
immense calculation amounts. 

In this paper, a variable selection method based on 
information tree (IT) for the spectral quantitative analysis is 
proposed. This method firstly generates a feature training set 
that contains the information of the filtered variables. PLS 
calculation is applied on the original data set with respect to the 
feature training set to evaluate the performance of the feature 
training set. Then the entropy index of tree is calculated and the 
information tree and the wavelengths are selected. The 
experiments on real flue gas was conducted and the results will 
be compared in terms of the effectiveness and precision of the 
other three methods: PLS, UVE-PLS method and GA-PLS 
method.  

The structure of the rest of this paper is as follows. In section 
2, the relevant methods are illustrated in detail. Section 3 
discusses the experimental results of a real spectral data of flue 
gas. Section 4 concludes the paper. 
 

2 Relevant Methods 
2.1 Partial Least Squares (PLS) 

In spectroscopy analysis, PLS decomposes the principal 
factors of the independent variable matrix X and the dependent 
variable matrix Y, respectively. Then r principal factors are 
obtained, dividing the contributing components and errors.27 

 
1

r
T T

i i

i=

= = +∑Y Y
Y UQ + E uq E  （1） 

 
1

r
T T

i i

i=

= + = +∑X X
X TP E t p E    （2） 

where U and Q are the score matrix and loading matrix of the 
density matrix, respectively. T and P are the score matrix and 
loading matrix of the independent variable matrix, respectively. 
EX and EY are the error matrices of the independent variable 
matrix and the dependent variable matrix, respectively.  

Then build the linear relation between T and U: 
 =U TB  （3） 
where B is the regression coefficient of the latent model and the 
solution of  B can be obtained by least squares: 
 T 1 T( )−=B T T T U  （4） 

While using PLS for prediction, we firstly calculate the score 
matrix of the new independent matrix Tnew. Then with the 
model below, predictions are realized.   

 new new=Y T BQ  （5） 

 

2.2 Uninformative Variable Elimination method (UVE) 
UVE method is based on the theory of regarding the regression 
coefficient as the index to weigh the importance of the variable. 
The specific steps are as follows. 28 

Step 1: Make a noise matrix R (n × p) and combine the 
spectral input matrix of the calibration set X (n × p) and R to get 
a matrix X’: 

(n 2p)' [  ]X X R× =  

Step 2: For X and Y, conduct interaction verification each 
time PLS eliminates a sample. The n PLS regression 
coefficients form the matrix B (n ×2p); 

Step 3: Calculate the standard deviation s (1 × 2p) and the 
mean vector Mean (1 × 2p) out of the column of B (n × 2p). 
Then find: hi=Meani/si, i=1,2, …, 2p; 

Step 4: In the interval [m + 1, 2m], find the Maximal 
absolute value of h: hmax = max [abs (h)]; 

Step 5: In the interval [1, m], eliminate the variables that 
corresponding h < hmax in the matrix X. Get the new matrix 
XUVE. 

Swiftly and practically, UVE method combines the noise and 
density together while selecting the wavelengths. So UVE is 
very commonly used for wavelength selection. 

 
 

2.3 Genetic Algorithm-PLS (GA-PLS) 
GA method is a process of imitating the natural selection and 

genetic mechanism in biosphere. As variable selection is a 
combinatorial issue, GAPLS is the very frequently used for 
spectral data set. 29 In GA method, a population of 
chromosomes are randomly generated. Each chromosome is 
coded by a binary string, which indicates that the wavelength is 
selected or dropped, respectively. The length of a chromosome 
equals the number of the all wavelengths. Then PLS, as an 
evaluation method, will calculate the fitness of the initial 
chromosome. Then GA-PLS creates a new population by 
selecting, protecting, exchanging and making variations or 
mutations on the different fragments of the chromosome. Thus 
an evolving mechanism is established and is repeated until a 
termination condition which is the number of evolution cycles 
or a pre-defined fitness value. Finally, the chromosome with the 
lowest fitness is the variable selection result. 

 
 
2.4 Information Tree-PLS (IT-PLS) 

IT-PLS uses a random feature training matrix to evaluate the 
importance of each wavelength. In this method, we firstly 
generate a random feature training matrix M(c × p), where c is 
the size of M and p is the number of wavelengths. The number 
of c will be discussed in the practical experiment. The value of 
each element of M is “0” or “1”, which represents the 
wavelength been discarded or selected, respectively. The ratio 
of 0 and 1 is random. Each row of M is a plan of wavelength 
selection, and the number of the wavelength selection plans is c. 
Then we use the variables selected according to each row of M 
to calculate the prediction values by PLS and find the root-
mean-square of cross-validation (RMSECV) value of each row. 
Find the median value of the RMSECV values to determine if a 
row of M can meet the requirement. For each row of M, if 
RMSECV (i) < med, mark this row with “good”. If else, mark 
this row with “bad”. Add this column to the training matrix and 
get M’(c × p + 1). This generating process can be described 
more precisely as follows: 

Step 1: Generate a random feature training matrix M; 
Step 2: Use the variables according to the input M to 

calculate the prediction values by PLS; 
Step 3: Calculate the RMSECV of the each row of M and 

find the median of the RMSECV values; 
Step 4: Obtain a new matrix M’(c×p+1) according to the 

contrast with the median values in Step 3; 
As M’ is built up, the information gain of the each variable 

can be calculated with the set: 

2 2( , ) log log
j j k k

I j k
j k j k j k j k

= − −
+ + + +

 

where j is the number of “good” s in the last column of M’ and 
k is the number of “bad” s in the last column of M’. I (j, k) is 
the expected information needed to generate the message.  
    Then calculate the information entropy of the variable a, 
E(a), which is: 
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j kj k
E a I j k I j k

j k j k

++
= +

+ +
 

where j1 and k1 are the number of the “good” s and number of 
“bad” s, respectively in a subset of Fa1 which assembles all the 
rows whose number in the ath column is 1. Similarly, j0 and k0 
are the number of 1s and the number of 0s, respectively in a 
subset of Fa0, which assembles all the rows whose number in 
the ath column is 0. 

Then, find the information gain of the variable a, gain (a), 
which is:  

( )  ( , ) -  ( )gain a I j k E a=  
 

In the same way, the information gain of each variable could 
be evaluated. Then build the information tree by using the 
variable that has a biggest information gain as the root node, 
and the rest variables are represented by the leaf nodes.30 After 
successively connect the root node and the leaf nodes based on 
the wavelength selection plans. Finally, find the path with the 
biggest information gain in this information tree that can lead to 
best results, namely, the variable selection is completed. The 
flowchart of IT-PLS can be described in Fig. 1, in which the 
importance of each wavelength is evaluated in the process. 

 
[Fig. 1 is about here] 

 
Fig. 1 Flow chat of IT-PLS 
 
 

3 Experimental results 
Real flue gas samples were used in the experiments. These 

samples consist of 98 mixtures of different densities of sulphur 
dioxide (SO2), nitrogen monoxide (NO) and nitrogen dioxide 
(NO2). The density ranges of SO2, NO and NO2 in the gas 
mixtures were 0-1500ppm, 0-3000ppm and 0-500ppm, 
respectively. A spectrometer (USB2000t fibre optic 
spectrometer, Ocean Optics) was used to measure the 
absorbance value of the gas mixtures on each wavelength. The 
wavelength range was from 187.87nm to 1026.97nm with an 
interval of 0.35 nm and it includes 2048 wavelengths. The size 
of spectral matrix was 98 × 2048. A spectrum of the gas 
mixture is shown in Fig. 2. The first several wavelengths before 
200nm consist of some noise information. In order to verify the 
robustness, they are not deleted and used in the experiments.  

 
[Fig. 2 is about here] 

 
Fig. 2: An initial spectrum of the flue gas 
 

With respect to the shutter grouping strategy, the data set was 
divided into calibration set and validation set.23 One sample in 
five was placed into validation set and the rest into calibration 
set. So there are 80 samples in the calibration set for training 
and 18 samples in the validation set.31 The calibration set and 
the validation set were for building the prediction models and 
estimating the effectiveness, respectively. PLS, UVE-PLS, GA-
PLS and IT-PLS method were applied on the calibration set and 
the performances were tested on the validation set. Since these 
methods are based on PLS, the number of latent variables is 
determined by the minimum of the root mean-squared error of 
leave-one-out cross validation (RMSECV). For GA-PLS, the 
crossover rate and the mutation rate were set to be 60% and 
10%, respectively. 32 Moreover, as indicators of analytical 
methods, the root-mean-square error of prediction (RMSEP), 
squared correlation coefficient of calibration (��

� ), squared 

correlation coefficient of prediction ( ��
� ), and squared 

correlation coefficient of cross validation (���
� ) were used to 

compare the predictive ability of the four methods.  
The parameter c, which is the number of rows of M, will 

affect the results to a certain extent. In the experiments, a range 
of c from 10 to 34 is tested. Fig. 3 shows how RMSECV values 
vary with different c values. RMSECV of the SO2 with a c 
number of 29 is the best. Similarly, we chose 24 as the value of 
c for NO2 and NO. The results the experiments are recorded in 
Table1, Table2 and Table3. The indicators include RMSEP, ��

� 
, RMSECV, ���

�  and compression ratio (CR).  
 

[Fig. 3 is about here] 
 

Fig. 3: Relations of c and RMSECV: (a) SO2, (b) NO2 and (c) NO. 
 

Table 1 shows a comparison of predictive ability of the four 
methods for SO2. The most accurate prediction was realized via 
IT-PLS method with a RMSEP value of 53.1888 and the most 
inaccurate prediction was produced by UVE-PLS. Furthermore, 
a considerable CR was also obtained with IT-PLS method. 
Therefore, the effectiveness of the IT-PLS method was the 
highest. The prediction value and measured value scatters of the 
four methods are shown in Fig. 4. For the values below 750, the 
scatters in PLS and UVE-PLS are distributed not as close to the 
diagonal line as GA-PLS and IT-PLS. For the values above 750, 
IT-PLS has the best performance as the scatters are closest to 
the line on both sides. PLS is relatively better than UVE-PLS 
and GA-PLS but not as good as IT-PLS. The prediction ability 
of IT-PLS is the best for SO2. 
 

Table 1: Experiment results for SO2 

Methods RMSEP 
2
pR  RMSECV 

2
cvR  CR 

Partial Least Squares 65.6796 0.9791 105.1932 0.9771 0 
Uninformative Variable 

Elimination with Partial 

Least Squares 

73.8438 0.9745 83.8151 0.9728 0.9302 

Genetic Algorithm with 

Partial Least Squares 
61.9160 0.9876 54.1680 0.9889 0.5000 

Information Tree with 
Partial Least Squares 

53.1888 0.9835 54.0141 0.9602 0.8779 

 
 

[Fig. 4 is about here] 
 

Fig. 4: Predicted value vs. measured value scatter diagram of different 
methods for SO2. (a) PLS. (b) UVE-PLS. (c) GA-PLS. (d) IT-PLS. 
 

Table 2 shows a comparison of predictive ability of the four 
methods for NO2. The most accurate prediction was done via 
IT-PLS method with a relatively lower RMSEP value of 
151.0093 and the most inaccurate prediction was produced by 
PLS, which is 400.5299. Furthermore, ��

�  of IT-PLS was the 
highest and the CR is 0.8779. Therefore, the effectiveness of 
the IT-PLS method was also the highest in the NO2 case. The 
prediction value and measured value scatters of the four 
methods are shown in Fig. 5. The PLS can not hold the points 
close to the diagonal line as the points are distributed on a large 
area on the diagram. UVE-PLS and GA-PLS have better 
performances but some of the points break away from the 
diagonal line. The prediction result of IT-PLS is the best as no 
point is far from the diagonal line. 
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Table 2: Experiment results for NO2 

Methods RMSEP 
2
pR  RMSECV 

2
cvR  CR 

Partial Least Squares 400.5299 0.1985 454.2047 0.4865 0 
Uninformative Variable 

Elimination with Partial 

Least Squares 

263.0552 0.6872 233.1586 0.8481 0.9902 

Genetic Algorithm with 

Partial Least Squares 
259.7527 0.6350 247.7038 0.8294 0.4902 

Information Tree with 
Partial Least Squares 

141.1331 0.8933 183.6444 0.8513 0.8779 

 
 

[Fig. 5 about here] 
 

Fig. 5: Predicted value vs. measured value scatter diagram of different 
methods for NO2. (a) PLS. (b) UVE-PLS. (c) GA-PLS. (d) IT-PLS. 
 

Table 3 presents a comparison of predictive ability of the 
methods for NO. The most accurate prediction was also achieve 
via IT-PLS method with a lowest RMSEP value of 19.3806 and 
the most inaccurate prediction was produced by GA-PLS, 
which is 34.8568. ��

�  of IT-PLS was the highest and a 
considerable CR of 0.9268 is obtained. Therefore, the 
effectiveness of the IT-PLS method was also the highest in the 
NO case. The prediction value and measured value scatters of 
the four methods are shown in Fig. 6. The points of PLS and 
GA-PLS break away from the diagonal line. While the points of 
UVE-PLS and IT-PLS stay close with the line. For values 
below 150, UVE-PLS has a good performance as some points 
are directly on the line, and IT-PLS has a more robust 
prediction as the points are distributed equally on both sides of 
the diagonal line. For values above 150, IT-PLS has the best 
prediction ability as the distance from the point to the line 
won’t fluctuate as much as the other methods. 
 
Table 3: Experiment results for NO 

Methods RMSEP 
2
pR  RMSECV 

2
cvR  CR 

Partial Least Squares 31.9052 0.7096 44.4247 0.5239 0 
Uninformative Variable 

Elimination with Partial 

Least Squares 
21.3421 0.8784 23.4832 0.8637 0.8638 

Genetic Algorithm with 

Partial Least Squares 
34.8568 0.6829 22.7365 0.8630 0.4927 

Information Tree with 
Partial Least Squares 

19.3806 0.9055 21.4831 0.8299 0.9268 

 
 

[Fig. 6 is about here] 
 

Fig. 6: Predicted value vs. measured value scatter diagram of different 
methods for NO. (a) PLS. (b) UVE-PLS. (c) GA-PLS. (d) IT-PLS. 
 

The variables selected by UVE-PLS, GA-PLS and IT-PLS for 
SO2, NO2 and NO are shown in Fig. 7. The number of variables 
selected by GA-PLS is so large that the prediction model is more 
complex and the effectiveness is affected. Although the number of 
variables selected by UVE-PLS is the smallest, some informative 
variables may be eliminated and the predication capability could be 
limited. The variable selection result of IT-PLS is reasonable and IT-
PLS has a more accurate prediction. 
 

[Fig. 7 is about here] 

Fig. 6: Variable selection results for three components of the flue gas.  
(a) SO2. (b) NO2. (c) NO. 

 
 

4 Conclusions 
A wavelength selection method based on information tree is 
proposed and is combined with PLS for predicting the various 
components of real spectral datasets. The proposed method was 
has some of advantages over the conventional variable selection 
methods as follows. First, the IT-PLS method can be more 
advanced as it utilized the information entropy with the tree 
concept to select the wavelengths. Second, for the various 
components of flue gas dataset, the prediction model based on 
the wavelengths selected by IT-PLS has a higher prediction 
precision. Third, the robustness of the ITPLS method is better 
as the prediction results of IT-PLS has a steady result and 
compress the variable number greatly. The experiments results 
verify that the proposed method has higher predicative ability. 
The RMSEP of the IT-PLS method for sulphur dioxide was 
19.02%, 27.97% and 14.10% lower than that of PLS, UVE-PLS 
and GA-PLS, respectively. The RMSEP of the IT-PLS method 
for nitric dioxide was 64.76%, 46.35% and 45.67% lower than 
that of PLS, UVE-PLS and GA-PLS, respectively. And the 
RMSEP of the IT-PLS method for nitric monoxide was 
39.26%, 9.19% and 44.4% lower than the PLS, UVE-PLS and 
GA-PLS results, respectively. Therefore, IT-PLS is an efficient 
variable selection method and can help to achieve more 
accurate predictions and can be implemented to different types 
of spectra. 
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Fig. 1 Flow chat of IT-PLS 

 

 

 

Fig. 2: An initial spectrum of the flue gas 
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Fig. 3: Relations of c and RMSECV. (a) SO2. (b) NO2. (c) NO. 

 

 

Fig. 4: Predicted value vs. measured value scatter diagram of different methods for SO2. (a) PLS. (b) UVE-PLS. (c) GA-PLS. (d) 
IT-PLS. 
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Fig. 5: Predicted value vs. measured value scatter diagram of different methods for NO2. (a) PLS. (b) UVE-PLS. (c) GA-PLS. (d) 
IT-PLS. 

 

 

 

Fig. 6: Predicted value vs. measured value scatter diagram of different methods for NO. (a) PLS. (b) UVE-PLS. (c) GA-PLS. (d) 
IT-PLS. 
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Fig. 7: Variable selection results for three components of the flue gas.  (a) SO2. (b) NO2. (c) NO. 
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