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An Introduction to Systems Toxicology 

Nick J. Plant  

The science of toxicology is the science of the system. Toxicologists aim to understand and 
predict the adverse effects of chemicals on biological systems. As biological systems are 
extremely complex, the challenge of predicting human toxicity early in the drug discovery 
process is immense. In the past decades, a huge effort has been undertaken to characterise the 
impact of chemicals on biological systems using in vitro, pre-clinical and clinical approaches. 
This has led to a vast amount of knowledge on the biology of systems, especially as a result of 
the data deluge from –omic level investigations. However, a lack of robust and comprehensive 
integration has meant that this wealth of data has still not led to accurate prediction of toxicity 
in a single system, or the ability to extrapolate robustly between systems. The new discipline 
of systems toxicology aims to take the computational approaches developed in systems biology 
and apply them to toxicology-related questions. This review will examine approaches ranging 
from relational databases that are both repositories for curated information and screening tools 
in their own right, to the potential of digital organisms in systems toxicology. Both the basic 
methodologies and how best they may be applied to safety assessment of chemicals will be 
covered. This integrated examination of toxicological data is predicted to herald a step-change 
in our ability to both understand and predict adverse effects of chemicals.   
 
 
 

General Introduction 

A major driver in toxicology research is to understand, and 
ultimately predict, the adverse effects caused by xenobiotics. A 
number of approaches to achieve this aim can be envisaged. 
Before we can understand which chemicals may elicit a toxic 
response, or the mechanism by which this is achieved, we must 
fully define the biological phenotype that we wish to describe 
as an adverse event. Obviously the more detail that we can 
include in this description, the more robust downstream 
predictions are likely to be. Once we have defined the adverse 
event, we can begin to predict which xenobiotics will cause it. 
Perhaps the simplest approach for such prediction is guilt by 
association; chemicals with similar structures or modes of 
action are assumed to share similar biological effects, including 
toxicology. Beyond, simple guilt by association (and this in 
itself is by no means simple), we can begin to include 
mechanistic understanding, allowing us to more fully examine 
the likelihood that a toxic behaviour could be caused. A final 
approach stratifies the population, identifies those most 
sensitive to the toxic effect and attempts to define the factors 
that predispose these individuals to the adverse effect.  

School of Biosciences and Medicine, University of Surrey, 
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These approaches are often combined, with the term adverse 
outcome pathway1 increasingly used to describe the 
comprehensive risk assessment of human exposure to 
xenobiotics. 
 While there is an extensive literature identifying adverse 
effects, the molecular underpinnings for many of these adverse 
effects are poorly understood. One reason for this is the sheer 
complexity of the human body.  
 As depicted in Figure 1, a traditional view of drug action 
envisages a single, specific interaction between the drug and a 
target protein leading to the desired pharmacology and 
therapeutic efficacy. Interactions that do not occur with the 
target protein (off-target) are often seen to be the cause of 
undesirable toxicity. However, in reality, any single chemical 
will almost certainly interact with multiple proteins, which in 
turn will also interact with an array of other proteins. It is this 
complex interaction network that underlies both the desired 
pharmacology and undesired toxicology of a drug, often 
through over-lapping mechanisms. 
 To understand how this interaction network leads to either 
therapeutic efficacy or toxicity, or both, requires the adoption 
of a network view of drug action. Indeed, an extension of the 
network drug paradigm is that it may be more effective to use 
multiple drugs to drive towards a particular biological effect 
(e.g. therapeutic treatment of a disease). Each of the drugs in 
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the combination may have limited effect on their own, and they 
will each target different aspects of the network; however, their 
combined effect will result in therapeutic efficacy with a 
reduced toxic liability2, 3.  

 
Figure  1:  Traditional  and  Network  paradigms  for  drug  action.  (A)  In  the 
traditional view, drugs demonstrate a specific interaction with the target protein, 
leading to the therapeutic effect, while an off‐target interactions lead to toxicity. 
(B)  In  a  network  drug  paradigm,  drugs may  interact with  one  or more  target 
proteins with differing  affinities.  These  target proteins may  interact with  each 
other, either directly or  indirectly,  in both positive (arrows) and  inhibitory (end‐
bar) modes.  The  net  effect  of  all  these  interactions may  lead  to  both  desired 
therapy and  toxicity, with  the  two not being necessarily mutually exclusive. An 
important  extension  to  the  network  drug  paradigm  allows  for  the  use  of 
combination  drug  cocktails  to  specifically  tailor  the  net  response,  increasing 
therapeutic efficacy while minimising toxicity.    

 To make the most of the network drug paradigm, it is 
(obviously) necessary to understand the network, allowing us to 
predict the effect of single/multiple perturbations. As 
technology and biological understanding improves, we are able 
to design experiments of increasing complexity and resolution, 
further adding to the wealth of data that already exists to 
describe biological phenomena. However, the very nature of 
this data deluge means that it is becoming increasingly difficult 
to both identify and successfully use the relevant information, 
This has led to a shift in biomedical research away from 
producing data (the omics era) to understanding these legacy 
dataset (the systems era). A relatively new child of the systems 
era is systems toxicology, where large amounts of both de novo 
and legacy data are integrated to gain novel insights on the link 
between molecular interactions and adverse effects4-6. This data 
may be derived from targeted (transgenic) animal or in vitro 
studies, through single omics level datasets (e.g. the 
transcriptomic analysis of multiple hepatotoxicants7), or multi-
omic datasets (e.g. transcriptomic, proteomic and metabonomic 
analysis of methapyrilene hepatotoxicity8). 
 An important aspect of systems toxicology is the ability to 
study the emergent properties of biological systems by 
examining large scale networks rather than individual pathways 

or proteins. Emergent properties are those properties of a 
system that could not be predicated by studying the individual 
components in isolation; perhaps the most striking emergent 
property is life, as the totality of a biological organism cannot 
be predicted by studying a single cell in isolation2, 9. Given the 
poor record of scientists in predicting the adverse effects of 
xenobiotics from disparate datasets, one logical conclusion is 
that many toxicological effects are in fact emergent properties 
from the xenobiotic perturbation of biological systems. The rise 
of systems toxicology as a specific sub-discipline within 
toxicology can be seen by the exponential rise in publications 
that refer to either systems toxicology of network toxicology in 
the last decade (Figure 2). Remarkably, the earliest publication 
using “systems toxicology” was published in 200310, 
demonstrating what a new discipline it is.  

 
Figure 2: System and Network publications in Toxicology. Data are from Web of 
Science using “systems toxicology” (blue bars) or “network AND toxicology” (red 
bars) as query terms within article titles, keywords and abstract. 

 This review will consider the computational approaches 
available for systems toxicology, and how they complement all 
aspects of the drug discovery pipeline. 

Systems Toxicology: Multiple approaches, one aim 

Perhaps the most confusing aspect of systems toxicology to the 
uninitiated is the sheer number of different approaches that are 
available to the researcher. It is thus necessary to first decide 
what you wish to gain from a systems toxicology approach and 
the data available to you. Together, these questions will help 
define which approach(es) are most appropriate. There are 
many possible decision trees, but they can be essentially 
encapsulated in the following questions. 

1. Do I need to understand the mechanism? 
2. Is the biology to be examined well understood? 
3. Is the biology to be examined well characterised? 
4. Does the biology occur within a single cell, a single 

organ, or at the level of the whole organism?  
 If the answer to the first question is no, then a relational 
approach may be optimal. In a relational approach, associations 
between network components are predicted without necessarily 
understanding the mechanistic underpinning. These 
associations may extend from predicting chemical-protein or 
protein-protein interactions, through to predicting toxicity of a 
chemical based upon its structural fragments. Relationships 
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may be defined by rules, statistical associations or collation of 
literature data. 
 If the answer to the second question is also no, then 
relational approaches may also be optimal; you cannot 
mechanistically model what you don’t know. Providing that the 
answer to the second question is yes, then a modelling approach 
may be applicable, with the third and fourth questions setting 
the type of model that can be used. The answer to the third 
question will decide whether any model will be quantitative 
(i.e. based on known network connectivity and with 
kinetic/abundance values) or qualitative (i.e. based on known 
network connectivity but without kinetic/abundance values). 
Quantitative models can simulate biology in a highly precise 
manner, predicting dose- and time- courses with biologically 
meaningful values. In contrast, qualitative models will predict 
the behaviour of a system, but without ‘real’ numbers. Both 
approaches are of value, and the decision of which to use is 
often driven by the data availability. Finally, the answer to the 
fourth question will help to drive the degree of reductionism 
that is required within the model. As a model increases in 
complexity, essentially as it tries to reproduces more biology, 
then it becomes increasingly taxing both in terms of the 
biological data required to make the model and the 
computational power required to run the model. Hence, a trade-
off between model size and complexity is required, with larger 
models often reducing complex biological sub-systems into 
simpler units that are more feasible to model. 
 The relationship of the systems toxicology approaches 
described within this review to the drug discovery/development 
pipeline is shown in figure 3 

 
Figure  3:  Potential  roles  for  systems  toxicology  in  drug  discovery  and 
development. Systems toxicology has the potential to add significant value both 
in  the  early  (discovery)  and  later  (development)  phases  of  the  drug  pipeline. 
Potential  areas  of  application  for  the  approaches  discussed  in  this  review  are 
indicated. PBPK = Physiologically‐based pharmacokinetics 

Relational approaches: Predicting toxicity based upon 
prior knowledge  

Relational approaches are in many ways simplistic in their 
methodology, but can be highly effective for identifying 
exposure-response relationships. The underlying paradigm for 
relational approaches in one of guilt by association; essentially, 

rule- or statistical-based approaches are used to determine the 
weight of evidence that two data are linked. For example, the 
probability that a chemical with moiety X will be a mutagen, or 
the probability that a chemical-protein or protein-protein 
interaction will occur. 
 At one end of the spectrum, relational databases can be 
automatically generated using bioinformatic tools to mine data 
from online resources: For example, the phrase “X and Y 
interact to activate Z” can be identified from within the text of a 
journal article, creating the interaction between X and Y within 
the database. An automated curation process generates a very 
large database of potential interactions, but automation 
invariably leads to a reduction in quality, with interactions 
sometimes incorrectly assigned. To mitigate this issue and the 
reduced predictive power associated with it, most databases 
contain a degree of manual curation. This painstaking process 
assesses the evidence for any given interaction in a more robust 
manner. Obviously, a database that is manually curated will 
tend to provide higher quality predictions, but the biological 
coverage of each database may be less due to the far greater 
person-hours required to create such databases. Where 
relationships are explicitly defined in the literature, statistical 
approaches allow the prediction of how likely such an effect is. 
These models range from the purely qualitative to fully 
quantitative, and encompass only a few biological sub-systems 
to the entire metabolism of the cell. Finally, such models may 
be extended to examine organ- or even organism-level 
responses, albeit with a significant reduction in the resolution of 
the data. Table 1 presents some of the commonly used 
relational databases, covering both those specifically aimed at 
toxicity prediction and more general databases of interactions.  
 The use of relational databases has been commonplace in 
the pharmaceutical industry for many decades, especially in the 
early stages of drug discovery/development where it is 
necessary to reduce a large number of potential chemical hits 
into a smaller number of lead compounds. 
 In silico screening of compound libraries can be used to 
identify structural alerts associated with adverse effects, 
allowing de-selection of chemicals likely to elicit toxicity later 
in the development programme. Two common approaches are 
rule-based systems and structure activity relationships. 
Programmes such as DEREK11 use the rule-based approach,  
identifying chemical structural alerts based upon an extensive 
manually curated knowledge base of experimentally-validated 
effects. In contrast, programmes such as TOPKAT12 use  
(quantitative) structural-activity relationships systems to 
associate associations toxicological endpoints with the 
predicted chemical space required to elicit this endpoint. While 
these two approaches each have different advantages and 
disadvantages, their overall ability to detect common toxic 
endpoints, such as mutagenicity is remarkably similar13-15. If 
used within the accepted bounds of the systems (structural 
rules16 and toxicophores17, respectively) these approaches are 
very powerful and yield important information for the 
prioritisation of compounds drug discovery. 
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Table 1: Relational databases 

Relational Approach        Website       Reference 

Chemical Perturbation Effects 
LINCS: Library of integrated network-based celluar signatures    http://www.lincsproject.org/      18 
ArrayExpress: Gene expression signatures      http://www.ebi.ac.uk/arrayexpress/      19 
GEO: Gene expression omnibus       http://www.ncbi.nlm.nih.gov/geo/     20 
ToxCast         http://www.epa.gov/ncct/toxcast/     21 
Rule-based toxicity prediction  
DEREK Nexus        http://www.lhasalimited.org/products/derek-nexus.htm   11 
Toxtree         http://toxtree.sourceforge.net/      22 
Rule-based metabolism prediction  
Meteor Nexus        http://www.lhasalimited.org/products/meteor-nexus.htm   
(Q)SAR-based toxicity prediction 
TOPKAT:  TOxicity Prediction by Komputer Assisted Technology    http://accelrys.com/solutions/scientific-need/predictive-toxicology.html 12 
CEASAR: Computer-Assisted Evaluation of  Industrial     http://www.caesar-project.eu/      23 
 Chemicals According to Reguations 
TEST: Toxicity Estimation Software Tool      http://www.epa.gov/nrmrl/std/qsar/qsar.html#TEST    24 
Chemical-protein interaction prediction 
CARLSBAD: Drug-target interactions      http://carlsbad.health.unm.edu/wp/  
ChemProt: chemical-protein predicted interactions     http://www.cbs.dtu.dk/services/ChemProt-1.0/ChemProt-2.0/   25 
SLAP: Drug-target prediction       http://cheminfov.informatics.indiana.edu:8080/slap/    26 
Protein-protein interaction and pathway prediction 
Bio-Entity Network        http://stat.fsu.edu/~jinfeng/IBN.html     27 
IMID: Integrated Molecular Interaction Database     http://integrativebiology.org/       28 
APID: Agile Protein Interaction Data Analyzer     http://bioinfow.dep.usal.es/apid/index.htm     29 
IntAct: Molecular Interaction database      http://www.ebi.ac.uk/intact/main.xhtml     30 
BioGRID: Biological General Repository for Interaction    http://thebiogrid.org/      31                  

Datasets 
STRING: Function protein interactions      http://string.embl.de/      32 

 A recent development in SAR-based toxicity screening was 
presented by Lounkine et al.,33. They first defined 73 biological 
targets associated with adverse drug outcomes ranging from 
sleep disorders to tachycardia. A similarity ensemble approach 
was then used to compare the structure of 656 marketed drugs 
to known ligands for each of these 73 targets, assessing if they 
shared greater similarity than that expected by chance. Several 
hundred previously annotated interactions were identified, but 
also identified 893 that were previously unknown. Of these, 
125 were shown to have IC50 concentrations in the micromolar 
range, and hence be of potential clinical significance. While 
such studies demonstrate the power of large-scale screening 
they also show some of the limitations with such an approach. 
In this case, while 125 new drug-adverse outcome pathway 
interactions were confirmed, over three quarters of the 
predicted interactions were disproved when tested 
experimentally. This is perhaps a timely reminder that as soon 
as tools are taken outside of a tightly constrained question-
space their utility as a definitive yes/no predictor drops 
considerably. 

Small‐scale models 

An alternate approach to relational databases is to build a 
computational model of an adverse effect of interest. The aim 
of such models is to better understand the biological conditions 
(often referred to as design principles) that underlie the adverse 
effect, allowing an improved prediction of when these rules will 
be met, and toxicity seen. Provided that at least some molecular 
underpinning is known for the adverse effect, then a 
mechanistic modelling approach is possible. The exact nature 

of the model(s) that can be employed will depend upon both the 
level of mechanistic detail known, and also the desired 
question. However, all these modelling approaches will utilise 
the same basic steps. In essence, the biological system in 
question is broken down into a series of reactions, each of 
which can be described by a mathematical formula. Perhaps the 
best known examples of the application of such approaches in 
the pharmaceutical arena are physiologically-based 
pharmacokinetic (PBPK) models used to predict drug 
disposition within the body. 
 A key aspect of PBPK modelling is its reductionist 
approach, simplifying the model such that neither biological 
knowledge nor computational factors are limiting, but still 
allowing robust whole-organism predictions. A full description 
of PBPK is outside the scope of the review, but the interested 
reader is referred to reviews by Rowland34 and Bouzam35. 
PBPK models are an excellent example of how meaningful 
predictions can be made with only a limited amount of 
mechanistic information36. However, this reductionist approach, 
where multiple biological events are reduced to a single 
formula, has the limitation that the role of individual factors 
within a biological response may be misrepresented or even 
ignored. For example, drug transport across cell membranes is a 
complex process involving both passive and active elements in 
both directions. In PBPK, this process is often reduced to a 
single term (J), which captures the net movement across the 
membrane. However, as we better understand the importance of 
drug transporters in setting drug disposition, multiple-drug 
resistance and toxicity increases, it is clear that this single term 
may not capture the biology robustly. To address this either the 
differential equation that defines J must be made increasingly 
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more complex, or multiple terms must be used to reflect each of 
the different processes. The former approach is effective, but 
rapidly leads to a complex differential equation that is 
unintelligible to the non-expert. The latter approach is that used 
by ‘bottom-up’ modelling approaches, and is described below. 
 The modelling of small networks, or even individual 
pathways, is often described as the ‘bottom-up’ approach. In 
such models, the level of biological knowledge required is high, 
including details on reaction kinetics (Km, Vmax, kcat, hill 
coefficient) and robustly determined protein abundance values. 
This high resolution data allows the interactions of chemicals 
with enzymes and transporters to be described by ordinary 
differential equations (ODEs) describing mass action, 
Michaelis-Menten or Hill kinetics, for example. 
 Table 2 provides some useful resources for the definition of 
network topology, and the sourcing of kinetic and abundance 
data. However, it should be noted that deriving the necessary 
parameters for even a relatively small network will entail many 
hours of literature searching, and almost certainly some wet-lab 
experiments to fill in important data gaps. 
 These models can be easily generated using any of a large 
number of freely available programs. These range from 
programs with excellent graphical interfaces that are easily 
accessible to the biologist, but are limited in their analysis 
options (e.g CellDesigner; http://www.celldesigner.org/37, 38), to 
more complex equation-based inputs such as COPASI 
(http://www.copasi.org/39), which have more extensive network 
analysis tools. One common feature of these programs is that 
they use the systems biology mark-up language (SBML40) and 
systems biology graphical notation (SBGN41) formalisms. This 
means that generated models are transferable between over 250 
different programs, allowing models to be created in one 
program and simulated in another. Finally, online collections of 
models, such as JWS Online (http://jjj.biochem.sun.ac.za/42) 
and BioModels (http://www.ebi.ac.uk/biomodels-main/43) 
provide a free searchable resource of pre-defined (curated) 
models, available as SBML files for simulation in a wide range 
of software. This allows other users to both use published 
modes for their individual research projects, but also fosters and 
environment of collaborative development, where several 

groups may produces iterative improvements of a single 
biological model. The models available from both these 
resources simulate many aspects of biology, from regulatory 
gene and signalling networks such as MAPK44, 45 and nuclear 
receptors46, 47, through drug transport48 and nuclear transport49, 

50 and, to more complex behaviours such as circadian 
rhythmicity51, 52. 
 A good example of how small-scale modelling can be used 
to understand the design principles of an adverse outcome is 
demonstrated through the study of the glutathione anti-oxidant 
defence network in mammals. A quantitative model of the 
glutathione network was first produced by Reed et al.53, and 
encompassed one-carbon metabolism, trans-sulfuration and 
glutathione synthesis, transport and metabolism. The model 
was able to reproduce some of the known biology associated 
with the glutathione network, such as the sensitivity of 
glutathione pools to oxidative stress. In addition, Reed et al., 
used the model to examine the emergent properties of the 
network, such as the impact of trisomy Ch21 (Down’s 
syndrome) on cellular oxidative stress. As several genes 
involved in the network are present on Ch21, Down’s syndrome 
leads to over-expression of the encoded proteins.  
 When these increased levels were simulated within the 
model, biochemical alterations known to occur in people with 
Down’s syndrome were predicted, such as a functional folate 
deficiency. This model was recently expanded by Geenen et al., 
adding in the γ-glutamyl cycle, ophthalmic acid synthesis and 
the detoxification of paracetamol54.  This provides an ideal 
example of the iterative nature of computational modelling; the 
original model of Reed et al., was unable to reproduce the 
experimental observations of Geenen et al., when THLE-2E1 
cells were exposed to paracetamol. Addition of a regulatory 
signal in the model allowing increased γ-glutamyl cysteine 
synthetase in response to oxidative stress did allow the model to 
reproduce the experimental data robustly, and this up-regulation 
was confirmed experimentally. Hence, not only did an iterative 
cycle of model development → experimental testing → model 
refinement allow the model to better capture the known 
biology, but it also revealed an important adaptive response to 
oxidative stress. 

Table 2: Resources for kinetic and abundance data 

Database     Website      Reference 

Network Topology 
KEGG: Kyoto Encyclopaedia of Genes and Genomes http://www.genome.jp/kegg/     55   
BioCyc: Pathway/Genome databases portal  http://biocyc.org/      56 
MetaCyc; Metabolic databases portal  http://metacyc.org/      57 
Enzyme nomenclature and Annotation 
ExplorEnz: The Enzyme Database  http://www.enzyme-database.org/    58 
TCDB: Transporter Classification Database   http://www.tcdb.org/      59 
IntEnz     http://www.ebi.ac.uk/intenz/     60 
HAMAP     http://hamap.expasy.org/     61 
Protein Abundance 
paxdb     http://pax-db.org/#!home     62 
Enzyme Kinetics 
BRENDA      http://www.brenda-enzymes.info/    63   
EzCatBD     http://mbs.cbrc.jp/EzCatDB/    64 
SABIO-RK    http://sabio.h-its.org/      65
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 In the above example, a computational model was used to 
understand a mechanism of toxicity. Essentially, the model 
identifies all the molecular components that are required to 
reproduce the toxicity observed in vitro/in vivo. A related 
question is to understand the relative importance of different 
parts of a network in any given biological scenario. To answer 
such a question requires the use of a technique such as 
Metabolic Control Analysis (MCA). The original view that any 
given pathway is controlled through the activity of a single, 
rate-limiting enzyme is now known to be an over-
simplification66. In reality, each reaction within a pathway will 
exert some control on the metabolite flow through the entire 
pathway, with the level of control varying between reactions. 
This concept becomes even more important when considering 
networks where several interlinked pathways may impact upon 
each other. MCA is an important tool for studying such effects, 
identifying emergent properties based on the individual reaction 
properties and their interactions. In the example of glutathione 
detoxification, MCA was used to predict the importance of 
methionine influx on the capacity of the anti-oxidant defence 
system54. Methionine is a major input into the glutathione 
network, being a precursor for glutathione synthesis. The model 
correctly predicted the existence of a threshold for intracellular 
methionine levels, below which the network was unable to 
safely detoxify even relatively low exposures of paracetamol 
(5mM). 
 MCA also has an important application in the identification 
of metabolic chokepoints. These are the proteins within the 
network that if disrupted are most likely to lead to a dramatic 
shift in network behaviour. For toxicologists, this would be the 
shift in biological phenotype that results in an adverse event.  
However, it is easy to see how such an approach can be 
reversed to identify therapeutic targets. A good example of such 
an approach can be seen through the modelling of central 
carbon metabolism, including cholesterol. In the model of 
Maier et al., MCA predicts HMG-CoA reductase to have an 
exceptionally high control coefficient (0.5) in the production of 
cholesterol67. This is consistent with the enormous clinical 
success of the statin class of drugs, which act as HMG-CoA 
reductase inhibitors68. 
 The model of the glutathione defence network described 
above simulates reactions occurring in a specific cell type, in 
this case hepatocytes. However, before the drug reaches the 
target cell, it must enter the body and be subject to the 
processes of absorption, distribution, metabolism and excretion. 
As such, an obvious extension for such cellular models is to 
combine them with PBPK models; the PBPK model predicts 
the concentration of paracetamol within the liver, and the 
glutathione defence network model predicts the impact of this 
exposure. These two modelling approaches use different scales 
of information, both in terms of the detail of the parameters 
(individual reactions versus composite reactions) and the scale 
of the reactions (small volumes, fast time versus large volumes, 
mid- to slow times). Due to this, such combination models are 
usually referred to as multi-scale. With regard to paracetamol 
toxicity, multi-scale models have been proposed by Ben-

Shachar et al.69, and Geenen et al.,70. Both models combine 
classical PBPK models of paracetamol disposition with 
deterministic model of liver metabolism. In doing so, they are 
able to both replicate experimental data and provide insight into 
the impact of enzyme polymorphisms and glutathione 
metabolic capacity on the outcome of paracetamol overdose, 
respectively. These models provide important proof-of-concept 
studies demonstrating that it is possible to create multi-scale 
computational models that can capture the complex biology 
observed during toxicity, and provide novel insights into risk 
and/or mechanism. However, it is now important that these 
approaches are fully developed so that they can not only 
reproduce classical toxicity paradigms, but also add value to the 
safety assessment of novel chemicals. 
 Not all small-scale models need to be fully quantitative; 
indeed, it is quite possible that for even a small network the 
required abundance and kinetic parameters may not be 
completely known. In such cases, it is necessary to use a 
qualitative model, which simulates the behaviour of a network 
rather than trying to reproduce faithfully the time and 
concentration curves for all species within the network. Indeed, 
for the larger-scale models required to reproduce whole-cell, -
organ, or –organism behaviour, such an approach may be the 
only viable option. Qualitative models are of particular value if 
one wishes to either understand the emergent properties of the 
network (i.e. the global biological response to a stimulus), or to 
examine if a particular scenario is possible (i.e. following a 
particular stimulus can this behaviour happen?). The latter case 
has obvious applications in toxicology, where we must first 
identify if something is possible (i.e. hazard), and then assess 
the likelihood that it will occur (i.e. risk). A common approach 
for such qualitative models is the use of Petri nets. Petri nets are 
a directed bipartite graph consisting of places and transitions, 
which are connected by arcs that define their relationship. As 
such they are ideal for representing decision trees, and this 
approach has been employed to undertake environmental risk 
assessments71, 72. For example, Ozbek and Pinder developed a 
fuzzy-Petri net to represent an expert knowledgebase on 
benzene contaminated groundwater. This knowledge base was 
formed of textual statements from public-health professionals, 
and utilised to allow refinement of responses to potential 
benzene contamination71. In addition to their use to describe 
decision trees, Petri nets can be used to describe biological 
networks, with places representing chemicals, transitions 
representing reactions and arcs defining the relationships 
between the two73. Using this approach, Petri net formalism has 
been used to model small networks such as JAK/STAT 
signalling74 and apoptosis75, as well as examine more complex 
phenotypes such as metabolic disorders76.  This type of 
biology-orientated Petri net has yet to be employed to 
understand or predict toxicity on its own, but it is being 
integrated into larger-, multi-scale models to create dynamic 
biological models, as will be described below.  
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Large‐scale and multiscale modelling  

The study of small networks has obvious advantages with 
regards to the high quality experimental data that can be used to 
generate and then validate each model. However, there are also 
a number of disadvantages, with perhaps the most challenging 
being that there is always a chance that something important 
has been excluded from the model. Within biological networks 
there exists considerable redundancy, such that there is often 
several ways to achieve a particular biological phenotype77. 
Due to this, it is possible that a model will faithfully reproduce 
an in vivo behaviour, but will be unable to predict the results of 
perturbations to this network. For example, a simple kinetic 
model could reproduce the metabolism of paracetamol in the 
liver, describing its conversion to non-toxic and toxic 
metabolites. However, unless the model includes gene 
expression processes, it could not predict the interaction 
between alcohol and paracetamol as this relies on protein 
stabilisation of CYP2E1 by alcholol. Careful and rigorous 
validation of models against experimental data can mitigate this 
risk to some degree, but can never completely remove it. The 
obvious solution to this problem is to make the network larger; 
so large that it encompasses all the known interactions within 
the system under study. 
 The commonest approach for large-scale modelling is the 
reconstruction of genome-scale metabolic networks (GSMNs), 
which essentially capture all enzymatic and transport reactions 
possible within a cell. GSMNs were originally reconstructed for 
prokaryotes such as E. coli, which have smaller genomes and 
considerably simpler metabolic networks. However, in the past 
few years advances both in computational power and biological 
understanding has allowed reconstructions of genome-scale 
metabolic networks for mammals to be generated. Such 
reconstructions may be general, capturing all the possible 
metabolic reactions that could occur in any cell type (e.g 
ReconX78, 79), or represent a specific target cell (e.g. the 
hepatocyte-specific Hepatonet180). As with the small-scale 
models previously discussed, the majority of these 
reconstructions are publically available through websites such 
as BioModels, as well as sites specifically aimed at GSMNs 
(e.g. MetaNetX81). Table 3 lists some web resources with 
valuable information for genome-scale network reconstruction. 
 One current gap in the reconstructed GSMNs is that they are 
predominantly human. While this is ideal for examining human 
physiology (normal and diseased) and the impact of toxicant 
exposure, it does not allow the examination of pre-clinical 
species responses. The development of GSMNs for the major 
pre-clinical species is an important future direction to ensure 
that this powerful technology can be used to improve species 
extrapolation during the pre-clinical to clinical translation, or to 
aid human risk-assessment where the knowledge base relies 
considerably upon animal data. 
 Reconstructions of whole cell metabolism are ideally placed 
to examine the metabolic landscape of the cell. This landscape 
reflects not only what reactions are possible, but which are 
likely to occur. As such it is akin to a national power grid, 

where the flow of electricity through different parts of the 
network alters to meet demand. Furthermore, this landscape 
will change in response to stimulus (e.g. high demand in one 
part of the power grid) or disruption (e.g. loss of certain power 
lines). The metabolic landscape may, therefore, provide 
important novel insights into disease progression and toxicity, 
showing how the body’s metabolism changes in response to the 
disease (either globally or locally). In addition, once these 
changes are understood they present obvious target for drug 
discovery. The metabolic landscape of a cell can be predicted 
by exploring all the possible combinations of reactions that 
could occur in the cell. Obviously, such a list would be very 
large, so the solution space is made smaller by adding 
constraints to the possible solution, such as reaction 
stoichiometry and thermodynamic considerations; hence, 
GSMNs are often referred to as constraint-based models 
(CBM). A standard method to identity the metabolic landscape 
of a cell is flux balance analysis (FBA), which is used to 
explore the solution space of reaction fluxes within a CBM 
(reviewed by Orth, Thiele and Palsson82). In addition to the use 
of stoichiometric and thermodynamic constraints, FBA uses an 
objective function to determine the desired phenotype of the 
cell (e.g. the production of a particular set of metabolites). 
Reaction fluxes are set to optimise the production of this 
objective given the constraints of the system. Such analysis can 
predict which metabolic subsystems are most likely to be active 
to meet a given objective function (biological behaviour). FBA 
has been used extensively in the field of biotechnology to 
optimise production processes. For example, production of an 
antibiotic can be optimised by growing bacteria in the correct 
nutrient mixture to both optimise antibiotic production per 
bacterium (antibiotic production as an objective function)83 or 
total bacterial growth (biomass as an objective function). In the 
former case, the objective function is simply the antibiotic in 
question. In the latter case, the objective function is more 
complex, being a combination of all factors required for 
bacteria to divide (amino acids, nucleotides, ATP etc.). 
Recently, the same approach was used to define the optimal 
medium for hepatocyte growth84. Yang et al., derived an 
objective function containing key components of the hepatocyte 
phenotype (e.g. albumin and urea production), and then used 
FBA to determine the optimal amino acid composition of 
growth medium to support this objective function. Such an 
approach provides a novel solution to the long-standing issue 
that hepatocyte-specific features rapidly disappear in vitro, as 
the cells quickly de-differentiate and lose their phenotype85.
 In keeping with the central tenet of systems biology that 
models should be constantly refined through the integration of 
new information, general GSMNs can be refined through the 
use of systems level data such as transcriptomics or proteomics. 
This data can be used to further constrain the FBA, producing a 
flux distribution reflecting those genes that are expressed and 
those that are not. Essentially, flux distributions are explored 
that optimise production of the objective function while 
meeting the stoichiometric and thermodynamic constraints of 
the system, as normal. In addition, these flux distributions are 
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further constrained to maximise flux through reactions 
catalysed by proteins whose transcripts are highly expressed, 
and minimize flux through reactions catalysed by low/non-
expressed proteins86. This approach has been particularly useful 
for exploring genotype-phenotype relationships that diverge 
during disease development. For example, Folger et al. used 
transcriptomic data to generate a ‘cancer GSMN’ based upon 
the NCI-60 cell line resource87. Critically, the increasing 
number clinically-derived –omic level datasets raises the 
tantalizing prospect of personalised GSMNs to understand both 
general mechanisms and inter-individual variation in disease 
progression and toxicity. For example, Agren et al. generated 
personalised GSMNs for 27 hepatocellular carcinoma patients 
based upon proteomic data. Examination of these personalised 
GSMNs allowed the prediction of therapies that would work for 
the entire cohort, but also those therapies were patient 
stratification would produce optimal response88. The 
application of CBMs to understand and optimise treatment of 
human disease is a rapidly developing field, with the real 
prospect of significant clinical benefits being delivered in a 
relatively short time frame. 
By contrast, the use of such approaches in systems toxicology 
is still in its infancy, with examples currently limited to 
classical toxicants such as paracetamol89. However, given the 
novel insights already provided by CBMs for the understanding 
of disease, it is clear that systems toxicology will likewise 
benefit in the next few years.  
 A major difference between small-scale and large-scale 
modelling approaches is their treatment of the cell as a dynamic 
environment. Small-scale models often encompass gene 
regulation (transcription and translation) and signalling 
pathways (e.g. MAPK etc.). As such, they are ideally placed to 
simulate the dynamic response of cells to chemical stimuli. By 
contrast, large-scale models rely upon the assumption of a 
steady-state. This assumption states that the levels of chemicals 
do not change within the system over the time of analysis. To 
achieve this, the sum of all fluxes producing a chemical must be 
equal to the sum of all fluxes removing that chemical. While 
this is an important assumption to permit complex analyses 
such as FBA, it does deviate from the true, dynamic nature of 
biological systems, where the levels of enzymes (and the 
bounds of their associated reaction fluxes) constantly alter in 
response to an ever-changing chemical environment. We 
rationalise the use of a steady-state model by considering the 

time separation between chemical reactions (fast; microsecond 
time-scale) and gene regulation and signalling networks (slow; 
minutes to hours). Hence, in large-scale models we explore the 
metabolic landscape of a cell in discrete time slices, such that 
the slower processes of transcription and translation do not 
have time to occur.  
 The assumption of a steady-state presents a significant 
problem to the systems toxicologist. By its very nature toxicity 
is a dynamic event, and thus should be modelled as such. 
Future developments must allow CBMs to be dynamic, 
incorporating both fast (enzyme reaction) and slow 
(transcription/translation and signalling) components. This will 
produce a truly dynamic, ‘living’ cell that is able to respond to 
alterations in the chemical environment. Under such a 
paradigm, levels of an external chemical (e.g. input to or output 
from the GSMN) would activate regulatory gene or signalling 
pathways, which would in turn alter the levels of 
metabolic/transport proteins. These changes would alter 
specific reaction bounds within the GSMN, altering the 
metabolic landscape. Such a living cell is critical in predicting 
the outcome of the chemical challenge; no effect, hormesis, 
adaptation or toxicity. 
 Various modification of FBA have been proposed to 
address this issue, including rFBA90, iFBA91 and dFBA92 
(regulatory, integrated and dynamic FBA, respectively).  While 
all of these approaches have some merit, they also each have 
their own limitations. For example, rFBA does not differentiate 
between transcription and translation, reducing the biological 
resolution of the model, while iFBA and dFBA require 
deterministic models of regulation, meaning that they are 
limited to biological areas that are data dense. However, such 
approaches have been used successfully to examine 
toxicological mechanisms. In their model of the hepatocyte 
metabolic response to paracetamol, Krauss et al. used the dFBA 
approach to integrate an hepatocyte GSMN (Hepatonet1) with a 
PBPK model for paracetamol disposition89. Essentially, they 
used a bow-tie design to provide dynamic simulation, whereby 
input and output PBPK models are ‘tied’ together through a 
GSMN; first, the PBPK model is solved for a specific time unit; 
second, the CLint from the PBPK model informs bounds within 
Hepatonet1; third, FBA explores flux distributions within 
Hepatonet1, and determines the flux towards paracetamol 
degradation; fourth, this flux informs CLint for the PBPK 
model. 

Table 3: Tools for large-scale network reconstruction 

Relational Approach    Website       Reference 

Metabolic Network Reconstruction 
MetaNetX     http://metanetx.org/        81   
BiGG: Biochemical, Genetic and Genomic database http://bigg.ucsd.edu/       93 
Model SEED    http://seed-viewer.theseed.org/seedviewer.cgi?page=ModelView   94 
General Network Reconstruction 
Pathway  Tools Software   http://bioinformatics.ai.sri.com/ptools/     95 
KEGG Mapper    http://www.genome.jp/kegg/tool/map_pathway.html    55 
ERGO: Genome Analysis and Discovery  http://www.igenbio.com/ergo_bioinformatics_and_analysis   96 
Cytoscape     http://www.cytoscape.org/      97 
IPA: Ingenuity Pathway Analysis   http://www.ingenuity.com/products/ipa     98 
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The Krauss et al. model is a good demonstration of the linkage 
of drug ADME at the cellular- and organism-level allowing the 
reproduction of the response to a classical toxicant. However, 
as previously noted, dFBA is limited by the fact that it does not 
directly reproduce the transcriptional and translational 
processes that underlie the metabolic adaptation. This reduction 
in resolution within the simulation may lead to the 
misinterpretation, or complete loss, of important phenotypic 
behaviours. 
 A novel approach to undertake dynamic simulation of 
metabolism at the genome-scale was recently presented by 
Fisher et al. They proposed a novel framework, QSSPN (quasi 
steady-state Petri net) that uses a multi-scale approach to 
integrate the dynamic gene and signal regulatory components 
captured by small-scale networks and the genome-scale 
metabolic analysis of large-scale models99. In this approach, a 
Petri net is used to represent the regulatory gene and signalling 
network, including transcriptional, translational and post-
translational regulatory processes. Changes in the external 
chemical environment are sensed through the Petri net, which 
ultimately leads to alterations in the activity levels of target 
proteins; these alterations result in changes to the flux bounds 
of specified reactions within the GSMN. This metabolic 
landscape of the GSMN is then predicted through FBA, with 
the outputs from the GSMN providing feedback into the Petri 
net to complete the regulatory loop. Using this system, Fisher et 
al., were able to reproduce the dynamic behaviour of 
hepatocytes in response to cholesterol loading. Upon addition 
of excess cholesterol, nuclear receptors within the Petri net are 
activated, leading to activation of enzymes that metabolise 
cholesterol. However, this rapidly leads to an increased 
production of bile acids, undesirable as this can lead to the 
adverse outcome cholestasis. The QSSPN is able to sense this 
potentially toxic accumulation and initiate a feedback loop to 
reduce flux through cholesterol metabolism and increase 
transporter-mediated cholesterol efflux instead. This allows the 
effective clearance of cholesterol without excess production of 
toxic by-products. Finally, once cholesterol levels return to the 
pre-challenge level, the metabolic system resets to its original 
state. This demonstration of how a multi-scale simulation can 
capture the dynamic response of cells to chemical stimuli opens 
the way for more complex models that can understand and 
predict more complex pathologies. A particularly exciting 
development in the QSSPN framework is the ability to combine 
both qualitative and quantitative models. This opens the 
possibility of multi-scale models that contain different levels of 
resolution depending upon the available information. This will 
be particularly important to capture some of the more complex 
biological behaviours such as circadian rhythmicity, which can 
really only be described with a deterministic model. Their 
incorporation into qualitative large-scale models is crucial if we 
wish to fully understand the impact of, for example, circadian 
rhythms on drug action100. 

Network drug targeting: A mechanism to reduce 
toxicity? 

The established paradigm for drug discovery requires the 
identification of a therapeutic target, followed by the 
identification and subsequent optimization of compounds that 
are able to potently and selectively interact with this target. 
However, such an approach is often limited by several factors:  
First, it is often difficult to design compounds that will interact 
with a specific target while minimizing interactions with highly 
related molecules (off-target effects). This is further 
compounded by the fact that as compound selection is driven 
towards those highly potent molecules, where even a small 
degree of off-target interaction can result in significant 
biological consequences. Second, even if a highly specific, 
potent compound can be identified, its properties will 
invariably have to be altered to improve pharmacokinetic 
parameters, leading to a necessary compromise between 
pharmacodynamic and pharmacokinetic optimization101. Third, 
biological systems often possess redundancy, such that 
pharmacological modification of a single target can be 
compensated for by the use of an alternate system102, 103.  
 Even if such a series of hurdles can be safely navigated, it is 
necessary to use several test systems (in vitro and pre-clinical 
models) during drug development. This requires the ability to 
robustly extrapolate data from one system to another, which in 
turn requires an understanding of the differences between each 
network, and how this will impact on drug behaviour. Given the 
highly complex (and not fully understood) nature of the human 
biological network, it is thus not surprising that we do not 
always predict the effects of even a single, highly 
selective/potent drug. The result of poor prediction may be a 
lack of therapeutic efficacy in later stages of drug development, 
unexpected adverse drug events, or the emergence of drug 
resistance104. The discipline of systems toxicology should 
increase our ability to better predict the impact of drugs on 
biological systems, and the extrapolation of these effects from 
one system to another. This should permit the identification of 
toxic liabilities of drug molecules much earlier in the drug 
discovery/development pipeline. 
 Systems approaches may present a further solution to 
reduce the risk of adverse events. The use of drug cocktails in 
certain therapeutic areas is well established, and relies on the 
use of multiple marketed drugs together to target several 
biological pathways at once, with the aim of increasing efficacy 
while reducing the risk of adverse effects and/or the 
development of resistance105. Given that the design of optimal 
drug cocktails requires an innate understanding of network 
behaviour, the use of computational approaches is natural 
partner to aid selection of optimal combinations2, 106. Proof-of-
principle for such an approach was presented by Folger et al., 
who utilised a whole-genome scale metabolic network model of 
cancer metabolism to predict ‘synthetic lethality’ for drug 
pairings87. The central paradigm of synthetic lethality relies on 
the adaptive nature of biological networks, and their robustness 
to chemical perturbation. For example, the efficacy of a drug 
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against therapeutic target A may be mitigated by the expression 
of protein B, which represents a network survival adaptation. 
Combinations targeting both A and B would demonstrate 
increased efficacy, as both the therapeutic target and rescue 
system are targeted. Folger et al. not only demonstrated that 
such combinations could be identified computationally, but also 
that these predictions could predict responses of the NCI-60 
cancer cell line collection to combination therapy.  
 An exciting extension of the network drug targeting 
paradigm is that if combination therapy is the aim from the 
start, then the biological effect of each drug alone might be 
minimal, and indeed may not even be seen as therapy under 
traditional definitions. However, the effect of these chemicals 
in combination on the network will be such that a significant 
therapeutic effect will be observed2. On this basis, it may be 
necessary to alter the drug discovery paradigm, such that 
effective combinations are designed at the start of the discovery 
process, rather than through the combination of existing drugs. 
Such novel approaches are already being developed, using 
novel computational software to search for de novo 
combination therapies107, 108. 
 The computationally-led design of drug cocktails appears to 
hold great promise for the generation of optimised therapies, 
including at a personalised level. However, an important 
unanswered question is whether this approach may generate not 
only the desired synergistic pharmacology, but also undesired 

synergistic toxicology. Indeed, for network drug therapy to be 
truly successful, it could be argued that there should be a 
reduction in adverse events compared to standard combination 
therapy. The answer to this question has been partly addressed 
by Lehar et al., who undertook large-scale metabolic 
simulations of over 94,000 multi-dose experiments relevant to a 
range of disease phenotypes. As expected, they demonstrated 
that combination therapies were generally more specific than 
single agent therapies. Critically, they also demonstrated that 
this additional specificity was because the combinations were 
able to exploit unique properties of the disease phenotype of the 
cell, a key claim of the network drug paradigm. With regards to 
toxicity, their simulations again supported the network drug 
paradigm, demonstrating a reduction in toxic liability for the 
majority of combinations, rather than increase109. 

Conclusions 

Predicting the impact of chemicals on the human body is an 
extremely complex process due the sheer number of 
interactions possible. One solution to this problem has been to 
drive drug development towards more selective drugs, with the 
aim that this will remove large parts of the network from 
consideration. However, this approach has not been fully 
successful due to a number of complicating factors:

 
Figure  4:  The  iterative  cycle  of  systems  toxicology  leading  to  improved  safety  assessment.  Systems  toxicology  approaches  (relational  databases,  genotype‐
phenotype modelling, PBPK modelling) are underpinned by experimental data.  Iterative cycles of model  refinement and validation  lead  to  increasingly predictive 
models that will provide high value for safety assessment throughout the drug discovery/development pipeline  
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First, even highly selective compounds will possess some off-
target interactions, albeit at a low level. Second, therapeutic 
efficacy is often desired in only a single tissue, but the drug is 
distributed throughout the body, meaning on-interactions in 
non-target tissues may lead to undesirable effects. Third, inter-
individual variation in the factors controlling drug action, both 
pharmacokinetic and pharmacodynamic, may result in adverse 
effects in specific groups within the patient population. 
 To address these limitations it is necessary to view the 
biological system as a whole, and this has led to the 
development of systems biology in general, and systems 
toxicology specifically. It is important to stress that system 
approaches are not dramatic departures from the drug 
discovery/development and safety assessment paradigms 
currently in use. Rather, they build upon the vast experimental 
knowledgebase already present, integrating the data into a more 
easily accessible format. As depicted in Figure 4, system 
toxicology uses existing experimental data to generate and 
validate a number of complimentary approaches. Relational 
databases provide an integrated home for these data, with the 
additional advantage that they include important information on 
how the data fits together. As such, relational databases are an 
important tool for systems toxicology in their own right. 
However, they also act as important sources for the parameters 
needed for systems toxicology modelling approaches, whether 
these are the more traditional PBPK modelling or newer 
genotype-phenotype modelling. Perhaps the most important 
aspect of systems toxicology, and indeed all systems, 
approaches is the iterative nature of the process. Experimental 
data on ‘real’ biology is used to populate relational databases 
and construct models. These databases and models can then be 
validated through their ability to predict known biological 
phenomena. Identified gaps or boundaries in the models are 
then addressed through incorporation of new experimental data. 
Using this cycle of data generation → data integration → 
model/database validation → gap identification, allows the 
generated models/databases to continually develop and expand 
their biological coverage. 
 Systems toxicology represents one of the new biological 
disciplines that aim to build comprehensive digital organisms. 
These models will integrate experimental data from both 
standard biological and toxicological experiments, as well as 
the vast legacy datasets generated through –omic level analysis. 
The integration of these data into digital cells, organs and 
ultimately organisms will result in a step-change in our ability 
to both understand disease progression and to develop safe, 
efficacious network-based drugs to treat these diseases.    
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