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Calibration transfer via extreme learning machine auto-encoder 

Wo-Ruo Chena, Jun Binb, Hong-Mei Lua, Zhi-Min Zhanga, *, Yi-Zeng Lianga, † 

In order to solve the spectra standardization problem in near-infrared (NIR) spectroscopy, Transfer via Extreme learning 

machine Auto-encoder Method (TEAM) has been proposed in this study. A comparative study among TEAM, piecewise 

direct standardization (PDS), generalized least squares (GLS) and calibration transfer method based on canonical correlation 

analysis (CCA) was conducted, and the performances of these algorithms were benchmarked with three spectral dataset: 

corn, tobacco and pharmaceutical tablets spectra. Results show that TEAM is a stable method and can significantly reduce 

prediction errors compared with PDS, GLS and CCA. TEAM can also achieve the best RMSEPs in most cases with small 

number of calibration set. TEAM is implemented in Python language and available as open source package at 

https://github.com/zmzhang/TEAM.

Introduction 
NIR spectroscopy has become a popular analytical technique in 
many industrial applications, like petrochemical, agricultural, 
pharmaceutical and etc.1-4. The NIR is broadly used in online 
process monitoring applications. However, the NIR spectra 
may contain instrument-related variation not captured by the 
original model and this can lead to erroneous predictions. In 
general, the model obtained from one spectrometer is not 
applicable to other spectrometers. Recalibration can be used to 
solve this problem. But the recalibration process would be both 
costly and time consuming. A more acceptable way is to do 
calibration transfer, which can correct the difference of spectra 
between the master instrument and another (slave) instrument. 
Essentially, spectra on the slave instruments are transformed so 
as to appear as if originating from the master instrument; then 
the original calibration model can be used on the transformed 
spectra. 
Different calibration transfer techniques have been developed 
over the past years, which can be divided into three main 
approaches5. The first is model updating that is to rebuild the 
model with the addition of a few samples measured under new 
conditions to the old calibration set measured on primary 
conditions. But the samples added must contain the variability 
in the new conditions such that new model spans both old and 
new experimental conditions6. The second kinds of calibration 
transfer method is to reduce the difference of data measured on 

different conditions by signal preprocessing methods, including 
baseline elimination, derivative techniques, multiplicative 
scatter correction (MSC)7, finite impulse response (FIR) 
filtering8, orthogonal signal correction (OSC) 9, and generalized 
least squares (GLS) 10. 
The third kind of method is standardization methods. Through 
simple univariate slope and bias correction (SBC)11, the predict 
values can be standardized. It’s based on the assumption that 
the predictions values of slave instruments and master 
instruments are linear dependence. Then the predicted values 
for the new samples can be corrected for the bias and the slope 
of the regression equation. Alternatively, the spectra from the 
slave instrument can be corrected to become closer to the 
spectra of the same standardization samples from the master 
instrument, and the original model can be used for prediction 
on the slave instrument and new calibration is not required, e.g. 
direct standardization (DS), piecewise direct standardization 
(PDS) method developed by Wang et al12, as well as the 
patented method developed by Shenk and Westerhaus13. The 
third approach is to try to standardize of the model coefficients 
that was also proposed by Wang et al.12 or by Forina et al14. 
Among all the methods mentioned above, PDS is one of the 
most widely used transfer methods, and is typically employed 
as a reference for other novel techniques. Its superiority over 
other standardization methods can be attributed to its local 
character and multivariate nature5, enabling simultaneous 
correction of intensity differences, wavelength shifts and peak 
broadening. However, PDS method employs PCR or PLS 
regression method to transform the whole spectra also including 
useful parts which make contribution to the model and unuseful 
parts. 
Recently, a model transfer method based on canonical 
correlation analysis15 (CCA) was proposed. CCA was 
successfully applied to correct the differences between spectra 
measured on different instruments because of its ability to 
reveal the correlations between them. However, the 
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performance of CCA is sometime fluctuate and may face the 
problem that it may fail when the spectral matrix is close to 
singular. It is worth noting that both CCA and PDS methods 
use linear method to find the relationship between the slave 
spectra and master spectra. Besides the differences can be fitted 
by local PCR, local PLS and CCA, there may exist nonlinear 
differences between slave and master instruments which PDS 
and CCA cannot fit. 
As existing of intensity differences, wavelength shifts and peak 
broadening between the slave spectra and master spectra, we 
suppose that the spectra of slave instruments and master 
instruments is nonlinear dependence. In order to find the 
relationship between them, a novel calibration transfer method 
has been proposed based on ensemble ELM (TEAM) in this 
study. Because of the universally approximate ability of ELM16-

18, the relationship between slave spectra and master spectra can 
be found by TEAM. Extreme learning machine is a new 
learning scheme of feedforward neural networks proposed by 
Huang et al16, 19. Different from traditional feedforward 
networks algorithms which use the slow gradient based learning 
algorithms and tune the parameters of the networks iteratively, 
ELM randomly chooses the input weights and analytically 
determines the output weights to provide the best generalization 
performance at extremely high speed. ELM with arbitrary 
assigned input weights and hidden layer biases and with almost 
any nonzero activation function can universally approximate 
any continuous functions on any compact input sets20. 
ELM has both universal approximation and classification 
capabilities with significant advantages such as fast learning 
speed, ease of implementation and minimal human 
intervention. Compared with PDS algorithm in based on the 
local linear regression, TEAM can be used to establish the 
relationship between slave spectra and master spectra, which 
may significantly reduce prediction errors after calibration 
transfer. Due to advantages of TEAM, it can be used to correct 
the systematic difference between signals produced by master 
instruments and slave instruments. It can be applied to various 
analytical techniques, and TEAM has been used to transfer NIR 
dataset to illustrate its performance and advantages in this 
study. 

Theory 
Notation 

For each spectral matrix
N MX (x1, x2, …  ,  xN) , the rows N and 

columns M of X correspond to the samples and spectral 
variables respectively. X(i,j) represents the ith sample at jth 
wavelength. A superscript letter is added in front of the matrix 
to distinguish the spectra from the master instrument or the 
slave instrument, that is, mX and sX denote the spectra from 
master instrument and slave instrument respectively. Moreover, 
mC(mV, mP) and sC(sV, sP) correspond to calibration (validation, 
independent test ) samples of different instruments.  
 
Extreme learning machine 

 

Fig.1 the network structure of ELM 

For Single-Hidden Layer Feedforward Networks (SLFNs), the 

ELM algorithm can provide efficient unified solutions. Unlike 

the back-propagation or conjugate gradient descent training 

algorithm, the theory of ELM shows that the hidden nodes of 

generalized feedforward networks are important but needn’t be 

tuned and these hidden nodes can be randomly generated. All 

the hidden node parameters are independent from the target 

functions or the training datasets. The input data is mapped to 

L-dimensional ELM random feature space. Fig.1 shows the 

network structure of ELM. ELM algorithm can be summarized 

as Fig.1. 

Algorithm ELM: Given activation function (x)g , a training set 

 j j j j( , ) | , , j 1, , N   n mN x t x R t R  , and hidden node number L. 
Step 1: Randomly assign input weight wi and bias 

ib (i 1, 2, ,L)   . 
Step 2: Calculate the hidden layer output matrix H. 

 i j
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Step 3: Calculate the output weight by, here is the Moore-

Penrose generalized inverse of H and 1 2 N( , , , ) TT t t t .  

 +β = H T   (4) 
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To improve generalization performance and make the solution 

more robust, we can add a regularization term21 as shown: 

 
C

 
 
 

-1
T TI

β = + H H H T   (5) 

Where C is regularization parameter to make the result solution 
more stabler and have better generalization performance16. 
The ELM algorithm is an extremely fast algorithm which has 
both universal approximation and classification capabilities. 
 
ELM auto-encoder 

The ELM based auto-encoder (ELM-AE) can be seen as a 
special case of ELM, where the input data is used as output data 
(t=x), and the randomly generated weights and biases of the 
hidden nodes are chosen to be orthogonal. Orthogonalization of 
these randomly generated hidden parameters tends to improve 
ELM-AE’s generalization performance. According to ELM 
theory, ELMs are universal approximators, hence ELM-AE is 
as well. Fig.2 shows ELM-AE’s network structure. In ELM-
AE, the orthogonal random weights and biases of the hidden 
nodes project the input data to a different or equal dimension 
space, as shown by the Johnson-Lindenstrauss lemma22 and 
calculated as 

 
( b)

, b b 1

g  s

T Τ

h w x

w w = I =
  (6) 

Where 1 L, ,w = [w w ]  are the orthogonal random weights, and       

1 Lb , ,bb = [ ]  are the orthogonal random biases between the 
input and hidden nodes. ELM-AE’s output weight β is 
responsible for learning the transformation from the feature 
space to input data. For sparse and compressed ELM-AE 
representations, we calculate output weights β  as follows: 

 
C

m   
 

-1
T TI

β H H H X   (7) 

Where 1 NH = [h , ,h ]  are ELM-AE’s hidden layer outputs, and     

1 NX = [x , , x ]  are its input and output data, C is regularization 
parameter. 
In our study, the master and slave spectra are acquired from the 
same samples but on different spectrometers (slave and master 
instruments). The master spectra and slave spectra have 
essentially identical chemical information; their differences are 
mainly originated from the systematic differences between 
instruments. Therefore, ELM-AE has been used to find the 
transfer relationship between these instruments and the spectra 
on slave instrument is chosen as input and the spectra on master 
instrument as output. 
 
Calibration transfer by Ensemble ELM-AEs 

With the growth of hidden nodes, the prediction performance is 
getting better but the result is fluctuating in small scale. So  

 

Fig.2-the network structure of ELM-AE for calibration transfer 

randomly initialized hidden nodes for multiple times, we train 
multiple ELMs on the same training dataset to get a series of 
spectra. By averaging these spectra, the final transfer spectrum 
can be obtained. This procedure is usually known as ensemble 
and this network is called as Ensemble Extreme Learning 
Machines (EELM). This procedure improves the stability of the 
transfer result. Overview of TEAM is given in Fig.3. 
Step1: the samples are divided into three parts: calibration set, 
validation set and independent test set m( , )m mC V P . Then, the 
same subset samples are collected on the secondary 
instrument s( , )s sC V P . 
Step 2: randomly select hidden nodes number, for example 
from 300 to 500(more details about how to optimize the 
number of hidden neurons and how to choose a correct interval 
can be seen in supplement information). Using validation set to 
optimize the value of regularization parameter C. Training 
multiple ELM-AEs on mC  and s C . For each ELM-AE, the 
relationship between mC  and s C are settled with following 
equations: 

 
1

( (j,:) b ) (j,:), j 1, ,M
L

s m
i i i

i

g


   β w C C    (8) 

Step 3: Then for each ELM-AE model trained on mC  and s C  
transfer spectra new

kP (k=1,2,…,K) can be obtained, K is the 
trained ELMs numbers: 

 k
1

( (j,:) b ) (j,:), j 1, ,M
L

s new
i i i

i

g


   β w P P    (9) 

Step 4: Get the average transfer spectra average P  from a series of 
transfer spectra, average P  is the transfer spectra of independent 
test set from the slave instrument to master instrument. 

 

K

k
k 1

new

average

m

 P

P   (10) 

Experimental 
Spectral dataset 

In this study, three NIR datasets were used to investigate the 
performance of our method TEAM, PDS, GLS as well as CCA 
method. 
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Fig.3-The system diagram of TEAM. SC and MC are the spectra of master and slave 

instruments respectively. SC and MC are sent to ELM-AEs to generate ELM-AE models. 
SP are spectra of slave instruments which is needed to be transferred by the trained 

ELM-AEs. NewPi are the transferred spectra by the ith ELM-AE. The final transferred 

spectra of SP can be obtained by averaging all the NewPk. 

The first dataset contains spectra of 80 corn samples measured 
on different NIR spectrometers (MP5 for ‘primary’; M5 and 
MP6 for ‘secondary’). The wavelength ranges from 1100 to 
2498nm at 2nm intervals (700 channels). The moisture value 
for each sample is also included. MP5spec is the spectral 
measured on primary instrument FOSS NIRsystems 5000. 
M5spec, MP6spec are the spectra measured on slave 
instruments FOSS NIRsystems 5000 and FOSS NIRsystems 
6000, respectively. The data are available at 
http://www.eigenvector.com /Data/Corn/. 
The second dataset consists of 258 tobacco samples measured 
on two different NIR instruments. The Primary spectral data 
were measured on the AntarisTM Fourier transform (FT) 
instrument (Nicolet Inc., USA). The reflectance range from 
10000 to 4000 cm-1 at 4cm-1 interval (1557 channels) and the 
number of scans per spectrum was set to 32. The secondary 
spectral dataset was measured on the SpectrumTM Fourier 
transform (FT) instrument (PerkinElmer Inc., USA). The 
spectra were also acquired in the reflectance mode from 10000 
to 4000 cm-1 at 4cm-1 interval (1557 channels) and the number 
of scans per spectrum was set to 16. The concentration of total 
nitrogen was measured on a Skalar SAN plus segmented flow 
analyzer (Skalar Analytical Instruments, Netherlands). 
The third data set is a public available dataset for calibration 
transfer from the IDRC shootout 2002. Spectra of 654 
pharmaceutical tablets from two spectrometers (Foss 
NIRsystems, Silver-spring, MD) are measured in the 
transmittance mode. Tablets data from two instruments have 
been split into two calibration sets (155 tablets, Calibrate 1 and 
Calibrate 2) and two test sets (460 tablets, Test 1 and Test 2). 
The dataset includes tablets with a wide ASSAY range, 152-
239mg, for developing calibration model. The spectral region 
of interest for calibration transfer for the ASSAY content is 
1100-1700nm. 
Implementation and Data processing 

All the chemometric methods used for processing data were 
implemented by our research group in Python programming 
language (version 2.7.4). 

Calibrations were performed by partial least squares (PLS) 
regression. 10-fold cross validation was used to determine the 
optimal number of latent factors. Prediction performance was 
evaluated by a root mean square error on independent test set 
(RMSEP). The samples was split into three sets: calibration set, 
validation set and independent test set. The validation set is 
used to evaluate which activation function is better and to 
optimize the value of regularization parameter C. The 
independent test set is used to assess the performance of 
calibration transfer method. First the samples was split into two 
set by Kennard-Stone23 split method, one is train set and the 
other is independent test set. Then the train set was split into 
two set by Kennard-Stone split method, one is calibration set 
and the other is validation set. For corn, 80 samples was split 
into three sets: 48 samples for calibration samples, 16 samples 
for validation samples and 16 samples for independent test 
samples. For tobacco, 258 samples were split into  three sets: 
154 samples for calibration samples, 52 samples for validation 
samples and 52 samples for independent test samples. For 
pharmaceutical tablets, samples have already been partitioned; 
we mixed it and then split into three sets: 305 samples for 
calibration samples, 155 samples for validation samples and 
155 samples for independent test samples. The PLS model was 
set on the calibration samples. The Kennard-Stone method was 
adopted to select standardization samples on calibration 
samples. 

Results and Discussion 
To evaluate the performance of TEAM, the commonly used 
methods CCA, GLS and PDS are tested using the three data 
sets along with recalibration on slave instrument for 
comparison. For all of three datasets, the parameters of TEAM 
are set as follows: input weight iw  and bias bi are set randomly 
range from -0.1 to 0.1, the hidden nodes is selected 50 elements 
from 300 to 500, the activation function is chosen as tanh, the 
regularization coefficient is optimized by validation set and the 
default value is set as 50000. For each hidden node, ELM-AE 
model is trained to transfer the spectra on slave towards the 
master. Then, the average transfer spectra can be obtained. 
Finally, the calibration models are used to predict the 
concentration of interest and calculate the RMSEP for 
evaluating the performance of transferring. 
 
Performance Comparison  

Corn Dataset 

The Fig.S-2 and Fig.S-4 in supporting information show the 
differences between the 16 predictive corn samples of SP and 
MP by different calibration transfer methods, respectively. 
From these plots, one can see that the differences between the 
transfer spectra and the master spectra are significantly smaller 
than the ones between the slave spectra and the master spectra 
of the independent test sets. It is worth noticing that TEAM 
exhibits the smallest differences between the spectra. The 
performances of the four methods on corn samples are shown in 
Table 1, Fig.S-3 and Fig.S-5 in the supporting information. The 
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results listed in Table 1 show clearly that both TEAM and CCA 
have much lower prediction errors than PDS and GLS. In the 
table, w stands for the window size of PDS method and N 
stands for the number of subset samples. To evaluate the effect 
of the number of subset samples on different calibration 
methods, 10, 15, 20, 25, 30, 35, 40 standardization samples are 
considered. From the table we can see that different sizes of 
windows are considered for PDS method. From the results, one 

can infer that the small window size (w=1) gives a better result 
from M5 to MP5, but for MP6 to MP5, we can see that the 
large window size (w=7) gives the better results. With the 
increasing of subset samples, the performance of TEAM is 
better, but the change trend of the performance of CCA, PDS 
and GLS is not so clear. From Fig.S-3 and Fig.S-5 and Table 1, 
one can see clearly that TEAM gets the best performance for 
prediction than other three methods. 

 

Table.1    RMSEP results of three spectra dataset with different transfer methods 

RMSEP for corn data (M5to MP5)  

RMSEP PDS CCA GLS TEAM PLS_M Recalibration 

W=1 W=3 W=5 W=7 

N=10 0.412 0.412 0.414 0.417 0.131 0.199 0.186  

 

0.130 

 

 

0.007 

N=15 0.410 0.410 0.412 0.414 0.161 0.229 0.098 

N=20 0.442 0.443 0.445 0.450 0.148 0.202 0.098 

N=25 0.434 0.435 0.437 0.440 0.192 0.194 0.121 

N=30 0.422 0.423 0.425 0.428 0.117 0.234 0.083 

N=35 0.412 0.413 0.415 0.417 0.140 0.231 0.078 

N=40 0.415 0.416 0.418 0.421 0.084 0.230 0.073 

RMSEP for corn data (MP6 to MP5)  

N=10 0.584 0.566 0.550 0.535 0.170 0.177 0.236  

 

0.130 

 

 

0.133 

N=15 0.575 0.559 0.544 0.523 0.146 0.167 0.141 

N=20 0.604 0.584 0.567 0.550 0.194 0.170 0.158 

N=25 0.593 0.574 0.558 0.543 0.168 0.169 0.146 

N=30 0.589 0.572 0.556 0.541 0.151 0.172 0.146 

N=35 0.586 0.570 0.554 0.539 0.133 0.170 0.140 

N=40 0.587 0.571 0.555 0.540 0.152 0.166 0.136  

RMSEP for tobacco data   

N=10 0.163 0.163 0.162 0.162 0.160 0.071 0.141  

 

 

0.072 

 

 

 

0.064 

N=15 0.158 0.158 0.158 0.157 0.096 0.072 0.084 

N=20 0.169 0.169 0.169 0.168 0.081 0.074 0.073 

N=25 0.170 0.170 0.169 0.169 0.073 0.073 0.073 

N=30 0.176 0.176 0.176 0.175 0.067 0.072 0.072 

N=35 0.168 0.168 0.167 0.167 0.066 0.072 0.073 

N=40 0.168 0.168 0.167 0.167 0.063 0.073 0.069 

N=50 0.162 0.162 0.161 0.161 0.065 0.067 0.068  

RMSEP for pharmaceutical tablet data  

N=10 6.82 7.13 7.03 7.08 5.18 5.17 5.48  

 

 

4.23 

 

 

 

4.57 

N=15 6.23 6.49 6.42 6.48 Nan* 4.71 6.94 

N=20 6.22 6.49 6.41 6.46 Nan 4.77 5.24 

N=25 6.19 6.43 6.35 6.39 Nan 4.58 4.52 

N=30 6.53 6.80 6.71 6.73 Nan 4.51 4.37 

N=35 6.58 6.87 6.77 6.77 Nan 4.52 4.34 

N=40 6.32 6.59 6.49 6.51 Nan 4.59 4.34 

N=50 6.59 6.81 6.72 6.74 Nan 4.89 4.34  

N=55 6.47 6.68 6.60 6.62 4.62 4.88 4.34   

N=60 6.36 6.56 6.48 6.50 4.68 4.67 4.32   
                      * As the matrix is nearly to singular, so the CCA cannot transfer the spectra of slave instrument to master instrument 
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Table.2   RMSEP for three spectra dataset of TEAM with different activation functions 

 

RMSEP 

TEAM 

corn data (M5 to MP5) corn data (MP6 to MP5) tobacco data Pharmaceutical tablet data 

sigmoid tanh sigmoid tanh Sigmoid tanh sigmoid tanh 

N=10 0.120 0.182 0.208 0.250 0.114 0.129 6.52 6.18 
N=15 0.123 0.117 0.173 0.164 0.076 0.077 7.22 7.10 

N=20 0.100 0.077 0.163 0.145 0.064 0.068 6.28 6.09 

N=25 0.100 0.090 0.160 0.154 0.062 0.063 5.82 5.63 

N=30 0.077 0.049 0.154 0.160 0.062 0.064 5.67 5.61 

N=35 0.058 0.063 0.159 0.164 0.062 0.064 5.63 5.57 

N=40 0.072 0.102 0.157 0.158 0.064 0.065 5.64 5.57 

N=45 0.067 0.092 0.157 0.147 0.064 0.065 5.62 5.53 

 
Table.3   RMSEP for three spectra dataset of TEAM with different regularization parameters 
 
 

RMSEP 

TEAM 

corn data (M5 to MP5) corn data (MP6 to MP5) tobacco data Pharmaceutical tablet data 

0 50000 0 50000  0 50000 500 50000 

N=10 0.238 0.182 0.266 0.250 0.137 0.129 6.18 5.92 
N=15 0.220 0.117 0.160 0.164 0.089 0.077 7.10 6.85 

N=20 0.124 0.077 0.168 0.145 0.077 0.068 6.09 5.84 

N=25 0.195 0.090 0.190 0.154 0.066 0.063 5.63 5.62 

N=30 0.177 0.049 0.167 0.160 0.061 0.064 5.61 5.66 

N=35 0.169 0.063 0.180 0.164 0.063 0.064 5.57 5.62 

N=40 0.183 0.102 0.176 0.158 0.064 0.065 5.57 5.60 

N=45 0.135 0.092 0.161 0.147 0.063 0.065 5.53 5.57 

Tobacco Dataset 

The results of this dataset can be seen from Fig. S-7 to Fig. S-8 
in the supporting information as well as Table 1. With the 
increasing of subset samples, the change trend of performance 
of PDS is not so clear, but the performance of TEAM is better. 
And with the change of window sizes, the result of PDS cannot 
get better. 
When the number of subset samples is larger than 20, the 
performance of TEAM is stable and close to the RMSEP result 
of independent test set on master instrument. CCA, GLS and 
TEAM methods all can get good performance on tobacco 
dataset. 
 

Pharmaceutical tablets dataset 

From Fig. S-10 to Fig. S-11 in supporting information and also 
table 1 one can also see that the performance of TEAM is the 
best and the performance of GLS is rather better than PDS. 
When the number of subset samples is larger than 30, the 
performance of TEAM is stable It is worth noting that CCA 
cannot well transfer spectra with the numbers of subset samples 
are 15, 20, 25, 30, 35, 40 and 50, respectively, as the matrices 
are singular for this dataset (see Table 1). When the number of 
subset samples is larger than 35, the performance of TEAM is 
stable and close to the RMSEP result of independent test set on 
master instrument. 

From the discussion above, one can easily reach that TEAM 
can achieve the best RMSEPs in most cases with small number  
 
of calibration set for establishing the transfer relationship. 
Therefore, the performance of TEAM is the best as it can find 
more accurate transfer relationship between the slave spectra 
and master spectra with small number of spectra in calibration 
set to reduce the effect from systematic differences between 
instruments. 
 
Stability of ensemble ELM-AEs  

In order to check the stability of the proposed method, the 
weights and biases of the hidden nodes were generated 
randomly. The number of hidden nodes for each ELM-AE is 
also randomly selected from 300 to 500 for 10 times. 2000 
ensemble ELM-AEs with 40 standardization samples were 
trained for tobacco dataset, and then transferred the 
independent test set with these ELM-AEs to obtain the 
distribution of the RMSEPs. Fig.4 shows the distribution of the 
RMSEPs. T-test was performed and at the significance level 
alpha = 0.05, the mean of RMSEP obtained with TEAM is 
significantly less than the RMSEP obtained with PDS and GLS. 
The variance of the distribution is 0.0025, which is relatively 
small. One can infer from Fig.4 that TEAM is a stable 
calibration transfer method even the weights, bias and the 
number of hidden nodes are randomly generated. The same 
results can be obtained by other datasets. Please see Fig S-12, 
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Fig S-13 and Fig S-14 in the supplement information for more 
details. 

 

Fig.4 the distribution of RMSEP of tobacco dataset with 40 standardization samples with 

different hidden nodes numbers and different weights and biases. 

Select activation function 

The activation function in ELM is usually chosen as sigmoid 
and tanh function. They can be described mathematically with 
equations as follows: 
Tanh function: 

 tanh(x)
x x

x x

e e

e e









  (11) 

Sigmoid function: 

 
1

(x)
1 x

sigmoid
e


  (12) 

As tanh function has stronger gradients and can avoid bias in 
the gradients and is completely symmetric. 
So tanh function has better performance than sigmoid function 
in general24, 25. By comparing the RMSEP of different 
activation functions in TEAM on validation set for three 
spectral dataset, one can see from Table 2 that tanh activation 
function has significantly better performance than sigmoid 
function in most cases. Therefore, the tanh function has been 
chosen as activation function for calibration transfer in TEAM 
in this study. 
 
Regularization for ELM to improve performance 

In TEAM, the regularization term has been applied to improve 
generalization performance and make the solution more 
robust21, 26. The regularization can be controlled by the 
parameter C in equation (7). As the results shown in Table.3, by 
adding a regularization term, the performance of TEAM is 
more robust with the growth of the number of subset samples. 
Also, the performance of TEAM is getting better. The 
regularization parameter C is optimized on validation sets. To 
optimize the regularization parameter C, a group of parameters 
were taken into consideration: 0, 100, 200, 500, 1000, 2000, 
3000,  4000,  5000,  6000,  7000,  8000,  9000,  10000,  20000, 

 

Fig.5 the variation trend of RMSEP with the change of regularization parameter C of 

corn (from M5 transfer to MP5) dataset with 20 standardization samples. 

30000, 40000, 50000. Fig.5 shows the variation trend of 
RMSEP with the change of C for corn samples (from M5 
transfer to MP5). With the growth of C, the RMSEP value is 
decrease and trend to be steady. From Fig S-15 to Fig S-16 in 
supporting information, the same result can be obtained by corn 
datasets (from MP6 transfer to MP5) and tobacco datasets. So, 
for these two datasets, we choose regularization parameter C as 
50000. But for pharmaceutical tablets datasets, from the Fig S-
17, we can find the RMSEP get minimize values when C is 500. 
So for pharmaceutical tablets datasets, we choose regularization 
parameter C as 500. But for pharmaceutical tablets datasets, the 
variation range of RMSEP on validation set is very small, so 
even choose regularization parameter C as 50000, we can still 
get good performance for TEAM method on independent test 
set. So for suggestion, when use TEAM, the default value of 
regularization parameter C can be set as 50000.But readers can 
also optimize the regularization parameter C based on the 
RMSEP value on validation set.  Please see Fig S-15, Fig S-16 
and Fig S-17 in the supplement information for more details. 

Conclusions 
In this study, the TEAM has been developed based on ELM-AE, 
and it was applied to transfer NIR datasets. The results obtained 
from three classic NIR datasets for calibration transfer show 
that TEAM is stable and can successfully correct the systematic 
differences between spectra obtained from different instruments. 
The performance of the proposed method, say TEAM, is better 
than PDS, GLS and CCA with three NIR datasets. TEAM can 
also achieve the best RMSEPs in most cases with small number 
of calibration set for establishing the transfer relationship. 
These advantages guarantee that TEAM will be an accurate and 
practical method to transfer spectra of slave instrument toward 
a well-established and maintained calibration model with few 
transfer samples, which eliminates the costly and time 
consuming recalibration. 
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