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Nuclear magnetic resonance (NMR) is currently one of the
main analytical techniques applied to numerous branches #
of chemistry. Furthermore, NMR has been proven useful to #
follow in-situ reactions occurring on a time scale of hours #
and days. For complicated mixtures, NMR experiments pro- *
viding diffusion coefficients are particularly advantageous. '
However, the inverse Laplace transform (ILT) used to extract =2
the distribution of diffusion coefficients from an NMR signal 33
is known to be unstable and vulnerable to noise. Numer- 34
ous regularisation techniques have been proposed to cir- 35
cumvent this problem. In our recent study, we proposed a 3s
method based on sparsity-enforcing /;-norm minimisation. s7
This approach, which is referred to as ITAMeD, has been s
successful but limited to samples with a 'discrete’ distribu-
tion of diffusion coefficients. In this paper, we propose a
generalisation of ITAMeD using a tailored /,-norm (1 < p <2)
to process in particular signals arising from ’polydisperse’
samples. The performance of our method was tested on .
simulations and experimental datasets of polyethylene ox- i
ides with varying polydispersity index. Finally, we have ap-
plied our new method to monitor diffusion coefficient and
polydispersity changes of heparin undergoing enzymatic
degradation in real-time.
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1 Introduction a4

45
Nuclear magnetic resonance spectroscopy (NMR) has found nu-

merous applications in chemistry.

46

In particular, following reac-
47
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tions in-situ has recently attracted much attention.! Changes of
various spectral parameters, e.g. peak intensities, chemical shifts
or diffusion coefficients, can be monitored. The latter ones, al-
though less frequently used,?2 can be very valuable for study-
ing degradation processes, when large molecules are fractionated
into smaller fragments.

Commonly, the diffusion coefficient is estimated using the
pulsed-field gradient (PGSE) technique, which is based on the sig-
nal attenuation during the time lapse between the encoding and
decoding magnetic field gradient pulses. The attenuation corre-
lates with the diffusion coefficient D of each compound in the
sample as follows*

S(g) = S(0)e DTN (1)

where S(g) is the signal intensity for a given magnetic field gradi-
ent amplitude g, y is the gyromagnetic ratio, 8 is the duration of
the magnetic field gradient pulse and A’ is the effective diffusion
time. For a continuous distribution of diffusion coefficients A(D),
one can modify Equation (1) as follows

Dy ,
y_ &) :/ A(D)e DETEN g,

50~ Jom, =)

Equation (2) describes the Laplace transform of the distribution
of diffusion coefficients, A(D), showing that the inverse Laplace
transform (ILT) can be applied to obtain A(D) from an experi-
mental dataset W. Unfortunately, this procedure is numerically
unstable and highly prone to noise. Various methods have been
proposed to circumvent this problem >4,

These methods can be divided into two groups based on the
assumption regarding A(D). The first group contains methods,
which attempt to find only the diffusion coefficient of each com-
pound and neglect the shape of A(D). Applying a method of this
group to polydisperse samples will bias the obtained diffusion co-
efficient as recently reported by Zhou et. al.l>. However, they
perform very well in case of monodisperse samples. Algorithms of
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the first group are e.g. Direct Exponential Curve Resolution (DE-100
CRA)S, Speedy Component Resolution (SCORE) ?, Multivariateio:
Curve Resolution MCR !, Blind Source Separation 4 and mono-, o
and multi-exponential fitting 7. 103

The second group contains methods that can, to some extent,104
reconstruct the shape of A(D). This can be utilitsed by fitting pa-10s
rameters of a strictly defined distribution (e.g. log-normal!® andios
gamma distribution!?), or by fitting a distribution of diffusion
coefficients with additional constraints (Trust Region Algorithm'®
for Inversion (TRAIn)!®, CONTIN!2, Maximum Entropy (Max-
Ent) 11, and Iterative Thresholding Algorithm (ITAMeD) 13).

The last three methods can be discussed on the basis of regu-
larisation

7

. w2
glzlgl@A ¥z, +70(4), 3)

where @ is the Laplace transform matrix, A is the vector of the
distribution of diffusion coefficients, ® is the regularisation term,
and 7 controls the ratio between first and second term. For Max-
Ent, O is defined as

A; A;
®(A) = ! log : ) (4)
z,-“ LjAj T LjAj
while CONTIN uses
©(A) = LA, (5)

where L is a matrix that contains prior assumptions about the
data?0. ITAMeD utilises the following regularisation term

O(A) = [|Allg, - ©)

All aforementioned regularisations ®(A) are equivalents of cer-
tain assumptions about the shape of A(D). For example, ITAMeD
assumes that the resulting vector is sparse, CONTIN makes the
assumption that the distribution is smooth, while MaxEnt prefers
A(D) with the highest entropy.

In fact, none of the regularisation terms is generally valid. ITA-
MeD will not give the correct reconstruction for polydisperse sam-
ples with broad diffusion coefficient distributions, while CONTIN'*
and MaxEnt may provide an over-smoothed result for samples'®
with very sparse A(D) 3.

To circumvent these limitations we propose a new method us-
ing a tailored regularisation term, which is automatically tuned.1o
This regularisation term exploits the £,-norm with 1 < p <2, thati
allows balancing between sparsity and smoothness of the result-

ing distribution.The order p norm is defined as follows
112

(713

114
The proposed concept was tested on polymer samples with,,g

varying polydispersity and finally applied to monitor the degra-,,,
dation of heparin using PGSE NMR. 17

In contrary to previous NMR diffusometry studies of this reac-11s
tion2, we monitored not only the change of diffusion coefficient;s
but also polydispersity. 120

1
1Allg, = (JAI7 +1A15 +... + |A[R)?.

Additionally, we introduced the “moving-frame” processing,2i
which is known in the field of non-uniform sampling?!. Theiz

2| Journal Name, [year], [vol.],1—7

method is implemented by performing a series of PGSE exper-
iments with randomly permuted gradient values (known as p-
DOSY?) and combining them into one large dataset. The dataset
is then divided into overlapping subsets processed separately with
regularised ILT (see Figure 1). The method provides detailed in-
formation, as it allows to obtain in principle a continuous time-

profile of the process 22,

2 Methods

Fig. 1 The idea of the “moving-frame” processing is applied to
time-resolved PGSE data. FID signals with different amplitudes of the
diffusion-encoding gradient are acquired, while certain processes are
occurring in the sample that change the distribution of diffusion
coefficients. Overlapping data subsets are then processed using inverse
Laplace transform with tailored £,-norm regularisation.
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2.1 {,-norm regularization

The proposed method is using the regularisation term defined as

0(4) = [l

ps

(8)

where 1 < p <2 and thus the algorithm seeks for the following
minimum

. w2
glzlng)A Y|z, + lAlle, - ®

For p > 1 the solution is "smoothened", i.e. the differences be-
tween the values of elements of a solution vector A are sup-
pressed. In other words, the distributions of diffusion coeffi-
cients without significant "jumps" are preferred. The greater p
is, the more pronounced is the smoothing effect. The minimized
function presented in Equation (9) is composed of two terms:
[|PA - |%2 and 7|[A[[¢,. The former term is £,,-norm independent,
while the latter changes with p. In case of p > 1 for any two vec-
tors with the same mean value the smoother one (having smaller
deviation from the mean value) has a smaller ||A[|,,. This general
feature can be shown on the example of a two-element vector

This journal is © The Royal Society of Chemistry [year]
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1 Fig. 2 Comparison between the results of the optimal norm (dashed yellow line), ¢;-norm (dashed green line) and ¢,-norm (dashed red line) used in
2 the processing of the simulated data set of various A(D). The widths of the diffusion profiles and the corresponding optimal norms (o/p) are: A -
3 0.5/1.6,B-0.4/1.45,C-0.3/1.3,D-0.2/1.15, E- 0.1/1.1, F - 0.05/1.
4
° {,; p optimal
7 14 A‘ T :
8
9 0.87
>
10 2o
11 c
12 ﬂC_.J 0.41
13 0.2y
14 ]
15 0 R
16 17 &
17 i
0.8 i
18 -%’ i
19 qCJ 0.6 -','
20 iy
21 = 04 i
22 0.27
23 0 e
24 10°
25
26 . . .
o7 Diffusion Coefficient, (m2/s)
28
29 ,
30 1z and £-norm. Let vi = [M,M] and v, = [M — X, M + X], where M is Noise level (%) c log;o(D) (%)
31 122 the mean value of those vectors and X is a non-zero real number. Ref 0.2 -10.25
32 125 Then it can be shown: 0.001%  0.1999+0.03% -10.250+0.0006%
33 0.005%  0.1998+0.16% -10.249+-0.0014%
34 Ivalle, = \/(M—X)2 +(M+X)? = 0.01%  0.1998+0.45%  -10.2498+ 0.0049%
35 (10) 0.05%  0.2020+£3.54% -10.2504 0.0300 %
0.1%  0.2072+8.60% -10.249+0.0884%
— M2 X2 > VM2 = ,
g? M2 +X2 > VM? = ||vi]]g,. 0.2% 0.2128+11.46%  -10.248+ 0.1009%
38 126 Therefore p = 2 (and actually every p > 1) promotes the 0'324’ 0'2124i10'282/° '10'247i0'14630§’
39 12z smoothened result. It can be shown in a similar way that for 0.5% 0.2122:418.86%  -10.2466:£0.1834%
. . 1% 0.21174+22.72%  -10.2363+0.3309%
40 122 p =1 the smoothing effect is not observed.
41 1 A more detailed explanation can be found in the Supplemen- Table 1 Results of the reconstruction of the diffusion coefficient
42 . tary Information. distribution from Figure 2.D f.or.varying levels of random white noise.
43 . . . The mean and standard deviation of the results from 100
a4 " We have chosen the iteratively re-weighted least squares (IRLS) reconstructions for each noise level are shown.
45 '@ algorithm 23-25 a5 a method to implement the ILT regularised by
46 {p-norm with arbitrary p. The description of the algorithm to-
47 % gether .with the Matlab code can be found in Supplementary In- p=1,p=2and p=1,1.051.1...2 (20 values). The optimum p
4g 1% formation. 17 value was the one that provides A with minimal residuum of the
49 s fit
50 3 2.2 Simulations |[®A -, . 11)
51
5o 1 The method was tested on six different Gaussian distributionsi4s  Thus, the method does not require any prior knowledge about the
53 1 of diffusion coefficients (see Figure 2). Each distribution wasiso width of the distribution of diffusion coefficients. The residuum
54 1 generated using a logarithmically sampled diffusion coefficientisi  values for various p and o values are shown in Figure 3. For p=1,
55 0 grid with the centre of the peak at log|o(D) = —10.25 for vari-iz2 the approach is equivalent to the ITAMeD method, while p = 2
56 1 ous widths o. The distributions were converted to an exponentialiss corresponds to the CONTIN method with L set to the identity
57 2 decay, composed of 64 logarithmically sampled points and 0.1%;1ss matrix.
58 s white noise (as in the following references!%-11:13) Then, eachiss  The robustness to noise was tested by repeating the simulation
59 s simulated decay was processed using the IRLS method (10241 from Figure 3D 100 times for each of the nine white noise lev-
60 s points, total computational time ~12 s) and the ¢,-norm set toss7 els varying from 0.001% to 1% of the first data point. For each

1-7 |3
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simulation, the optimal p was estimated and the Gaussian curverss
was fitted to calculate the corresponding diffusion coefficient D,
and o. Interestingly, variable p values compensate for wrong, .

186

Fig. 3 The residuum of the fit ||®A — ||, as a function of p settings for b

the simulated data set shown in the Figure 2. The yellow dots 188

correspond to the optimal p values. 189
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guesses of the manually entered parameter 7. 014

Furthermore, as shown in the Supplementary Information (Fig-*'°
ure SI.1), the value of 7 can be changed by several orders of mag-
nitude without a significant difference in the result of reconstruc-zis

tion. 217

218
219

2.3 Test experiments on PEO polymers
220

Twelve polyethylene oxide polymers (PEOX21K, PEOX600K,z21
PEOX900K, PEOX30K, PEOX150K, PEOX250K, PEOX50K,2:2
PEOX85K, PEOX90K, PEOX500K, PEOX120K and PEOX200K)2zs
with various polydispersity indexes (PDI) were supplied by Amer-224
ican Polymer Standards Corporation. An appropriate amountzes
of the polymer was dissolved in D,O achieving a concentrationzzs
of 0.1% w/w. The polymer solutions were run at 298 K onzr
Bruker 600 MHz (Bruker, Germany) spectrometer equipped withzzs
a Diff30 diffusion probe and GREAT40 gradient amplifiers. Thezes
signal attenuation of the PEO peak at 3.6 ppm was obtainedzso
using a stimulated echo pulse sequence and 32 linearly spacedzsi
gradient amplitudes g, A = 100ms, and 6 =2ms. Each dataset waszs>
processed using (i) the IRLS method (1024 points of diffusionzss
coefficient grid, T = 1079, total computational time ~12 s) andass
the ¢,-normsetto p=1, p=2and p=1,1.05,1.1...2 (20 values)zss
and (ii) the log-normal fitting described in1°. 236

2.4 Monitoring the fractioning of heparin

12.3 mg of heparin sodium salt from porcine intestinal mucosa
(Sigma-Aldrich) was dissolved in 1 ml of 90% D, 0O, 7.0 pH phos-
phate buffer. Next, 0.3 mg of heparinase I and III Blend from
Flavobacterium heparinum (Sigma Aldrich) was added. The re-
action mixture was then transfered into an NMR tube, which was
put into a 700 MHz Agilent spectrometer equipped with HCN
probe temperature controlled at 25°C .

Each spectrum was obtained using a Bipolar Pulse Pair STE
with Watergate and the signal was accumulated 64 times, g,
A =200ms, and 6 = 3ms. The experiment was acquired using ran-
domly shuffled sampling of the diffusion decay as in the p-DOSY
experiment.® We used the list of 800 gradient values, which was
constructed using 25 repetitions of a permuted 32 gradient array
(The sampling schedule can be generated using the online inter-
face at: http://itamed.spektrino.com). The experiments lasted in
total for 59 hours.

The obtained heparin dataset was Fourier transformed and pro-
cessed using nmrPipe26 and imported into Matlab (MathWorks
Inc.). The region of 3.20-3.66 ppm, which arises from protons
of the sugar rings was integrated. Integration values were used
as an input for the ILT with tailored norm regularisation. The
data was processed using the “moving frame" method (see sec-
tion 2.5). The size of the “frame” was set to 32, 64 and 128 points
and diffusion coefficient grid to 256 points. Alse, we repeated the
processing, using “standard” p-DOSY approach with series of 32-
point subsets. Other processing parameters were the same as for
the PEO samples. Each obtained diffusion profile was fitted to a
Gaussian, whose centre corresponded to the mean diffusion coef-
ficient and the width reflects the polydispersity. Both parameters
were plotted as a function of time (Figure 6). Additionally, we
analysed the peak intensity at ~5.9 ppm, which corresponds to
digested heparin fragments?.

2.5

Randomly shuffled sampling of the gradient domain, referred
to as p-DOSY, has been recently reported as a good solution
to study dynamically changing samples with PGSE NMR3. The
use of p-DOSY allows to avoid bias in diffusion coefficient that
could be caused by coherent variations of signal intensity due
to reasons other than diffusion. We propose a slight modifica-
tion of p-DOSY approach, conceptually similar to time-resolved
non-uniform sampling, that has recently found numerous appli-
cations21:2227_ The series of experiments with differently per-
muted p-DOSY sampling schedules are performed and combined
into one large dataset. Then, as shown in Figure 1, the dataset is
divided into overlapping subsets, which are processed separately
with ILT. The resulting stack of spectra forms temporal pseudo-
dimension in whcih A(D) changes. The size of the single subset
is post-acquisition parameter, that has to compromise between
signal-to-noise problems (small frames) and averaging of stud-
ied effects within the frame (large frames). If artifacts associated
with particular schedule are observed, which can be the case of
ILT or NUS reconstructions, then moving-frame processing has an
advantage over standard “serial” p-DOSY. It provides time-profiles

“Moving-frame” p-DOSY

Page 4 of 7
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with more points and thus imperfections can average out e.g. dur-
ing curve fitting. We exploit this feature in the analysis of kinetic
parameters of heparin depolymerization.

Fig. 4 Optimal norm p as a function of the width of the diffusion
coefficient distribution ¢ obtained for the simulated data set. The line fit
with a coefficient of determination R2 = 0.982 shows that the correlation
is linear.

1.8]
1.6

o 1.4
1.2]

3 Results and Discussion

The simulation (see Figure 2) showed that the optimal ¢,-norm
reconstructs the signal with a clearly better fidelity compared to
the over-sparsifing ¢;-norm or the over-smoothing ¢;-norm. The
over-sparsifing behaviour manifests itself in approximation of a
broad Gaussian peak made of a set of false narrow peaks. On the,,,
other hand, over-smoothing leads to an artificial broadening of,,
the peak. 76
The optimal norm is found by repeating the simulation for dif-,,,
ferent values of p and checking the residuals of the fit in the signal,,
domain (). Figure 3 shows that there is a wide range of similarly,.,
behaving norms, especially for broad distributions of diffusion co-,, |
efficients. In fact, the global minimum can be found (marked ir128 ,
Figure 3), which provides the optimal p for all examples used in,,,
this study. -
It may happen, that for noisy signals the residual vs. p function284
is not as smooth and there are many local minima. For this case,
one should choose p corresponding to right side of the “valley”
(Figure 3) as smoothed regularisations are less prone to instabili-""
ties caused by noise. =
Interestingly, the plots shown in Figure 3 and the way the op—288
timal p is found resemble the L-curve approach used before for™
the automatic setting of regularisation parameter.?® Even very290
recently, Scotti et. all.2% demonstrated method for determining”™"
polydispersity in light scattering based on CONTIN with this L
curve criterion for finding 7. We have observed that both ¢ ,,-norm293
selection for constant T and 7 selection for constant £,-norm be-"*
have similarly for highly polydispersed samples. However, the”™
L-curve with constant ¢,-norm does not give a proper result for™
samples with low polydispersity (See Supplementary Information”"’
Fig.S1.2), in contrast to the tailored ¢,-norm. This is due to the
smoothing behaviour of ¢,-norm, which is explained in Section 4
of Supplementary Information. All the examples presented here
follow the model of an unimodal (although polydisperse) decay.zss

Analyst

Fig. 5 Correlation between ¢ and /log(PDI) for the PEOs. A - the
reconstructions with the optimal £,-norm B - with log-normal fitting.
The small case letters correspond to different polymer samples
described in Table 2. The line fit o = a\/log(PDI) gave the slope

o =0.56 (A) and a = 0.53 (B) with coefficients of determination:

R? =0.948 (A), R% = 0.886 (B).

oA 0
0.6 W ]
0.5 O@ @ 1
o 0.4 ]
0.3l
0.2-
ox o0
0
0.7B
0.6
0.5¢ [d] 1
O 0.4+ g

0.3 I3
ol R d |
(D

0 02 0.6 08 1

Viog(PDI)

It is worth emphasising that the optimal norm can be found only
for signals where the diffusion peaks do not differ in polydisper-
sity. This is usually not the case for polymodal signals. However,
as shown in SI, the performance of the tailored norm is very simi-
lar to methods dedicated to deal with such problems, or performs
even better for noisy data.

The linear correlation between the optimal p and the actual
width of the Gaussian distribution of diffusion coefficients o is
significant (R? =0.982) and the dependence is shown in Figure 4.

Furthermore, Table 1 shows that the method is stable and not
very vulnerable to noise. In particular, the line widths are well
preserved even for quite high noise levels.

The results of extensive simulations allowed to test the effec-
tiveness of our method on a set of polydisperse samples. To ex-
perimentally verify the accuracy of the reconstruction with the
proposed tailored norm, we used polymer samples with varying
polydispersity. The polydispersity index (PDI) of the polymer can
be defined as PDI = 1\1\/,[[—‘:, where My, is the weight-average, and My
is the number-average.3® PDI values used for comparison were
taken from the certificate provided by the supplier of the poly-
mers and obtained using Gel Permeation Chromatography (GPC).
It can be compared with the ¢ value of the reconstructed distri-
bution. The value was obtained by fitting the log-normal curve to
the result of reconstruction

A(D“LLO'): 262

Y
Wﬁexp <_<lg<D>u>> 12

As reported previously, 1° one correlates the PDI of a polymer with

1-7 |5
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Sample Polymer PDI D from optimal p (m%) D log-normal (’"TZ>
a PEOX21K  1.029 4.6E-11 4.57E-11
b PEOX600K 1.060 5.53E-12 5.55E-12
c PEOX900K 1.150 4.47E-12 4.51E-12
d PEOX30K  1.299 5.26E-11 5.11E-11
e PEOX150K 1.080 1.44E-11 1.43E-11
f PEOX250K 1.198 1.03E-11 1.04E-11
g PEOX50K  1.326 3.36E-11 3.37E-11
h PEOX85K  1.369 2.40E-11 2.38E-11
i PEOX90K  1.479 2.21E-11 2.24E-11
j PEOX500K 2.632 1.15E-11 1.13E-11
k PEOX120K 3.362 2.80E-11 2.79E-11
1 PEOX200K 4.340 2.21E-11 2.28E-11

Table 2 Description for Figure 5. D corresponds to the diffusion coefficient at the centre of the peak obtained from both methods.

o as follows 300

(13)3

302

2
PDI = exp (%)

Fig. 6 Increase of the diffusion coefficient (A - 1) and the polydispersity
(B- o) following the enzymatic degradation reaction of bovine heparin by
heparinase. Additionally, for comparison the intensity of the peak at 5.9
ppm is shown (C). Intensity was calculated as integration value of the
peak at the lowest gradient strength (0.11 T/m.) The green lines are the 3os
fit of the first order reaction with reaction rate constant (k) and goodness ;o4
of fit (R?) written for each parameter. The line was fitted to
“moving-frame” curve. Frame size of 64 points was used for A and B.
Blue points show the result obtained from ILT processing based on
p-DOSY processing.

303

304

307

308

309

310
x10™ o
312
h o
2 313
314
E 315
r\g 361 316
3
317
- k=1.86-10" 1/s e
R?=0.93 819
- - 320
1.7’B 321
e 322
TI'T 16 323
‘\E 324
o 150 325
326
k=1.9910" 1/s .
i R2=0.87
e . 328
329
3L
330
3 331
)
z\ ) 332
E 333
< 334
1| k=1.8410" 1/s 335
R?=0.94 336
0 10 20 30 40 50 60 337
___ Time, (h)
6| 1-7

where « is a scaling factor (typically between 0.5 and 0.6 for a
good solvent).3! Therefore, one would expect a linear correlation

between ¢ and +/log (PDI)

o = a+/log (PDI) 14

and the results, which are presented in Figure 5 confirm the
linear correlation. The value obtained by a linear fit (o = 0.56)
is within the theoretical boundaries. The result of the well es-
tablished method to evaluate the polydispersity of polymers, the
log-normal distribution fitting 1819 was compared with the tai-
lored regularisation. As shown in Figure 5 the dependence of o
as a function of \/logPDI deviates less for the optimal £,-norm
compared to the log-normal fitting (R> = 0.948 for tailored vs.
R? = 0.886 for log-normal).

Having established the robustness of the tailored norm regular-
isation for samples of different polydispersity, we were able to ap-
ply this technique to investigate the process of enzymatic degra-
dation of heparin. Heparin, which is a long-chain polysaccha-
ride with a inherently heterogeneous chain length, was fraction-
ated with time by heparinase to form oligosacharides of different
molecular weight i.e. chain length. As shown in Figure 6 both the
diffusion coefficient and the width of the diffusion distribution are
increasing during the enzymatic degradation as expected. Degra-
dation products diffuse faster compared to heparin because of
the lower molecular weight, which increases the observed mean
diffusion coefficient. In addition, the average chain length of hep-
arin is shortened and populations with different chain lengths are
formed, which increases the polydispersity. The progress of the
reaction can be independently monitored using the peak at 5.9
ppm corresponding to oligosaccharide fragments of digested hep-
arin.

The heparin concentration is certainly below the Kp of hep-
arinase, which is high in the absence of calcium.32 Thus, we
can assume a first order kinetic behaviour and regress the fol-
lowing equation A (1 —exp (—k (¢t —t())) on the experimental data
(where k is kinetic constant). The result is shown in Figure 6. A
was assumed to be an average of the last 32 data points, while
to was back-extrapolated from the first 40 points of the curve.
The obtained reaction rate constants are gathered in Table 3. It
can be observed that all three time-profiles reveal similar kinetic
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constants for a processing time frame size of 64 points (“movingsz
frame"), which gives also the largest R values. For 32 points, thears
decreased signal-to-noise ratio played role, while for 128 points
an averaging of the dynamics within the frame was observed. In
general, similar results were obtained but most important, thez80
frame size is a processing parameter and can be adjusted after,,
recording the experiment. It is noteworthy, that both goodness3s?
of the fitting and obtained parameters for frame of 32 points, arezzg

379

better than for standard ("serial) p-DOSY. 386
387

Table 3 Kinetic constants calculated for different frame sizes and 2::
spectral parameters. 390
391

Parameter k(1) R? -
Intensity of peak at 5.9 ppm  1.84-107>  0.94 a0
o for frame size 32 1.73-107°  0.87 a9
o for frame size 64 1.99-107°  0.87 3%
o for frame size 128 1.93-1075  0.80 ol
o from p-DOSY processing 1.95-107° 0.7 399
u for frame size 32 2.03-107°  0.89 400
u for frame size 64 1.86-107°  0.93 jﬂ;
u for frame size 128 221-107°  0.87 403
u from p-DOSY processing ~ 2.06-107>  0.87 :g;
406

407

4 Conclusions 408

409
We have discussed the choice of £,-norm (1 < p <2) as a regu-*'*
larization for the inverse Laplace transform applied to diffusion,,,
NMR spectroscopy. The iteratively re-weighted least squares al-413
gorithm allowed us to implement ILT with an arbitrarily chosen::
regularisation term. Both simulations and experiments showed41s
that proper reconstructions are obtained, when p is balanced be—ﬂ;
tween the sparsifying (p = 1) and smoothing (p = 2) variant. Theats
optimum can be found automatically by minimising the norm ofi‘1 z?
the residual with respect to p. The proposed method is tailoredaze
to samples with various diffusion profiles and thus is an impor-:ij
tant extension of previously introduced approach based on a plainass
sparsity restraint. Additionally, we proved that £,-norm can bejzj
used for monitoring reactions in situ where the change in poly-4
dispersity plays a crucial role for a mechanistic explanation. The**®
moving-frame variant of p-DOSY method allowed to obtain time-

resolved data of high accuracy.
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