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Ethanol has been increasingly used worldwide as a major renewable fuel. Since it can be produced from 

several matrixes such as sugar cane, corn, wheat, grape and beet, it has become important for certification 

purposes to verify the geographical origin and the different raw materials used for ethanol production. In 

this work, isotope ratio mass spectrometry, coupled to gas chromatography was used to measure the 10 

carbon isotopic signature (δ13CV-PDB) of the Brazilian sugar cane bioethanol. Statistical data analysis was 

also applied to establish a probabilistic profile for isotopic signature of major renewable Brazilian fuel. 

Other bioethanol produced from different raw materials in USA and France were also analysed, for 

comparison. 

Introduction 15 

The global energy demand based mostly in petro fuel has become 

a most important field of concern for science and political 

actions. 1 The drawbacks of using crude oil as an energy source 

have been exhaustive debated, and the major limitations are 

related to its non-renewable nature and severe pollution effects.2 20 

The search for new renewable, as well as economically viable, 

energy sources which could compete with crude oil and be more 

environmentally friendly is a very active area of scientific 

investigation, known as green chemistry. 3  

Brazil is a large country with a quite adequate environment and 25 

geographic characteristics for agriculture. Currently, ethanol 

seems to be one of the most attractive renewable fuels and its 

production and use is increasingly worldwide. 4 Brazil is the 

world’s largest ethanol producers and its ethanol is made 

primarily from sugar cane. 5 The country started its bioethanol 30 

program (Proácool) in 1975, and nowadays, nearly half of 

Brazil’s energy comes from ethanol and a few other renewable 

sources. Brazil has also replaced ca. 40 % of its gasoline needs 

with sugarcane ethanol, which has been shown therefore to be an 

environmentally and economically viable matrix for ethanol. 6 35 

The use of sugar cane ethanol has also reduced the emission of 

carbon dioxide in Brazil by as much as 189 million tons since 

2003. 7 The low-carbon benefits of sugar cane also benefit from 

other products such as cellulosic ethanol, bio plastics and bio 

hydrocarbons, bringing diverse social-economic benefits. 8 40 

Although sugar cane is practically the only matrix used in Brazil, 

bioethanol can, however, be produced from several other 

matrixes such as beet, corn, wheat and rice. 6 The certification of 

“green” bioethanol aims the determination of its geographical 

origin and the raw-material used for its production. For that, 45 

isotopic signatures are the key parameter. Isotope ratio mass 

spectrometry (IRMS) is the technique used to measure such 

signatures.9,10,11 For carbon, differences in measured isotope 

amount ratios of its stable isotopes (13C/12C) are commonly 

reported as 13C values, and when it is traceable to the 50 

international zero point of carbon isotopic values – the 

Vienna Pee Dee Belemite (V-PDB), it is referred as 13CV-

PDB.12  The δ13C values of bioethanol are known to be 

directly correlated with the mechanisms of CO2 fixation 

during photosynthesis.13,14 Values of δ13C from -32 e -23 ‰ 55 

are observed for plants with C3 photosynthesis (grape, rice, 

barley) whereas C4 (corn, sugar cane) plants display higher 

δ13C values from -15 to -9 ‰.15 Sugarcane is a C4 plant 16 

but the range of δ13C values of bioethanol produced in Brazil 

from sugarcane has not been systematically determined yet.  60 

In this work, we have used GC-IRMS to measure the carbon 

isotopic ratios (13C/12C) of sugarcane bioethanol from Brazil 

to determine its δ13C values and to establish its variation 

profile as a function of geographical origin of the sugar cane 

in Brazil. To assess the validity of the measurement techniques 65 

used as well for a subtle comparison, other bioethanol samples 

from different raw materials, e.g. corn, wheat, grape and beet 

from USA and France were also analysed.   

Experimental  

Samples. In total, 31 samples of bioethanol from sugar cane 70 

produced in different geographic regions of Brazil were analysed. 

(See Supp. Information, S1). All these samples as well as the 

bioethanol samples from different raw materials, e.g. corn, wheat, 

grape and beet from USA and France were analysed without any 

previous treatment and stored as received at 4 ºC. 75 

 

Instrumental. The GC/IRMS analyses of bioethanol were 

performed using a Delta V Advantage mass spectrometer with a 

Page 1 of 7 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



 

2  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

CG IsoLink combustion reactor interface coupled to a Trace gas 

chromatograph. Samples were introduced by using an AS3000 

auto sampler (all from Thermo Scientific, Bremen, Germany). 

 

Methods. The chromatographic separation of bioethanol samples 5 

was performed in a CP-WAX (Varian, 30 m x, 0.25 mm i.d. x 

0.25 μm film thickness), which is recommended due to its high 

selectivity for polar compounds such as ethanol. Pure ethanol 

samples (1 µL) were injected in a split ratio of 1:300. The injector 

temperature was set to 200 °C. The oven temperature program 10 

was as follows: 90 °C to 120 °C at 10 °C min-1, held for 3.5 min. 

Helium was used as a carrier gas at a constant flow rate of 1 mL 

min-1.  The samples were analysed in 6 replicates. The auto 

sampler syringe was rinsed with ultrapure waters 10 times before 

and after every sample injection to eliminate any cross-15 

contamination and rinsed 5 times with the sample before the 

injection.  

The isotope ratio mass spectrometer was operated at an 

accelerating voltage of 3.005 kV. The ion source was held at a 

pressure of 2.3 x 10-6 mbar and ions were generated by electron 20 

ionization (EI) at 124 eV. Three Faraday cup detectors monitored 

simultaneously and continuously the CO2
+ signals for the three 

major isotopologue ions of m/z 44, m/z 45 and m/z 46. For ethanol 

analysis, three pulses of CO2 reference gas were admitted into the 

inlet system for about 20 s with a backflush time of 180 s and a 25 

total run time of 450 s.  The temperature of the combustion 

reactor was set and kept at 1030 °C. 

The δ13C of CO2 reference gas in the GC/IRMS system was 

determined via a calibration procedure in the same conditions as 

described above, using a certified isotopic reference material of 30 

ethanol from rum (C4 plant origin produced by Indiana 

University, Bloomington, IN, USA). This standard was injected 

10 times and the peak corresponding to the ethanol with a 

reference value of δ13CV-PDB= (-10.98 ± 0.02 ‰) was considered 

the isotopic reference value for CO2 δ
13C calculation. The mean 35 

value of the δ13CV-PDB values obtained for CO2 was therefore used 

as the reference isotopic value.  

To account for variations during analysis, all the measured raw 

δ13C values were submitted to the bracketing normalization 

method.  Bracketing requires two isotopic reference materials: 40 

one with a value above and the other with a value below that of 

the unknown sample. The C4 ethanol was used (δ13CV-PDB = -

10.98 ± 0.02 ‰) and isotopic reference material of ethanol from a 

C3 plant (δ13CV-PDB = -27.53 ± 0.02 ‰) was also used as 

reference. Both reference standards were injected in the same 45 

batch of the correspondent samples. The results of the two 

isotopic reference materials were used for linear interpolation.17,18 

 

Data analysis and statistics. First, an exploratory data analysis 

through graphs and descriptive measurements was conducted to 50 

compare the δ13 CV-PDB behaviour as a function of raw material 

(cane sugar, corn, wheat, beet and grapes); the metabolism (C3 or 

C4); and the geographical origin of the samples (Brazil – national 

states, France and the United States). Following, to establish the 

profile of Brazilian bioethanol, an inferential analysis on the 55 

carbon isotope value of Brazilian sugar cane samples was also 

carried out. The classical Levene's test 19 was applied to verify the 

homogeneity of variances of each sample (with six replicates) as 

well as the "QQ-plot" 20, a visual test, to investigate the 

hypothesis of data normality. Finally, to describe the expected 60 

range of variation of the δ13CV-PDB values, a probability density 

function (PDF) was estimated, by a kernel density model for 

replicated values 21, with associated mode (point estimator) and 

sample quantiles. The confidence intervals for each estimator 

were estimated using the bootstrap technique 22, and an expected 65 

range for new samples of cane sugar was proposed. The 

confidence level considered for all statistical tests was 95% and 

all statistical analyses were performed using the R  Software 23, a 

free open source environment for statistical computing and 

graphics. 70 

 

Results and Discussion 

The measures of δ13CV-PDB from the 37 bioethanol samples were 

done with six replicates each, and Table S1 summarizes the mean 

values obtained.   An exploratory data analysis was done to try to 75 

find correlations between influence factors or stratification 

variables that could point to either general or specific 

characteristics of the δ 13CV-PDB values on Brazilian or 

international scenarios. An inferential statistical analysis of the 

sugar cane data was also performed aiming primarily to estimate 80 

a point value and a confidence interval that would best represents 

the data set. 

 

Exploratory analysis of the δ13 CV-PDB value 

 85 

To summarize the characteristics of the samples, the δ13CV-PDB 

values were stratified by the site of production, raw material and 

metabolism. The scatterplot in Figure 1 illustrates the distribution 

of data according to the stratification variables or factors. 

 90 

 
 

Fig. 1 Distribution of bioethanol sample data according to the 

stratification variables: raw material, metabolism and 

geographical origin (site of production). 95 
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Table 1 summarizes the frequency distribution by the nation in 

which the bioethanol sample was produced and by raw material. 

 

Table 1 Sample frequencies by location/nationality. 5 

Nationality 
Local 

(State/Country) 

Raw 

material 
Frequency 

Percentage 

(%) 

Brazil                 

(31 samples) 

São Paulo 
Sugar 

Cane 

13 41.94  

Rio de Janeiro 3  9.68  

Pernambuco 1  3.22  
Mato Grosso 1 3.22  

Not Avaliable 13 41.94  

Total  31 100  

Other 

countries 

(6 samples) 

France 
Grape, 
Wheat, 

Beet 

4  66.67 

United States Corn 2  33.33 

Total        6 100  

 

Table 2 shows the δ13CV-PDB obtained and the type of metabolism 

and raw material. Note the very unique values for sugar cane 

bioethanol of around -12.39 ‰. Corn bioethanol was the only 

sample that displayed a relatively close value of - 9.78 ‰, but all 10 

the other bioethanols displayed quite contrasting values  (Figure 

1). 

 

Table 2. Summary of δ13CV-PDB measurements by metabolism 

and raw material. 15 

 Metabolism Raw Material 

Statistic C3 C4 
Sugar  

Cane 
Corn 

Grape,Wheat, 

Beet 

Sample size 4 33 31 2 4 

Mean (‰) -27.24 -12.23 -12.39 -9.78 -27.24 

Median (‰) -27.61 -12.37 -12.39 -9.78 -27.61 

Minimum 

(‰) 

-27.92 -13.25 -13.25 -9.88 -27.92 

Maximum 

(‰) 

-25.81   -9.68 -10.32 -9.68 -25.81 

SD (‰)     0.97    0.88     0.63   0.14     0.97 

CV (%)    -0.04   -0.07    -0.05  -0.01   -0.04 

SD = Standard Deviation; CV = Coefficient of Variation. 

 

The δ13CV-PDB values from Table 1 were also compared via 

Figure 2, in which the box plot 20 is shown. This plot is useful to 

evaluate the empirical distribution of an univariate parameter by 20 

observing variability (box width), symmetry (distribution around 

the median) and potential outliers (dots falling outside the box). 

 

 
 25 

Fig. 2 Box plot diagram for δ13CV-PDB, stratified by metabolism 

(C3 and C4) and raw material. The box width represents the 

variability whereas the dots are potential outliers. 

 

Table 2 summarizes the coefficients of variation (CV, %) for the 30 

three types or groups of raw material, The CVs were very similar: 

0.05 % for sugar cane, 0.01 % for corn and 0.04 % for the 

remaining samples. These small deviations from the average, 

suggests good congruence between samples from different 

producers and the high accuracy and precision of the δ13CV-PDB 35 

measurements.  

 

Inferential statistics: the bioethanol profile in Brazil 

 

The goal of the inferential statistical analysis is to infer properties 40 

of a variable or a characteristic of interest from a representative 

population sample. The purpose of such analysis was therefore to 

estimate a point value for δ13CV-PDB that best represents the 

probability distribution for the 31 samples of Brazilian sugar cane 

biothanol analyzed (Figure 3). 45 

For the other raw material, such analysis was not performed due 

to insufficient number of samples, but their values were simply 

described in an explanatory way.   

 

 50 
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Fig. 3 Distribution of sugar cane sample data.  

 

Figure 3 suggests a heteroscedasticity for  the δ13CV-PDB data. The 5 

classic Levene's test 24 was therefore applied to assess the 

presence of statistically significant difference among the 

replicates variances of the 31 sugar cane bioethanol samples. 

Being the statistic of the test given by F = 2.39 and the associated 

p-value equals to 0.0035 at 95 % confidence, the null hypothesis 10 

of equal variances was rejected, confirming the heteroscedasticity 

between the samples. This information will be used below to 

estimate the PDF of δ13CV-PDB.  

 

For the sugar cane bioethanol data, the Pearson's skewness 15 

coefficient 22 was calculated. The value of A = 1.0 > 0, indicates 

positive skewness on the distribution of data. The Pearson's 

kurtosis coefficient 25, of k = 4.89, indicates a leptokurtic 

distribution i.e., more peaked relative to the Gaussian 

distribution. For better viewing of these characteristics, Figure 4 20 

shows the histogram and the boxplot of the data (means of each 

six replicates), whereas Figure 5 shows the quantile-quantile plot 

(Q–Q plot). 26  

 

 25 

 

Fig. 4 Histogram and Boxplot of δ13CV-PDB for sugar cane 

bioethanol data. 

 

The histogram of Figure 4 indicates a slight positive skewness, 30 

which might have been caused by some samples with abnormal 

higher values, as seen in Figures 1 and 3. Note that there is only 

one peak of frequency in the histogram around δ13CV-PDB = -12.30, 

suggesting unimodal distribution.   

The QQ plot, which compares the sample empirical quantiles to 35 

its equivalents from normal distribution, provides evidence that 

the samples do not fit the hypothesis of normality. At 95 % 

confidence level, one point on the graph remained outside of the 

confidence region within which it is expected that, given the null 

hypothesis of normality, the data would fit optimally. To confirm 40 

the opposition to the normality hypothesis, the Shapiro-Wilk test 
27 was applied whose statistic w = 0.91968 and its associated p-

value = 0.1946 confirmed what was observed in the Q-Q plot. 

 
 45 
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Fig. 5 Quantile-quantile plot (Q–Q plot) for carbon isotopic value 

from sugar cane bioethanol data.  

Point and interval estimation of δ13 CV-PDB  

 

Using data from Table 1, the value that best represent the δ13CV-5 

PDB for the unique bioethanol from sugar cane could be proposed. 

This could be done by a single value (point estimator) or by a 

range under which it is believed that the true value lies with a 

given confidence level (interval estimator). 

Due to the observed skewness, 24 it is to use robust methods 28 10 

that are less affected by outliers of the distribution. After 

rejecting the hypothesis of normality, a kernel density model 29,30 

was estimated, which is a nonparametric estimation of a 

probability distribution. To accommodate the information in the 

replicates, kernel density was considered with measurements 15 

errors 31  following a Gaussian distribution with different 

variances, based on the heteroscedasticity assumption confirmed 

in the previous section. Choosing the Gaussian kernel, and 

determining the bandwidth (h) by  a rule of thumb bandwidth 

selection in deconvolution problems 32 based in the mean 20 

integrated squared error (MISE), h was equal to 0.2457. All the 

calculations were done with decon 33  package in R and Figure 6 

(a) shows the kernel density estimated for the bioethanol sugar 

cane samples. 

 25 

 
 

Fig. 6 (a) The kernel density estimate for δ13CV-PDB value from 

sugar cane bioethanol and (b) the first 100 kernel density 

estimates from Bootstrap samples. 30 

 
Figure 6b shows the first 100 kernel density estimates from 

Bootstrap samples. This resampling process 34 is used to estimate 

the sampling distribution of the point estimator (in this case, the 

mode), thus inferring features that do not have analytical 35 

expression, as the variance of the estimator, for example. It 

consists of removing a random sub sample with replacement of 

the same size (n) from the original sample data, and then 

calculating the statistic of interest, such as the mode and median. 

By repeating the procedure many times (N), the N provides an 40 

estimate for the estimator, with which the confidence interval 

calculation (interval estimator) of the mode will be possible. 

 

The point estimator with higher associated probability was δ13CV-

PDB =  -12.48 ‰. The bootstrap confidence interval was estimated 45 

according to the percentile method 35, with which it was 

estimated the sample quantiles  Q0.025 e Q0.975 from the bootstrap 

sample of size N, which will be the lower and upper limits, 

respectively, of the confidence interval (CI) of the estimator, 

since contains 95 % probability. Using the data, it was estimated 50 

that the probability of the confidence interval for δ13CV-PDB from -

12.68 up to -12.28 contains the true value is 95 %. 

 

An expected interval for new samples of cane sugar 

 55 

The estimated kernel density plot can be viewed as a probabilistic 

profile of δ13CV-PDB, since this is an estimated probability 

distribution of this random variable, based on the collected 

sample. Aiming to set up an expected variability range for δ13CV-

PDB for new samples of Brazilian bioethanol, the sample 60 

quantiles, centered on the point estimate (mode) between which 

concentrates 95 % probability, should be estimated. It followed 

that it varied from Q0.025 = -13.22 up to Q0.975 = -11.31. 

Note, however, that the above interval reflects the variability of 

the sample in question. By inferring up interval estimates for each 65 

quantiles, by using the same bootstrap method, it was estimated 

that the confidence interval for the Q0.025 estimator was 13CV-PDB = 

(-13.27 ‰, -13.10 ‰) and for Q0.975 = (-11.35, -10.30) (-11.80 

‰, -10.32 ‰). Table 3 shows these estimators of population 

parameters. 70 

 

Table 3 Estimates of mode and quantiles Q0.025 and Q0.975 from 

sample δ13CV-PDB data. 

Estimator Estimate Bootstrap Confidence  Interval 

Mode ( ‰) -12.48 (-12.68, -12.28) 

Q0.025 ( ‰) -13.22 (-13.27, -13.10) 

Q0.975 ( ‰) -11.31 (-11.80, -10.32) 

 

 75 

Although it is not possible to estimate a CI for the isotopic carbon 

value, it is reasonable to assume that the lower limit of the CI for 

Q0.025 and the upper limit of the CI for Q0.975, that is, the interval 

(-13.27 ‰, -10.32 ‰) is a good estimate for the quality of the 

data obtained for sugar cane bioethanol samples, being expected 80 

that 95 % of the samples average values will lie in this range 

(Figure 7).  
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Fig.7 Kernel density plot for bioethanol data. The shadow 

represents the expected interval for measurements of new 

samples, being an expected range of measures of carbon isotopic 5 

value from sugar cane. 

 

In all, the ability to δ13 CV-PDB to differentiate ethanol samples 

according to their metabolism (C3 versus C4) has been clearly 

demonstrated (Tables 1 and 2). Corn was the only raw 10 

material used for ethanol production that could eventually be 

overlapped with sugar cane bioethanol. United States and 

Brazil, are currently the major bioethanol producers contributing 

to as much as ca. 70% of the ethanol produced in the world. USA 

bioethanol production employs corn as principal raw material, 15 

while sugar cane is produced mainly in Brazil.36 According to 

previous data 13,36 the measured δ13CV-PDB values of  ethanol from 

corn were ranged between δ13CV-PDB = -11.02‰ and -10.40‰. 

The two samples of ethanol from corn analysed herein 

showed values just slightly out of this range (mean δ13CV-PDB 20 

= -9.78‰). Only one sample among the 31 sugar cane bioethanol 

samples that overlapped with the δ13CV-PDB from corn bioethanol.  

Conclusions 

A δ13CV-PDB profile for Brazilian bioethanol has been determined 

and 95% of the values ranged from -12.68 up to -12.28, by 25 

analyzing the carbon isotopic value of 31 bioethanol samples 

using GC/IRMS. Good congruence between samples from 

different producers and a high accuracy and precision for the 

measured values could be achieved. 

A probabilistic profile for the sugar cane bioethanol δ13CV-PDB 30 

was also established. PDF analysis indicated a slightly positive 

data skewness and the most probable value was determined to be  

δ13CV-PDB = -12.48, with an associated confidence interval of 

δ13CV-PDB = (-12.68 ‰, -12.28 ‰) 

The expected variability range for new samples of δ13CV-PDB was 35 

calculated to lie in the interval δ13CV-PDB = (-13.27 ‰, -10.32 ‰) 

with 95 % of probability. This relatively wide range of variability 

showed that sugar cane bioethanol profile in Brazil is not as 

behaved as expected, probably due to the use of different 

subspecies of sugar canes, farming conditions and geographical 40 

climate characteristics. Sugar cane abd corn are both C4 plants 

and indeed their δ13CV-PDB were the closest ones. These two types 

of bioethanols may show overlapping δ13CV-PDB values, but the 

other raw materials investigated displayed quite contrasting 

values. 45 
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