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Abstract 

Most of the fluorescence based detection of explosives involves the detection of nitro-aromatic 

compounds, such as trinitrotoluene (TNT) and dinitrotoluene (DNT). Here, we report a Förster resonance 

energy transfer (FRET)-based nanosensor system for the highly selective detection of powerful 

explosives, such as PETN (pentaerythritol tetranitrate) and RDX (cyclotrimethylenetrinitramine). The 

nanosensor system was composed of cadmium sulfide quantum dots (CdS QDs) and diphenylamine 

(DPA). Initially, the inherent fluorescence of DPA was quenched by resonance energy transfer to the CdS 

QDs. During detection, due to the strong interaction of DPA with nitroester or nitramine, the FRET was 

turned-off and was accompanied by the recovery of the donor’s (DPA) fluorescence. This provides an 

opportunity to follow the detection in a two-way manner, either the decrease in the FRET intensity at 

~585 nm or the evolution of fluorescence at ~355 nm.  The detection limits for PETN and RDX were 

found to be 10 nM and 20 nM, respectively. The fluorescence lifetime measurements confirmed that the 

energy transfer process is effective in the CdS QD-DPA sensor system. The details of the molecular 

interactions, between QD-DPA and DPA-analyte, were established using infrared spectroscopy. The easy 

one pot synthesis method of CdS QDs, use of readily available chemicals, excellent selectivity and very 

good sensitivity make the present sensor system attractive.   

†Electronic Supporting Information (ESI) available: Additional figures and calculations are available 

as stated in the text. 

 

Introduction 

Accurate and reliable detection of explosives is very important as the world faces continuous 

threats from terrorism. High explosives such as PETN (pentaerythritol tetranitrate) and RDX 

(cyclotrimethylenetrinitramine) are the commonly used plastic explosives. Methods for selective 

detection of trace amounts of these explosives are in demand for security and safety. Analytical methods 

that have been used for the detection of nitro-aromatic explosives include mass spectrometry (MS),1 ion 

mobility spectrometry (IMS),2, 3 surface enhanced Raman scattering (SERS),4, 5 colorimetric analysis,6-8 

and electrochemical9 sensing tools. Mass spectrometry (MS) based on various desorption/ionization 

methods has been reported for the detection of trace amounts of explosives on a variety of surfaces.10, 11 

While having good sensitivity and selectivity, the cost and need of expertise are the main disadvantages 

of the MS methods. IMS-based detection is used in airport security and field detection of chemical 

weapons.12 IMS mostly relies on vapor detection of the analytes and shows poor selectivity. SERS shows 

good detection limits, but reproducibility is highly dependent on the substrates.13 Colorimetric methods 
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offer convenient visual detection but require specially synthesized receptor molecules. Poor sensitivity is 

another disadvantage of this method.7 Sensitivity and pre-concentration steps are the main limitations of 

some of the reported electrochemical methods.5 As discussed, many of the aforementioned methods suffer 

regarding cost, lack of reproducibility and poor selectivity.   

Because of their high sensitivity, operational simplicity and potential for portability, fluorescence 

techniques for the detection of trace chemicals are attractive.14, 15 However, explosive compounds are not 

inherently fluorescent and need to overcome this drawback by the reaction of these compounds or their 

fragments to form fluorescent products.16-19 Alternatively, by indirect methods, fluorescence of the probe 

system can be quenched by the explosives. Recently, it was reported that fluorescent quenching of a 

cross-linked phenylene vinylene polymer network was highly selective towards RDX vapors.20 This 

sensing strategy can be used for the detection of RDX from solution or vapor phase.  

Apart from traditional fluorescence methods, Förster (or fluorescence) resonance energy transfer 

(FRET) is a highly sensitive method.21 FRET-based probes have exhibited excellent sensitivity, even to 

single molecule detection.22, 23 Conventionally, the FRET-based chemosensors have been designed in the 

form of analyte-fluorophore pairs connected with a covalent linkage. These sensors are difficult to 

prepare and suffer from photo bleaching and the interference of environmental factors. To overcome these 

drawbacks, in recent years, traditional fluorescent dyes have been replaced with nanoparticles and 

quantum dots (QDs). The advantages of QDs include size tunable emission spectra covering from the UV 

to NIR regions, sharp emission signals, large stokes shifts, resistance to photo and chemical degradation 

and broad absorption windows.24 For example, a FRET-based trinitrotoluene (TNT) sensor composed of 

CdTe/CdS core/shell QDs as the donor and a gold nanorod as the quencher showed very good 

selectivity.25 Another work emphasized the use of a CdSe-ZnS core-shell QDs-antibody fragment in 

framing FRET-based TNT sensors.26 Most of the FRET detection of explosives designed so far involves 

the detection of nitro-aromatic compounds, such as TNT and DNT. However, FRET-based fluorescent 

nanosensors for the detection of PETN are seldom found in the literature. This may be due to the inability 

of these explosives to quench the fluorescence emission through π- π interactions. 

Herein, we report a novel FRET-based nanosensor system for the selective detection of PETN and 

RDX. The sensor is composed of diphenylamine (DPA) as the donor and cadmium sulfide quantum dots 

(CdS QDs) as the acceptor. In the QD-DPA system, the inherent fluorescence of DPA was quenched by 

resonance energy transfer to the CdS QDs. With the introduction of the explosive molecule (PETN or 

RDX), the interaction of DPA and the CdS QDs was broken, thereby forming a DPA-PETN complex. 

Hence the DPA fluorescence was restored. Plenty of reports are available in which semiconductor QDs 

act as the donor system and an organic dye acts as an acceptor. However, only a few publications have 
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shown that CdS QDs can act as an acceptor in FRET.27-29 The present study demonstrated that CdS QDs 

can act as an effective acceptor in resonance energy transfer, which has been confirmed by steady state 

and time-resolved fluorescence measurements. The detection can be performed either by observing the 

turn-on of DPA fluorescence or by following the turn-off of resonance energy transfer. This provides an 

opportunity to follow the detection in two ways so the chance of false detection is greatly reduced. The 

probe offers high sensitivity towards PETN and RDX. The detection limit of PETN and RDX was found 

to be 10 nM and 20 nM, respectively. For the in situ analysis, an easy sampling method using a Teflon 

cloth was performed. Compared to TNT detection, literature available on highly effective detection of 

PETN is very few in number. To the best of our knowledge, this is the first report showing a FRET-based 

CdS QD sensor for PETN and RDX detection with a very high selectivity and a remarkable sensitivity.  

Experimental  

Details of materials and methods are given in the ESI† S1. 3-Mercaptopropanoic acid (MPA) 

capped CdS QDs were prepared according to the previously described procedure.30 Briefly, 0.175 mM 

CdCl2.H2O was mixed with 0.289 mM thiourea in 14 mL of deionized water. A 0.395 mM, 20 mL 

aqueous solution of MPA was added to the above mixture, and the pH of the resulting solution was 

adjusted to 10 using a 1 M NaOH solution. An aliquot of the resulting solution, 10 mL, was transferred to 

a 20 mL Teflon lined stainless steel autoclave, and it was maintained at 100 °C for 2 h before being 

cooled to room temperature. The absorption spectrum of the prepared CdS QDs shows a peak at 410 nm, 

which corresponds to ∼4 nm size QDs31 (see Fig. 1). Dynamic light scattering (DLS) studies and 

transmission electron microscopy (TEM) images support that size distribution of the QD are in the 4−5 

nm range (see Fig. S2 in the ESI†). The prepared CdS QD solution was centrifuged, the residue was re-

dispersed in deionized water and the pH of the solution was adjusted to 10. This solution was used for all 

further studies.  

Results and discussion 

The choice of DPA for the present sensor system was made carefully because of the following 

reasons. (i) DPA is highly selective towards nitroesters and nitramines.32 (ii) The amine group of DPA 

can bind sufficiently strongly with the carboxylate group of the MPA ligand of the QD, leading to a 

strong donor –acceptor interaction. (iii) It has a sufficiently high fluorescence emission in the region of 

330 – 430 nm (see Fig. S3 in the ESI†). The absorption wavelength of acceptor (CdS QD) is in the range 

of 350 – 440 nm (Fig. 1). The calculated JDA value indicated a good spectral overlap between the donor 

and the acceptor (see inset of Fig. 2 for the spectral overlap and S10 in the ESI† for the calculation). No 

report has demonstrated the use of DPA as a fluorescent probe for the detection of PETN and RDX. 
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However, indirect fluorescence detection has been reported with diphenylamine derivatives.17  In this 

work, NOx species, a photofragmentation product of RDX/PETN, selectively react with newly developed 

dihydroacridines, which results in an increased fluorescence emission.  

The intrinsic emission of CdS QDs shows a maximum at ∼585 nm (Fig. 1). Various concentrations 

of DPA in ethanol were added to the CdS QD solution, and it was found that 250 µL of 100 nM DPA 

solution was able to provide a sufficiently good FRET emission at 585 nm (Fig. 2, trace (b)). See Fig. S4 

in the ESI† for the variations in FRET intensity with respect to DPA concentration. The term ‘CdS QD-

DPA sensor system’ or simply ‘sensor system’ is used in later parts of the text to represent the sensor 

solution containing 3 mL of CdS QD and 250 µL of 100 nM DPA. The UV-visible spectrum of CdS QD-

DPA shows a 4 nm shift indicate the interaction between QD and DPA. The excitation wavelength was 

fixed at 280 nm, and both the excitation and emission slit width was 5 nm for all FRET studies. The 

fluorescence measurements were performed immediately after adding the analyte solution.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (A) Absorption and emission spectra of CdS QDs; excitation wavelength was fixed at 410 nm. 

Inset shows the TEM image of CdS QD.  

Fig. 2 demonstrates the FRET of the CdS QD-DPA system. Trace (a) in Fig. 2 represents the 

fluorescence spectrum of the CdS QD solution at 280 nm excitation, where a little emission is detected. 

Though the CdS QD is having an absorption tail that covers 280 nm, an excitation at 280 nm did not 

generate an appreciable emission from the QD. Whereas, 280 nm excitation of the CdS QD-DPA sensor 
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system (trace (b) in Fig. 2) result a significant emission centered at 585 nm. The strong fluorescence 

emission of DPA at 360 nm (See Fig. S3 in the ESI†, trace (b)) was quenched due to the resonance energy 

transfer. The emission from the acceptor (CdS QD) at the excitation wavelength indicates an efficient 

energy transfer between the donor and the acceptor. The details of the donor-acceptor interaction are 

discussed later.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Demonstration of FRET: fluorescence spectrum of (a) CdS QDs and (b) the CdS QD-DPA system 

at 280 nm excitation. A sharp peak at 560 nm is due to the second-order transmission through the 

emission monochromator.33 Inset: emission spectrum of DPA and absorption spectrum of CdS QDs 

plotted together to show the spectral overlap between the donor and acceptor.  

We will now discuss the detection of PETN using the CdS QD-DPA sensor system. Fig. 3 

represents the fluorescence spectra of the CdS-DPA system with the addition of PETN. A series of 

concentrations of PETN was added to the sensor system. It is clear from the figure that addition of the 

PETN solution, with the resultant concentration of 10 nM, was able to produce a detectable change in the 

FRET (at 585 nm) and the inherent emission of DPA at 355 nm. The results of the addition of up to a 100 

nM concentration of PETN are shown in Fig. 3. Clearly, we can observe the reduction in FRET intensity 

at 585 nm and fluorescence recovery of DPA at 355 nm. This response can be utilized for detection 
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purposes. These results can be attributed to (i) the strong electrostatic interaction between the non-bonded 

electrons of the >NH group of DPA and the positively charged nitrogen atoms of PETN,34 leading to the 

increased acceptor−donor distance, and (ii) the repulsive interaction between the negatively charged nitro 

group of PETN and carboxylate group of the MPA ligand of the QDs that leads to the expulsion of the 

DPA-PETN pair from the CdS QDs. These factors affect the resonance energy transfer and result in turn-

off of the FRET process and turn-on of the DPA emission at 355 nm. The fluorescent emission of pure 

DPA was 360 nm, but it is shifted to 355 nm due to the interaction with PETN. The peaks that appear at 

405 nm and 430 nm are attributed to unreacted thiourea and 3-mercaptopropanoic acid, respectively. 

As already indicated, one can perform explosive detection either by following the fluorescence 

recovery (turn-on) of DPA or observing the reduction (turn-off) in FRET intensity. A significant recovery 

(~70%) of DPA fluorescence was observed upon the addition of 100 nM PETN and emission due to 

FRET was almost absent. Within experimental error, ∼10 nM PETN can be effectively detected under 

normal conditions. In an earlier report, an NADH analogue, 10-methyl-9,10-dihydroacridine, was 

employed for the detection of PETN and RDX. The detection limit was found to be 1.3 × 10-4 M and 7 × 

10-5 M, respectively.35 DPA is being used in the colorimetric detection of nitroester explosives.36 The 

detection limit of the colorimetric method was 0.7 µg and 1 µg for nitrocellulose and nitroglycerine, 

respectively. The colorimetric determination of PETN and RDX using a fluorescent nanofiber was 

reported as having a detection limit of 7 ppt and 5 ppt, respectively.37 In the present case, the detection 

limit is 10 nM (or 3200 pg). Therefore, our system is notably superior and reliable compared to other 

reported methods. In another report, where the indirect detection of PETN was achieved using a photo-

fragmentation reaction, the detection limit was 320 pg, whereas in the present case, it is ∼3200 pg.17 

We tested simple bi-molecular systems containing DPA as the donor for the detection of 

explosives. The motivation was to check whether the alternative simple organic molecule could function 

as an acceptor in the DPA-based sensor dyad. For example, instead of CdS QDs, we used pyrene butyric 

acid as the acceptor. However, FRET process was not observed. This indicated that the selection of the 

acceptor was critical for PETN and RDX detection. CdS QDs may be a unique choice, and the 

photostability of this system is an added advantage for real applications. We also examined the 

fluorescence response of DPA-PETN system and no fluorescence change was observed. To check the 

influence of dilution in the sensor system’s fluorescence, equivalent amount of ethanol solution (without 

PETN) was added. No apparent change in fluorescence was noticed.   
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Fig. 3. Detection of PETN: Various concentrations (traces b-k) of PETN were added to the CdS QD-DPA 

system. Trace (a) represents the fluorescence spectrum of the CdS QD-DPA system. An increase in 

emission at 355 nm and a decrease in the FRET emission at 585 nm are observed. The wavelength region 

545 nm - 580 nm (second-order transmission through the emission monochromator) is omitted from the 

figure for clarity.  

The capability of the present sensor system for the detection of other explosives was verified. It is 

found that RDX, another destructive plastic explosive, also respond in a similar fashion. As in the PETN 

case, we added various concentrations of RDX to the CdS QD-DPA sensor system and followed both the 

FRET emission and fluorescence recovery (Fig. S5 in the ESI†). Overall, the observations were similar 

with slightly less detection limit. A detectable difference in FRET and fluorescence was observed upon 

the addition of 20 nM of RDX. The higher sensitivities for PETN, compared RDX detection may be 

attributed to the number and nature of nitro groups. Compared to PETN, the level of fluorescent recovery 

with respect to the concentration was lower. Approximately 60-65% of the DPA fluorescence was 

recovered with the addition of 200 nM of RDX.  

The selectivity of the sensor system was tested for various molecules with functional groups, such 

as amines, carboxylic acids and nitro groups. Fig. 4 shows the result of the selectivity studies. The 
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selection of these compounds was made to include aliphatic and aromatic functional groups and 

structurally similar compounds. Interestingly, no substantial changes in FRET or fluorescence were 

observed (see Fig. 4 for the comparison of emission intensity at 355 nm). This indicates that these 

molecules are unable to break the CdS QD-DPA system. It should be noted that the spectra given in Fig. 4 

is of the 1000 nM concentration of these analyte are comparing with 100 nM concentration of PETN and 

RDX. In addition to the individual analyte solutions, a mixture containing aniline-acetic acid, 

nitrobenzene-ethylenediamine, 2,4-dinitrophenol-benzoic acid and phenol-PETN was tested. Only the 

mixture containing PETN showed the turn-on of DPA fluorescence and reduction in FRET intensity. 

Therefore, it is clear that the present sensor system is highly selective towards PETN or RDX. 

Reproducibility and repeatability of the CdS QD-DPA sensor system has been tested with various batches 

of sensor system. The fluorescence response to PETN/RDX was always reproducible. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of the turn-on intensity at 355 nm emission for various analytes. None of the analytes 

used for selectivity studies shows appreciable emission at 355 nm. Note that the comparison is made for 

the 1000 nM concentration of the above mentioned analytes with that of 100 nM PETN and RDX. Each 

data point is an average of three different experiments. 

To evaluate practical applications, we demonstrated the use of a Teflon wiping substrate for the 

effective sampling of explosives from various surfaces. For example, the results of samplings from a 

leather surface are given in Fig. S6 in the ESI†. Various concentrations of PETN (200 µL) were drop-
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casted on a leather surface and allowed to dry. A 2 cm x 2 cm Teflon cloth wetted with ethanol was used 

as a wiping substrate. After swabbing the surface, the cloth was folded carefully and placed in the quartz 

cuvette containing 3 mL of the CdS QD-DPA sensor system. The cuvette was then subjected to gentle 

shaking for 10 seconds. Subsequently, the fluorescence measurements have been done. Proper care was 

taken when placing the cloth in the cuvette to avoid the path of the light source and the detector. It was 

observed that sampling from a dried spot of 50 nM of PETN was able to produce detectable changes in 

the fluorescent spectrum. We believe that this easy in situ sampling method can be highly effective in 

explosive detection at security check points. The procedure is not kinetically controlled. We repeated the 

fluorescence measurement in every 10 min for 1 hr. No change in fluorescence was observed during this 

time scale.   

There are very few reports available for CdS QDs as the acceptor in a FRET system. This is mainly 

due to the long life time of QDs.38, 39 Fluorescence life time measurements of donor and acceptor systems 

are given in Fig. S7 in the ESI†. The time-resolved fluorescence spectra of the donor (DPA) alone and in 

the presence of the acceptor (CdS QDs) support the existence of the FRET process. It is clear that the 

donor decay is significantly decreased in the presence of the acceptor. The photoluminescence decay time 

of the donor (DPA) was a double exponential fit with lifetimes of 17.849 ns and 2.7935 ns and an average 

lifetime of 11.35 ns. The average lifetime was calculated using the previously described equation <τ>= (a1 

τ1+ a2 τ2+ a3 τ3) (ns).40 The pre-exponential factors were 0.5686 and 0.4314 for the long-lived component 

and short-lived component, respectively. The existence of two different decay times for DPA can be 

attributed to the existence of molecular forms: (a) an un-conjugated and (b) a conjugated form, eventually 

giving two different decay times (See Fig. S8 in the ESI†). The existence of two molecular forms is 

supported by solution phase infrared spectroscopy. The C-N stretching vibration is split into two and 

observed at 1307 and 1317 cm-1. The labile nature of hydrogen can impart a double bond character to one 

of the C−N bonds of DPA and result in a peak split for C−N stretching vibrations. 

 After the addition of the acceptor (CdS QDs), the lifetime of donor was decreased significantly and 

has been averaged to 7.06 ns. We assumed that the interaction of the CdS QDs with the donor decreases 

the lifetime with a subsequent shift in the equilibrium towards the left. The decay time of the donor in the 

presence of the acceptor was a 3 exponential fit with lifetimes of 3.665 ns, 21.80 ns and 0.43 ns, having 

pre-exponential factors of 0.2771, 0.2684 and 0.4545, respectively. The details of the fitting parameters 

and lifetime values are given in Table 1. Owing to the strong dipole-dipole interaction between the donor 

(DPA) and the acceptor (CdS QD) and due to high spectral overlap, the FRET probe manifested a fairly 

good FRET efficiency (ED-A) of 45%, which was calculated using the steady state fluorescence data.25 The 

Page 10 of 15Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11 

 

1000 1200 1400 1600 1800 2000

 Wavenumber (cm
-1

)

 

 

1
4

7
3

1
3

0
7

1
3

0
4

1
4
1

8
1

4
2

8

1
3

9
0

1
3

9
4

1
6

0
8

%
 T

ra
n

sm
it

ta
n

ce
 (

a
.u

.)

 CdS QD

 DPA

 CdS QD +DPA

1
5

5
4

 
1

5
6

2

1
3

1
7 1

5
8
7

 

1
5

1
5

750 1000 1200 1400 1600

1
3
0

5

7
4

6
7

4
1

7
5

3

8
5

3

 

 

8
6

4
8

7
4

8
4

3

7
5

4

9
9

9
1

0
0

2

1
2

8
4

1
4

7
3

1
3

8
6

1
2

6
8

1
2

7
3 1
2

8
4

1
3

1
4

1
5

8
7

1
6

4
4

Wavenumber (cm
-1

)

 PETN

 DPA

 DPA+PETN

1
6

4
5

A

C

Ba

c

a

b

c

b

O

OS H-N
CdS

N+ O

O

-O

N+

O

O O-

N+O

O

O-

N+

O

O-O

HN

D

value of FRET efficiency was also used to calculate the theoretical distance between the donor and the 

acceptor, which was found to be 4.39 nm. See S10 in the ESI† for calculations. 

 

Table 1. Time-resolved fluorescence data of the donor (DPA) in the absence and presence of the acceptor 

System τ1(ns) a1 τ2(ns) a2 τ3(ns) a3 χ
2
 < τ>= (a1 τ1+ a2 τ2+ a3 τ3) (ns) 

DPA 2.7935 0.4314 17.849 0.5686 - - 1.7477 11.35 

DPA + CdS QD 3.665 0.2771 21.80 0.2684 0.43 0.4545 1.1827 7.06  

 

The fairly good FRET efficiency of 45% for the sensor system is mainly attributed to two factors. 

First, as the FRET efficiency is inversely proportional to sixth power of the distance between the donor 

and the acceptor, a short thiol-molecule, such as MPA, is important, as its length falls below 0.5 nm.25 

Additionally, the pKa value of MPA is 4.3,41 and at the experimental pH 10, almost complete ionization 

of the carboxyl group leads to the formation of carboxylate ions. This facilitates the strong electrostatic 

interaction with the amine group of DPA, placing the donor and acceptor in close vicinity. Second, there 

is a good spectral overlap between the emission spectrum of the donor and excitation spectrum of the 

acceptor molecules, as indicated by the calculated JDA = 1.086e+14 nm^4/(M*cm).  

 

 

 

 

 

 

Page 11 of 15 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12 

 

Fig. 5. (A) show the infrared spectra of CdS QDs (trace a), DPA (trace b) and the CdS QD-DPA sensor 

system (trace c). (B) show the infrared spectra of PETN (trace a), DPA (trace b) and the DPA-PETN 

mixture (trace c). The plausible interaction between (C) CdS-QD and DPA (D) PETN and DPA are also 

shown. 

We conducted a detailed investigation on the interactions between CdS QDs, DPA and PETN using 

infrared spectroscopy (Fig. 5). In Fig. 5A, trace (a), the strong absorption bands at 1554 cm-1 and 1394 

cm-1 are attributed to the asymmetric and symmetric stretching vibrations of the MPA carboxylate group, 

respectively.42, 43 The absence of a peak approximately 1700 cm-1 in the spectrum indicates the complete 

ionization of the carboxyl group to carboxylate at the present experimental pH of 10. The peak at 1608 

cm-1 could be the interference of the water’s –OH bending vibrations. After the addition of DPA to the 

CdS QDs (Fig. 5A, trace c), the asymmetric stretching vibration of the carboxylate group experienced a 

significant blue shift; the original peak at 1554 cm-1 is shifted to 1562 cm-1 (Fig. 5A, trace (c)). This is due 

to the formation of a strong hydrogen bonding interaction between the carboxylate group of the CdS QDs 

and the >NH group of DPA. Due to the hydrogen bonding interaction, the resonance contribution of the 

negatively charged oxygen atom is restricted. This in turn strengthens the >C=O vibration of the 

carboxylate group by imparting more double bond character. Similarly, in the case of pure DPA, the 

strong absorptions at 3383 cm-1 and 3407 cm-1, which are due to the N-H stretching of DPA,44 now 

appeared as a broad band centered at 3330 cm-1 (see ESI† S9, Fig. (A)). This weakening of the N-H 

stretching vibrations supports the existence of a hydrogen bonding interaction between DPA and the 

carboxylate group of the MPA ligand (See Scheme D in Fig. 5). 

Now, we will discuss the interaction of PETN with that of DPA (Fig. 5B). Two types of 

interactions could be expected between DPA and PETN: (a) hydrogen bonding interaction between the 

>NH group of DPA and the negatively charged O atoms of PETN and (b) interaction between the 

positively charged N atom of the PETN and the lone pair electrons of the N atom of DPA. Previous 

reports reveal that the latter is more pronounced due to the strong electron repelling nature of the amino 

group and the electron attracting nature of the nitro group.23 Our infrared studies also suggest the 

existence of the second possibility. Note that we have presented the infrared spectrum of the DPA-PETN 

pair because the infrared spectrum of the CdS QD-DPA-PETN system is very broad and vague. The 

infrared peak assignments of PETN were performed according to reference 44. The discussion of 

molecular interaction is given in the ESI† S9. From the infrared spectroscopy evidence, we suggest that in 

the DPA-PETN pair, (i) the O−NO2 bending vibration is weakened, (ii) the NO2 bond strength is 

unaffected, (iii) the C−O and −O−N stretching are weakened, and (iv) the NHwag (bending) becomes 

stronger. This could result only from the interaction between the positively charged N of PETN and the 
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lone pair of the N from DPA. If the interaction is via the H of >NH group (of DPA) and the negatively 

charged O atoms of PETN, then we should expect a difference in the NO2 stretching vibrations and an 

unaffected C−O and O−N bond in PETN.  

Conclusions 

We successfully demonstrated the use of a CdS QD-DPA sensor system for the selective detection 

of high explosives, such as PETN and RDX. The detection limit of the sensor system for PETN and RDX 

was found to be 10 nM and 20 nM, respectively. In a typical detection procedure, we can follow either the 

decrease in the FRET intensity at ~585 nm or the evolution of fluorescence at ~355 nm. The success of 

the sensor system can be attributed to the selectivity of DPA towards PETN and RDX. The selectivity of 

the sensor system was tested for various functional groups, such as amines, carboxylic acids, phenols, and 

nitro groups. The response by FRET or the fluorescence recovery of DPA was not observed for these 

analytes. In situ sampling and detection of analyte from leather surface were demonstrated using a Teflon 

wiping cloth, though the detection limit was found to be one order less. The nature of the interactions 

between DPA, CdS QDs and analytes was established using infrared spectroscopy. CdS QDs interact with 

DPA via hydrogen bonding, and the DPA-PETN interaction was through the lone pair electrons of the N 

atom of DPA and the positively charged N atom of the PETN.  

The present report is the first FRET-based CdS QD sensor for selective detection of explosives 

PETN and RDX. Although plenty of reports are available on fluorescent detection of nitroaromatic 

explosives, such as TNT and DNT, demonstrations of selective detection of nitrate esters, such as PETN, 

are very few in number. The detection limit of the CdS QD-DPA sensor system was 10 nM (3200 pg) for 

PETN detection and is better than many reported methods. The turn-on and turn-off response provides an 

added advantage of pursuing detection in a two-way manner and reduces erroneous detection. The easy 

one pot synthesis method of CdS QDs and use of cheap and readily available chemicals make the present 

sensor system cost effective. Excellent selectivity and high sensitivity of the sensor system make it 

attractive for practical applications in airports and other security check points. 
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