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the first group are e.g. Direct Exponential Curve Resolution (DE-57

CRA)8, Speedy Component Resolution (SCORE)9, Multivariate58

Curve Resolution MCR16, Blind Source Separation14 and mono-,59

and multi-exponential fitting17.60

The second group contains methods that can, to some extent,61

reconstruct the shape of A(D). This can be utilitsed by fitting pa-62

rameters of a strictly defined distribution (e.g. log-normal18 and63

gamma distribution19), or by fitting a distribution of diffusion64

coefficients with additional constraints (Trust Region Algorithm65

for Inversion (TRAIn)10, CONTIN12, Maximum Entropy (Max-66

Ent)11, and Iterative Thresholding Algorithm (ITAMeD)13).67

The last three methods can be discussed on the basis of regu-68

larisation69

min
A≥0

‖ΦA−Ψ‖2
ℓ2
+ τΘ(A), (3)

where Φ is the Laplace transform matrix, A is the vector of the70

distribution of diffusion coefficients, Θ is the regularisation term,71

and τ controls the ratio between first and second term. For Max-72

Ent, Θ is defined as73

Θ(A) =−∑
i

Ai

∑ j A j
log

Ai

∑ j A j
, (4)

while CONTIN uses74

Θ(A) = ‖LA‖ℓ2
, (5)

where L is a matrix that contains prior assumptions about the75

data20. ITAMeD utilises the following regularisation term76

Θ(A) = ‖A‖ℓ1
. (6)

All aforementioned regularisations Θ(A) are equivalents of cer-77

tain assumptions about the shape of A(D). For example, ITAMeD78

assumes that the resulting vector is sparse, CONTIN makes the79

assumption that the distribution is smooth, while MaxEnt prefers80

A(D) with the highest entropy.81

In fact, none of the regularisation terms is generally valid. ITA-82

MeD will not give the correct reconstruction for polydisperse sam-83

ples with broad diffusion coefficient distributions, while CONTIN84

and MaxEnt may provide an over-smoothed result for samples85

with very sparse A(D)13.86

To circumvent these limitations we propose a new method us-87

ing a tailored regularisation term, which is automatically tuned.88

This regularisation term exploits the ℓp-norm with 1 ≤ p ≤ 2, that89

allows balancing between sparsity and smoothness of the result-90

ing distribution.The order p norm is defined as follows91

‖A‖ℓp
= (|A|p1 + |A|p2 + . . .+ |A|pn)

1
p . (7)

The proposed concept was tested on polymer samples with92

varying polydispersity and finally applied to monitor the degra-93

dation of heparin using PGSE NMR.94

In contrary to previous NMR diffusometry studies of this reac-95

tion2, we monitored not only the change of diffusion coefficient96

but also polydispersity.97

Additionally, we introduced the “moving-frame” processing,98

which is known in the field of non-uniform sampling21. The99

method is implemented by performing a series of PGSE exper-100

iments with randomly permuted gradient values (known as p-101

DOSY3) and combining them into one large dataset. The dataset102

is then divided into overlapping subsets processed separately with103

regularised ILT (see Figure 1). The method provides detailed in-104

formation, as it allows to obtain in principle a continuous time-105

profile of the process22.106

2 Methods107

Fig. 1 The idea of the “moving-frame” processing is applied to

time-resolved PGSE data. FID signals with different amplitudes of the

diffusion-encoding gradient are acquired, while certain processes are

occurring in the sample that change the distribution of diffusion

coefficients. Overlapping data subsets are then processed using inverse

Laplace transform with tailored ℓp-norm regularisation.
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2.1 ℓp-norm regularization108

The proposed method is using the regularisation term defined as109

Θ(A) = ‖A‖ℓp
, (8)

where 1 ≤ p ≤ 2 and thus the algorithm seeks for the following110

minimum111

min
A≥0

||ΦA−Ψ||2ℓ2
+ τ||A||ℓp

. (9)

For p > 1 the solution is "smoothened", i.e. the differences be-112

tween the values of elements of a solution vector A are sup-113

pressed. In other words, the distributions of diffusion coeffi-114

cients without significant "jumps" are preferred. The greater p115

is, the more pronounced is the smoothing effect. The minimized116

function presented in Equation (9) is composed of two terms:117

||ΦA−Ψ||2ℓ2
and τ||A||ℓp

. The former term is ℓp-norm independent,118

while the latter changes with p. In case of p > 1 for any two vec-119

tors with the same mean value the smoother one (having smaller120

deviation from the mean value) has a smaller ||A||ℓp
. This general121

feature can be shown on the example of a two-element vector122
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Fig. 2 Comparison between the results of the optimal norm (dashed yellow line), ℓ1-norm (dashed green line) and ℓ2-norm (dashed red line) used in

the processing of the simulated data set of various A(D). The widths of the diffusion profiles and the corresponding optimal norms (σ /p) are: A -

0.5/1.6, B - 0.4/1.45, C - 0.3/1.3, D - 0.2/1.15, E - 0.1/1.1, F - 0.05/1.
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and ℓ2-norm. Let v1 = [M,M] and v2 = [M−X ,M+X ], where M is123

the mean value of those vectors and X is a non-zero real number.124

Then it can be shown:125

||v2||ℓ2
=

√

(M−X)2 +(M+X)2 =

=
√

M2 +X2 >
√

M2 = ||v1||ℓ2
.

(10)

Therefore p = 2 (and actually every p > 1) promotes the126

smoothened result. It can be shown in a similar way that for127

p = 1 the smoothing effect is not observed.128

A more detailed explanation can be found in the Supplemen-129

tary Information.130

We have chosen the iteratively re-weighted least squares (IRLS)131

algorithm23–25 as a method to implement the ILT regularised by132

ℓp-norm with arbitrary p. The description of the algorithm to-133

gether with the Matlab code can be found in Supplementary In-134

formation.135

2.2 Simulations136

The method was tested on six different Gaussian distributions137

of diffusion coefficients (see Figure 2). Each distribution was138

generated using a logarithmically sampled diffusion coefficient139

grid with the centre of the peak at log10(D) = −10.25 for vari-140

ous widths σ . The distributions were converted to an exponential141

decay, composed of 64 logarithmically sampled points and 0.1%142

white noise (as in the following references10,11,13). Then, each143

simulated decay was processed using the IRLS method (1024144

points, total computational time ∼12 s) and the ℓp-norm set to145

Noise level (%) σ log10(D) ( m2

s )

Ref 0.2 -10.25

0.001% 0.1999±0.03% -10.250±0.0006%

0.005% 0.1998±0.16% -10.249±0.0014%

0.01% 0.1998±0.45% -10.2498± 0.0049%

0.05% 0.2020±3.54% -10.250± 0.0300 %

0.1% 0.2072±8.60% -10.249±0.0884%

0.2% 0.2128±11.46% -10.248± 0.1009%

0.3% 0.2124±10.28% -10.247±0.1463%

0.5% 0.2122±18.86% -10.2466±0.1834%

1% 0.2117±22.72% -10.2363±0.3309%

Table 1 Results of the reconstruction of the diffusion coefficient

distribution from Figure 2.D for varying levels of random white noise.

The mean and standard deviation of the results from 100

reconstructions for each noise level are shown.

p = 1, p = 2 and p = 1,1.05,1.1 . . .2 (20 values). The optimum p146

value was the one that provides A with minimal residuum of the147

fit148

‖ΦA−Ψ‖ℓ2
. (11)

Thus, the method does not require any prior knowledge about the149

width of the distribution of diffusion coefficients. The residuum150

values for various p and σ values are shown in Figure 3. For p= 1,151

the approach is equivalent to the ITAMeD method, while p = 2152

corresponds to the CONTIN method with L set to the identity153

matrix.154

The robustness to noise was tested by repeating the simulation155

from Figure 3D 100 times for each of the nine white noise lev-156

els varying from 0.001% to 1% of the first data point. For each157
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simulation, the optimal p was estimated and the Gaussian curve158

was fitted to calculate the corresponding diffusion coefficient D159

and σ . Interestingly, variable p values compensate for wrong

Fig. 3 The residuum of the fit ‖ΦA−Ψ‖ℓ2
as a function of p settings for

the simulated data set shown in the Figure 2. The yellow dots

correspond to the optimal p values.
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guesses of the manually entered parameter τ.161

Furthermore, as shown in the Supplementary Information (Fig-162

ure SI.1), the value of τ can be changed by several orders of mag-163

nitude without a significant difference in the result of reconstruc-164

tion.165

2.3 Test experiments on PEO polymers166

Twelve polyethylene oxide polymers (PEOX21K, PEOX600K,167

PEOX900K, PEOX30K, PEOX150K, PEOX250K, PEOX50K,168

PEOX85K, PEOX90K, PEOX500K, PEOX120K and PEOX200K)169

with various polydispersity indexes (PDI) were supplied by Amer-170

ican Polymer Standards Corporation. An appropriate amount171

of the polymer was dissolved in D2O achieving a concentration172

of 0.1% w/w. The polymer solutions were run at 298 K on173

Bruker 600 MHz (Bruker, Germany) spectrometer equipped with174

a Diff30 diffusion probe and GREAT40 gradient amplifiers. The175

signal attenuation of the PEO peak at 3.6 ppm was obtained176

using a stimulated echo pulse sequence and 32 linearly spaced177

gradient amplitudes g, ∆= 100ms, and δ = 2ms. Each dataset was178

processed using (i) the IRLS method (1024 points of diffusion179

coefficient grid, τ = 10−6, total computational time ∼12 s) and180

the ℓp-norm set to p = 1, p = 2 and p = 1,1.05,1.1 . . .2 (20 values)181

and (ii) the log-normal fitting described in19.182

2.4 Monitoring the fractioning of heparin183

12.3 mg of heparin sodium salt from porcine intestinal mucosa184

(Sigma-Aldrich) was dissolved in 1 ml of 90% D2O, 7.0 pH phos-185

phate buffer. Next, 0.3 mg of heparinase I and III Blend from186

Flavobacterium heparinum (Sigma Aldrich) was added. The re-187

action mixture was then transfered into an NMR tube, which was188

put into a 700 MHz Agilent spectrometer equipped with HCN189

probe temperature controlled at 25°C .190

Each spectrum was obtained using a Bipolar Pulse Pair STE191

with Watergate and the signal was accumulated 64 times, g,192

∆= 200ms, and δ = 3ms. The experiment was acquired using ran-193

domly shuffled sampling of the diffusion decay as in the p-DOSY194

experiment.3 We used the list of 800 gradient values, which was195

constructed using 25 repetitions of a permuted 32 gradient array196

(The sampling schedule can be generated using the online inter-197

face at: http://itamed.spektrino.com). The experiments lasted in198

total for 59 hours.199

The obtained heparin dataset was Fourier transformed and pro-200

cessed using nmrPipe26 and imported into Matlab (MathWorks201

Inc.). The region of 3.20-3.66 ppm, which arises from protons202

of the sugar rings was integrated. Integration values were used203

as an input for the ILT with tailored norm regularisation. The204

data was processed using the “moving frame" method (see sec-205

tion 2.5). The size of the “frame” was set to 32, 64 and 128 points206

and diffusion coefficient grid to 256 points. Alse, we repeated the207

processing, using “standard” p-DOSY approach with series of 32-208

point subsets. Other processing parameters were the same as for209

the PEO samples. Each obtained diffusion profile was fitted to a210

Gaussian, whose centre corresponded to the mean diffusion coef-211

ficient and the width reflects the polydispersity. Both parameters212

were plotted as a function of time (Figure 6). Additionally, we213

analysed the peak intensity at ~5.9 ppm, which corresponds to214

digested heparin fragments2.215

2.5 “Moving-frame” p-DOSY216

Randomly shuffled sampling of the gradient domain, referred217

to as p-DOSY, has been recently reported as a good solution218

to study dynamically changing samples with PGSE NMR3. The219

use of p-DOSY allows to avoid bias in diffusion coefficient that220

could be caused by coherent variations of signal intensity due221

to reasons other than diffusion. We propose a slight modifica-222

tion of p-DOSY approach, conceptually similar to time-resolved223

non-uniform sampling, that has recently found numerous appli-224

cations21,22,27. The series of experiments with differently per-225

muted p-DOSY sampling schedules are performed and combined226

into one large dataset. Then, as shown in Figure 1, the dataset is227

divided into overlapping subsets, which are processed separately228

with ILT. The resulting stack of spectra forms temporal pseudo-229

dimension in whcih A(D) changes. The size of the single subset230

is post-acquisition parameter, that has to compromise between231

signal-to-noise problems (small frames) and averaging of stud-232

ied effects within the frame (large frames). If artifacts associated233

with particular schedule are observed, which can be the case of234

ILT or NUS reconstructions, then moving-frame processing has an235

advantage over standard “serial” p-DOSY. It provides time-profiles236
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with more points and thus imperfections can average out e.g. dur-237

ing curve fitting. We exploit this feature in the analysis of kinetic238

parameters of heparin depolymerization.

Fig. 4 Optimal norm p as a function of the width of the diffusion

coefficient distribution σ obtained for the simulated data set. The line fit

with a coefficient of determination R2 = 0.982 shows that the correlation

is linear.
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3 Results and Discussion240

The simulation (see Figure 2) showed that the optimal ℓp-norm241

reconstructs the signal with a clearly better fidelity compared to242

the over-sparsifing ℓ1-norm or the over-smoothing ℓ2-norm. The243

over-sparsifing behaviour manifests itself in approximation of a244

broad Gaussian peak made of a set of false narrow peaks. On the245

other hand, over-smoothing leads to an artificial broadening of246

the peak.247

The optimal norm is found by repeating the simulation for dif-248

ferent values of p and checking the residuals of the fit in the signal249

domain (Ψ). Figure 3 shows that there is a wide range of similarly250

behaving norms, especially for broad distributions of diffusion co-251

efficients. In fact, the global minimum can be found (marked in252

Figure 3), which provides the optimal p for all examples used in253

this study.254

It may happen, that for noisy signals the residual vs. p function255

is not as smooth and there are many local minima. For this case,256

one should choose p corresponding to right side of the “valley”257

(Figure 3) as smoothed regularisations are less prone to instabili-258

ties caused by noise.259

Interestingly, the plots shown in Figure 3 and the way the op-260

timal p is found resemble the L-curve approach used before for261

the automatic setting of regularisation parameter.28 Even very262

recently, Scotti et. all.29 demonstrated method for determining263

polydispersity in light scattering based on CONTIN with this L-264

curve criterion for finding τ. We have observed that both ℓp-norm265

selection for constant τ and τ selection for constant ℓ2-norm be-266

have similarly for highly polydispersed samples. However, the267

L-curve with constant ℓ2-norm does not give a proper result for268

samples with low polydispersity (See Supplementary Information269

Fig.SI.2), in contrast to the tailored ℓp-norm. This is due to the270

smoothing behaviour of ℓ2-norm, which is explained in Section 4271

of Supplementary Information. All the examples presented here272

follow the model of an unimodal (although polydisperse) decay.273

Fig. 5 Correlation between σ and
√

log(PDI) for the PEOs. A - the

reconstructions with the optimal ℓp-norm B - with log-normal fitting.

The small case letters correspond to different polymer samples

described in Table 2. The line fit σ = α
√

log(PDI) gave the slope

α = 0.56 (A) and α = 0.53 (B) with coefficients of determination:

R2 = 0.948 (A), R2 = 0.886 (B).
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It is worth emphasising that the optimal norm can be found only274

for signals where the diffusion peaks do not differ in polydisper-275

sity. This is usually not the case for polymodal signals. However,276

as shown in SI, the performance of the tailored norm is very simi-277

lar to methods dedicated to deal with such problems, or performs278

even better for noisy data.279

The linear correlation between the optimal p and the actual280

width of the Gaussian distribution of diffusion coefficients σ is281

significant (R2 = 0.982) and the dependence is shown in Figure 4.282

Furthermore, Table 1 shows that the method is stable and not283

very vulnerable to noise. In particular, the line widths are well284

preserved even for quite high noise levels.285

The results of extensive simulations allowed to test the effec-286

tiveness of our method on a set of polydisperse samples. To ex-287

perimentally verify the accuracy of the reconstruction with the288

proposed tailored norm, we used polymer samples with varying289

polydispersity. The polydispersity index (PDI) of the polymer can290

be defined as PDI = Mw
Mn

, where Mw is the weight-average, and Mn291

is the number-average.30 PDI values used for comparison were292

taken from the certificate provided by the supplier of the poly-293

mers and obtained using Gel Permeation Chromatography (GPC).294

It can be compared with the σ value of the reconstructed distri-295

bution. The value was obtained by fitting the log-normal curve to296

the result of reconstruction297

A(D,µ,σ) =
1

D
√

2πσ2
exp

(

− (log(D)−µ)2

2σ2

)

. (12)

As reported previously,19 one correlates the PDI of a polymer with298
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Sample Polymer PDI D from optimal p
(

m2

s

)

D log-normal
(

m2

s

)

a PEOX21K 1.029 4.6E-11 4.57E-11

b PEOX600K 1.060 5.53E-12 5.55E-12

c PEOX900K 1.150 4.47E-12 4.51E-12

d PEOX30K 1.299 5.26E-11 5.11E-11

e PEOX150K 1.080 1.44E-11 1.43E-11

f PEOX250K 1.198 1.03E-11 1.04E-11

g PEOX50K 1.326 3.36E-11 3.37E-11

h PEOX85K 1.369 2.40E-11 2.38E-11

i PEOX90K 1.479 2.21E-11 2.24E-11

j PEOX500K 2.632 1.15E-11 1.13E-11

k PEOX120K 3.362 2.80E-11 2.79E-11

l PEOX200K 4.340 2.21E-11 2.28E-11

Table 2 Description for Figure 5. D corresponds to the diffusion coefficient at the centre of the peak obtained from both methods.

σ as follows299

PDI = exp

(

σ2

α2

)

, (13)

Fig. 6 Increase of the diffusion coefficient (A - µ) and the polydispersity

(B- σ ) following the enzymatic degradation reaction of bovine heparin by

heparinase. Additionally, for comparison the intensity of the peak at 5.9

ppm is shown (C). Intensity was calculated as integration value of the

peak at the lowest gradient strength (0.11 T/m.) The green lines are the

fit of the first order reaction with reaction rate constant (k) and goodness

of fit (R2) written for each parameter. The line was fitted to

“moving-frame” curve. Frame size of 64 points was used for A and B.

Blue points show the result obtained from ILT processing based on

p-DOSY processing.

where α is a scaling factor (typically between 0.5 and 0.6 for a300

good solvent).31 Therefore, one would expect a linear correlation301

between σ and
√

log(PDI)302

σ = α
√

log(PDI) (14)

and the results, which are presented in Figure 5 confirm the303

linear correlation. The value obtained by a linear fit (α = 0.56)304

is within the theoretical boundaries. The result of the well es-305

tablished method to evaluate the polydispersity of polymers, the306

log-normal distribution fitting18,19 was compared with the tai-307

lored regularisation. As shown in Figure 5 the dependence of σ308

as a function of
√

logPDI deviates less for the optimal ℓp-norm309

compared to the log-normal fitting (R2 = 0.948 for tailored vs.310

R2 = 0.886 for log-normal).311

Having established the robustness of the tailored norm regular-312

isation for samples of different polydispersity, we were able to ap-313

ply this technique to investigate the process of enzymatic degra-314

dation of heparin. Heparin, which is a long-chain polysaccha-315

ride with a inherently heterogeneous chain length, was fraction-316

ated with time by heparinase to form oligosacharides of different317

molecular weight i.e. chain length. As shown in Figure 6 both the318

diffusion coefficient and the width of the diffusion distribution are319

increasing during the enzymatic degradation as expected. Degra-320

dation products diffuse faster compared to heparin because of321

the lower molecular weight, which increases the observed mean322

diffusion coefficient. In addition, the average chain length of hep-323

arin is shortened and populations with different chain lengths are324

formed, which increases the polydispersity. The progress of the325

reaction can be independently monitored using the peak at 5.9326

ppm corresponding to oligosaccharide fragments of digested hep-327

arin.328

The heparin concentration is certainly below the KD of hep-329

arinase, which is high in the absence of calcium.32 Thus, we330

can assume a first order kinetic behaviour and regress the fol-331

lowing equation A(1− exp(−k (t − t0))) on the experimental data332

(where k is kinetic constant). The result is shown in Figure 6. A333

was assumed to be an average of the last 32 data points, while334

t0 was back-extrapolated from the first 40 points of the curve.335

The obtained reaction rate constants are gathered in Table 3. It336

can be observed that all three time-profiles reveal similar kinetic337
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constants for a processing time frame size of 64 points (“moving338

frame"), which gives also the largest R2 values. For 32 points, the339

decreased signal-to-noise ratio played role, while for 128 points340

an averaging of the dynamics within the frame was observed. In341

general, similar results were obtained but most important, the342

frame size is a processing parameter and can be adjusted after343

recording the experiment. It is noteworthy, that both goodness344

of the fitting and obtained parameters for frame of 32 points, are345

better than for standard (”serial“) p-DOSY.346

Table 3 Kinetic constants calculated for different frame sizes and

spectral parameters.

Parameter k
(

1
s

)

R2

Intensity of peak at 5.9 ppm 1.84 ·10−5 0.94

σ for frame size 32 1.73 ·10−5 0.87

σ for frame size 64 1.99 ·10−5 0.87

σ for frame size 128 1.93 ·10−5 0.80

σ from p-DOSY processing 1.95 ·10−5 0.7

µ for frame size 32 2.03 ·10−5 0.89

µ for frame size 64 1.86 ·10−5 0.93

µ for frame size 128 2.21 ·10−5 0.87

µ from p-DOSY processing 2.06 ·10−5 0.87

4 Conclusions347

We have discussed the choice of ℓp-norm (1 ≤ p ≤ 2) as a regu-348

larization for the inverse Laplace transform applied to diffusion349

NMR spectroscopy. The iteratively re-weighted least squares al-350

gorithm allowed us to implement ILT with an arbitrarily chosen351

regularisation term. Both simulations and experiments showed352

that proper reconstructions are obtained, when p is balanced be-353

tween the sparsifying (p = 1) and smoothing (p = 2) variant. The354

optimum can be found automatically by minimising the norm of355

the residual with respect to p. The proposed method is tailored356

to samples with various diffusion profiles and thus is an impor-357

tant extension of previously introduced approach based on a plain358

sparsity restraint. Additionally, we proved that ℓp-norm can be359

used for monitoring reactions in situ where the change in poly-360

dispersity plays a crucial role for a mechanistic explanation. The361

moving-frame variant of p-DOSY method allowed to obtain time-362

resolved data of high accuracy.363
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