Journal of Materials Chemistry B

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsB

1	
2	A simple material model to generate epidermal and dermal layers in vitro for skin
3	regeneration
4	
5	Ching-Ting Tsao ^a , Matthew Leung ^a , Julia Yu-Fong Chang ^b , Miqin Zhang ^{*a}
6	
7	^a Department of Materials Science and Engineering, University of Washington, Seattle, WA
8	98195, USA.
9	^b Department of Oral & Maxillofacial Surgery, University of Washington, Seattle, WA 98195,
10	USA.
11	
12	Corresponding Author:
13	Miqin Zhang, Department of Materials Science and Engineering, University of Washington,
14	302L Roberts Hall, Box 352120, Seattle, WA 98195, USA.
15	Tel: 1-206-616-9356; Fax: 1-206-543-3100; Email: mzhang@u.washington.edu.
16	

A porous composite scaffold permeated with chitosan-poly(ethylene glycol) gel, which mimicsthe bi-layered micro-environment of skin, promotes keratinocyte proliferation and maturation.

22 Abstract

There is an urgent need for a rationally-designed, cellularized skin graft capable of 23 reproducing the micro-environmental cues necessary to promote skin healing and regeneration. 24 To address this need, we developed a composite scaffold, namely, CA/C-PEG, composing of a 25 chitosan-alginate (CA) structure impregnated with a thermally reversible 26 porous 27 chitosan-poly(ethylene glycol) (C-PEG) gel to incorporate skin cells as a bi-layered skin equivalent. Fibroblasts were encapsulated in C-PEG to simulate the dermal layer while the 28 keratinocytes were seeded on the top of CA/C-PEG composite scaffold to mimic the epidermal 29 30 layer. The CA scaffold provided mechanical support for the C-PEG gel and the C-PEG gel physically segregated the keratinocytes from fibroblasts in the construct. Three different tissue 31 32 culture micro-environments were tested: CA scaffolds without C-PEG cultured in cell culture medium without air-liquid interface (-gel-interface), CA scaffolds impregnated with C-PEG 33 34 and cultured in cell culture medium without air-liquid interface (+gel-interface), and CA scaffolds impregnated with C-PEG cultured in cell culture medium with air-liquid interface (+ 35 gel+interface). We found that the presence of C-PEG increased the cellular proliferation rates of 36 both keratinocytes and fibroblasts, and the air-liquid interface induced keratinocyte maturation. 37 This CA/C-PEG composite scaffold design is able to recapitulate micro-environments relevant to 38 39 skin tissue engineering, and may be a useful tool for future skin tissue engineering applications.

40 Keywords: chitosan, alginate, PEG, hydrogel, skin, ECM

42	Introductio	n
----	-------------	---

Due to its soft and fragile nature, skin can be easily damaged by traumatic injuries or 43 chronic diseases such as diabetes.^{1, 2} Skin defects allow the entry of infectious organisms and 44 45 cause the loss of water, electrolytes and proteins leading to shock. Damage to the integrity of large portions of the skin may result in disability or death, and its treatment constitutes a major 46 health-care burden worldwide.³ Allogeneic and xenogenic skin grafts have been proven to be 47 useful temporary skin substitutes, but they have limited availability, and bear a severe risk of 48 infection and disease transmission.4, 5 Autologous skin grafts are the current gold standard 49 treatment for full-thickness skin injuries, but the availability of healthy donor skin is limited, and 50 its collection may result in an additional donor site trauma.⁶ The lack of suitable treatments 51 prompts an urgent need for tissue-engineered skin grafts. 52

53 One primary hurdle to the development of a successful engineered skin graft is the 54 challenge in replicating the micro-environment present in native skin in which skin cells can 55 grow into bilayer structure to promote dermal-epidermal interactions and form functional skin 56 tissue.^{7, 8} Adult skin consists of two layers: a stratified-superficial epidermis and an underlying 57 dermis.^{1, 9} The epidermis is comprised of a mixed population of basal keratinocytes with 58 long-term proliferative ability, and a population of committed keratinocytes with limited 59 proliferative ability which form the outer barrier layer.¹⁰ Thus, an effective substitute for the epidermal matrix must allow keratinocytes to organize vertically and facilitate high density,

60

Journal of Materials Chemistry B Accepted Manuscript

close packed organization to simulate the native epidermis. The underlying dermis layer is a 61 vascularized bed of connective tissue, which is essential for proper epithelialization.¹ The main 62 component of the dermal extracellular matrix (ECM) is collagen, which is the source of the 63 skin's elasticity, resilience, and mechanical integrity.¹¹ The fibroblasts in the dermal layer are 64 responsible for the secretion of collagen and maintenance of the dermis.^{12, 13} Thus, an engineered 65 skin graft should closely mimic the native bi-layered structure in order to reproduce the 66 numerous physiological functions of human skin. 67 Currently, a number of cellularized epidermal-dermal skin substitutes developed to mimic 68 the structure of native skin are available for clinical use¹⁴ However, none of these is fully 69 70 satisfactory and each has limitations. For example, Alloderm® uses acellular dermis substitute to integrate skin cells (keratinocytes, fibroblasts, or both) to generate cellularized, bi-layered skin 71 equivalents.⁵ However, poor ingrowth of dermal fibroblasts was observed due to the dense 72 structure of collagen fibrils in Alloderm[®], rendering it an unsatisfactory skin graft.⁵ Apligraf[®] is 73 another cellularized skin graft seeded with human foreskin-derived neonatal epidermal 74 keratinocytes and human foreskin-derived neonatal fibroblasts in a bovine type I collagen 75 matrix.¹⁵ Though this construct demonstrated excellent delineation of epidermal and dermal 76 layers, the transplanted skin cells have been found to be viable for just 4 weeks post 77

0
U
5
5
\geq
7
The second secon
te
0
0
0
2
()
Ð
0
S
σ
σ
5
L L
0
\mathbf{O}
J
2
0

78	transplantation. ¹⁶ OrCel® is a bi-layered cellularized product using porous collagen sponge with
79	one side coated with collagen gel. Dermal fibroblasts are cultured within the porous collagen
80	sponge and keratinocytes are seeded on the gel-coated side to prevent the ingrowth of
81	keratinocytes. ¹⁷ Though accelerated healing rate and reduced scar formation are achieved with
82	this graft compared with conventional therapy with Biobrane-L synthetic wound dressing, ¹⁷ there
83	are no clinical data showing that this graft can replace native skin allograft. ⁸ Additionally, the
84	collagen-based scaffolds exhibit low stability, low mechanical strength, wound contraction, and
85	poor integration with host tissue. ^{8, 18} Synthetic polymer based sponge scaffolds were developed
86	to increase the biostability and mechanical strength but the tissue repair is usually accompanied
87	by low healing rate and fibrotic reactions that result in scar formation. ^{8, 19} Thus alternative
88	material compositions and organizations are needed to address the current limitations of tissue
89	engineered skin grafts.

In this study, we developed a natural polymer-based skin engineering material by permeating a poly(ethylene glycol)-g-chitosan (C-PEG) hydrogel into a three-dimensional, porous chitosan-alginate (CA) scaffold yielding the favorable combination of mechanical and biochemical cues that serve well as an appropriate bi-layered micro-environment to support dermal fibroblasts and the overlaying keratinocytes. Both chitosan and alginate are natural polymers and have the proxy structure of glycosaminoglycans (GAGs),²⁰ a major component of

_	
	0
	1
	Y I
	S
	\mathbf{O}
	2
	Ο
	U
	0
	U
	Ŭ
	X
	U
	4
	\mathbf{n}
	2
	()
	U
	S
1	0)
_	Ω
	Y
	σ
	(m. 1
	Ö
	_
	_
	0

96	the native extracellular matrix (ECM). ²¹ We have previously shown that 3D porous CA complex
97	scaffolds have high mechanical strength as a result of the ionic bonding of the amine group of
98	chitosan with the carboxyl group of alginate while providing an excellent environment for the
99	generation of tissue engineered cartilage and bone and stem cell renewal. ²²⁻²⁴ Unlike other
100	natural polymers derived from costly mammalian proteins, chitosan and alginate have unlimited
101	sources and evoke minimal foreign body response or fibrous encapsulation ²⁵⁻²⁸ Poly(ethylene
102	glycol) (PEG) is a neutral, water-soluble, and non-toxic polymer approved by the Food and Drug
103	Administration (FDA) for internal consumption and injection in a variety of foods, cosmetics,
104	personal care products, pharmaceuticals, and biomedical applications. ²⁹ C-PEG was proven to be
105	an injectable and thermally reversible gelling material, which is a liquid at 0°C or below and
106	forms a stable gel at higher temperatures including the body temperature. ^{30, 31} Cells can be
107	readily released from the thermal reversible gels for subsequent analysis by cooling it.
108	Dermal fibroblasts were dispersed and cultured within the C-PEG gel that was infused into
109	the porous structure of the CA scaffold. Keratinocytes were seeded on the top of CA/C-PEG
110	scaffold and exposed to an air-liquid interface to promote maturation of the stratified epidermal
111	layer and support maintenance of the fibroblasts. The in situ gelation of C-PEG within the pores
112	of the CA scaffold was achieved by increasing the temperature of the gel to the physiological
113	temperature. Cell proliferation, morphology, histology, and gene transcription of cells cultured 8

114	CA/C-PEG composite scaffold at different microenvironmental conditions were investigated to
115	evaluate the effectiveness of the CA/C-PEG scaffold for skin regeneration.

117 **Results**

118 Cell proliferation

119 Cell proliferations of HaCat and hFF were evaluated by cell sorting using FACS to assess cellular compatibility of the composite scaffolds to the HaCat and hFF. Fig. 2 shows the 120 proliferation of HaCaT and hFF cells cultured in 3 microenvironments over 2 weeks. The 121 122 numbers of both HaCaT and hFF cells increased over time in all 3 conditions. Greater populations of HaCaT and hFF cells were observed in both +gel-interface and +gel+ 123 interface conditions than in the _gel-interface condition. Notably, the numbers of HaCaT and 124 hFF cells were higher in + gel- interface condition than in + gel+ interface condition 125 throughout the 2 weeks of culture period. 126

127

128 Cell morphology and interaction with scaffolds

SEM was performed to examine the interaction between cells and the microenvironment via a top-down view. The morphologies of HaCaT and hFF cells after 2 weeks of culture were shown in Fig. 3. In the -gel-interface condition, HaCaT cells were found to unevenly disperse

132	as minute colonies across the scaffold (Fig. 3a), and showed reduced and limited adhesion with
133	the CA scaffold (Fig. 3d). In the $+$ gel $-$ interface condition, the HaCaT cells were observed to
134	aggregate, forming stacked cell colonies that filled CA scaffold pores and attached firmly to and
135	dispersed uniformly across the scaffold (Fig. 3b). The individual colonies formed a
136	discontinuous layer across the construct surface, and the colony of cells at a high magnification
137	(Fig. 3e) clearly showed that cells adhered to scaffolds well. In the $+gel+interface$ condition,
138	the HaCaT cells were shown to form a dense layer over the scaffold (Fig. 3c) and superimpose
139	on top of each other forming dense multi-layered aggregates (Fig. 3f). On the other hand, there is
140	no significant difference in cellular distribution pattern of hFF cells among the 3 culture
141	conditions after 2 weeks, but a significant difference in the cellular morphology. hFF cells
142	showed a spherical morphology in $-gel$ -interface condition (Fig. 3g), a typical spindle
143	morphology in both $+$ gel $-$ interface (Fig. 3h) and $+$ gel $+$ interface conditions (Fig. 3i).
144	Histology was performed to evaluate the cellular distribution and organization in the
145	microenvironment via a cross-sectional view. Fig. 4 shows the hematoxylin and eosin (H&E)
146	stained HaCaT and hFF cells after 2 weeks of culture. HaCaT cells in the $-gel-interface$
147	condition were observed to have fallen into the porous compartments of CA scaffold and formed
148	tiny colonies (Fig. 4a and 4d), which is consistent with the SEM finding. On the other hand,
149	HaCaT cells in the $+$ gel $-$ interface condition were found to form a larger, multi-layered

150	colonies but discontinuous layers across the top of the construct (Fig. 4b and 4e). In contrast to
151	the other two conditions, HaCaT cells in $+gel+interface$ condition were observed to grow and
152	organize into a continuous stratified epithelial layer with slightly cuboidal in the basal layer and
153	flattened in the superficial layers (Fig. 4c and 4f). Similar to the result revealed in SEM analysis,
154	there was no significant difference in cellular distribution pattern of hFF among the three
155	conditions.
156	Fluorescent images were taken to characterize the cellular distribution pattern of both

keratinocytes and fibroblasts in the culture microenvironment via a cross-section view. Fig. 5 157 shows the fluorescent image of HaCaT (red, RFP) and hFF (green, GFP) cells after 2 weeks of 158 culture. HaCaT cells in -gel-interface condition exhibited as small colonies, scattering 159 160 unevenly in the porous CA scaffold (Fig. 5a) while those in +gel-interface condition formed discontinuous cell clusters (Fig. 5b). HaCaT cells in the +gel+interface condition formed a 161 continuous layer with 1-3 cell layers in thickness connecting between larger cell clusters (Fig. 162 5c). While there was no significant difference in cellular distribution pattern for hFF, the cellular 163 morphology of hFF cells varied between conditions. hFF cells exhibited similar morphology in 164 -gel-interface (Fig. 5d), +gel-interface (Fig. 5e) and +gel+interface (Fig. 5f) conditions. 165 The results from the fluorescence images corroborate well those from SEM and histological 166 analyses. 167

169 mRNA analysis of cellular behavior

To determine gene transcription profiles of HaCaT and hFF cells co-cultured in different 170 microenvironments, real-time RT-PCR was performed on HaCaT (RFP) and hFF (GFP) cells that 171 were sorted by FACS. RNA transcriptions of Collagen I, Collagen III, fibronectin and vimentin 172 by fibroblasts, and keratin 5 and keratin 10 by keratinocytes were evaluated due to their key roles 173 in skin wound healing.³²⁻³⁶ Keratin 5 and keratin 10 expressions represent the basal cell layer and 174 differentiated spinous cell layer, respectively.³⁷⁻⁴⁰ During the migration of the keratinocytes from 175 stratum basale to the stratum corneum, they express various keratins which specifically indicate 176 their differentiation state.⁴¹ The keratinocytes of the basal layer are highly proliferating and 177 expressing keratin 5.⁴² As they migrate into the superficial layer, they become increasingly 178 differentiated. Cells of the uppermost of keratinizing epithelia express keratin 10.42 179

The keratinocyte gene transcription changes in response to microenvironments of constructs were shown in Fig. 6. The highest expression of keratin 5 was found in +gel-interface condition, indicating the existence of more less-differentiated basal cells in this condition. In contrast, the highest expression of keratin 10 was observed in +gel+interface condition, indicating the presence of a population of more differentiated cells.

185 On the other hand, Collagen I, the predominant collagen type in human skin,⁴³ is produced

186	mainly by fibroblasts, ⁴⁴ and is important for cell adhesion and migration within connective
187	tissues. ⁴⁵ In comparison, collagen III is an ECM protein observed to be synthesized during the
188	initial stages of wound healing. ⁴⁶ Fibronectin plays many roles in wound healing and is produced
189	locally by fibroblasts in regions where epidermal cell migration occurs. ⁴⁷ Vimentin constitutes a
190	major portion of the cytoskeleton, plays an important role in supporting organelle organization
191	and contributes to the plasma membrane fusion machinery in fibroblasts.48 Furthermore,
192	fibronectin and vimentin have been reported to be involved in fibroblast adhesion. ⁴⁵ The effect of
193	microenvironmental conditions of the dermal layer on the gene transcription changes was shown
194	in Fig. 7. Generally, the signal of collagen I, collagen III, fibronectin and vimentin of hFF cells
195	showed no statistical difference between $-gel$ -interface and $+gel$ -interface conditions, but
196	the highest expression among the 3 culture microenvironments was observed in the $+$ gel $+$
197	interface condition.

199 **Discussion**

In this work, a thermally reversible chitosan-g-poly(ethylene glycol) hydrogel (C-PEG)
reinforced with a porous chitosan-alginate (CA) scaffold was developed as skin equivalent. With
its rationally designed structure (Fig. 1c-d), this composite material was used to mimic the
bi-layered structure of native skin.

0	
6.5	
S	
\mathbf{O}	
A	
ţ	
0	
0	
6	
0	
D	
Č	
P	
S	
als CI	
S C	
als CI	
ials CI	
irials Cl	
rials CI	
irials Cl	
iterials CI	
irials Cl	
aterials CI	
Materials CI	
aterials CI	
: Materials Cl	
Materials CI	
of Materials CI	
: Materials Cl	
of Materials Cl	
I of Materials CI	
al of Materials Cl	
al of Materials Cl	
al of Materials Cl	
rnal of Materials Cl	
rnal of Materials Cl	
urnal of Materials Cl	
rnal of Materials Cl	
urnal of Materials Cl	
ournal of Materials Cl	
Journal of Materials Cl	
ournal of Materials Cl	

204	The cellular microenvironment, comprised of features including soluble factors,
205	extracellular matrix (ECM), and cell-cell interactions can dictate cell behavior in vivo. ⁷ Therefore,
206	improved control over these interactions can better direct the development and function of
207	engineered tissues. In this study, with constantly increasing cell number over the culturing period
208	of 2 weeks, both CA scaffold and C-PEG were shown to have good biocompatibility with HaCaT
209	and hFF cells (Fig. 2). Furthermore, the cellular population in both $+$ gel $-$ interface and $+$ gel
210	+ interface conditions were greater than those in $-$ gel $-$ interface condition. This result
211	suggests that the C-PEG provided a suitable microenvironment for HaCat and hFF cell
212	interactions, which promoted cell proliferation. This might be due to the fact that keratinocyte
213	signaling via soluble factors stimulates fibroblasts to synthesize growth factors, which in turn
214	would stimulate keratinocyte proliferation in a paracrine manner. ^{7,36,49} The decreased cellular
215	proliferation for both cell types was observed in $+gel+interface$ as compared to $+gel-$
216	interface. This corroborated the results from other studies that the activities of both fibroblasts
217	and keratinocytes are down-regulated in wound healing compared with those in normal skin
218	regeneration. 36,49,50 Furthermore, the distribution pattern of HaCaT cells indicated that $-gel-$
219	interface condition (Fig. 4a, 4d and 5a) was unable to provide a suitable environment for HaCaT
220	cells to form a continuous barrier in 2 weeks. In contrast, the C-PEG with CA composite scaffold
221	was able to provide a suitable microenvironment for proper cell spreading and adhesion in both

222	+gel $-$ interface (Fig. 4b, 4e and 5b) and $+$ gel $+$ interface conditions (Fig. 4c, 4f, and 5c).
223	Notably, the cellular population was larger in $+$ gel $-$ interface condition than in $+$ gel $+$
224	interface condition (Fig. 2). The effect of air-liquid interface on differentiation has been known
225	in organ-cultured keratinocytes. ^{10, 51} Accordingly, HaCaT cells cultured in $+$ gel $+$ interface
226	were found to show a continuous striated cell layer as in native skin (Fig. 4b, 4e and 5b), rather
227	than the discrete pattern observed in $+$ gel $-$ interface (Fig. 4c, 4f, and 5c). This suggests that the
228	air-liquid-interface may significantly contribute to cell differentiation rather than the cell
229	proliferation while+gel-interface promote proliferation of individual cells rather than the cell
230	differentiation and maturation.
231	Our real-time PCR results showed that the existence of basal cell characteristics in $+$ gel $-$
231 232	Our real-time PCR results showed that the existence of basal cell characteristics in $+gel-$ interface condition and the existence of differentiated spinous cell characteristics in $+gel+$
232	interface condition and the existence of differentiated spinous cell characteristics in $+$ gel $+$
232 233	interface condition and the existence of differentiated spinous cell characteristics in $+$ gel $+$ interface (Fig. 6). In the $+$ gel $+$ interface culture condition, expression of keratin 10, a mRNA
232 233 234	interface condition and the existence of differentiated spinous cell characteristics in $+$ gel $+$ interface (Fig. 6). In the $+$ gel $+$ interface culture condition, expression of keratin 10, a mRNA marker of keratinocyte maturation were significantly upregulated compared to other culture
232 233 234 235	interface condition and the existence of differentiated spinous cell characteristics in $+$ gel $+$ interface (Fig. 6). In the $+$ gel $+$ interface culture condition, expression of keratin 10, a mRNA marker of keratinocyte maturation were significantly upregulated compared to other culture conditions, with a corresponding decrease in the expression of keratin 5, a marker of basal
232 233 234 235 236	interface condition and the existence of differentiated spinous cell characteristics in $+$ gel $+$ interface (Fig. 6). In the $+$ gel $+$ interface culture condition, expression of keratin 10, a mRNA marker of keratinocyte maturation were significantly upregulated compared to other culture conditions, with a corresponding decrease in the expression of keratin 5, a marker of basal keratinocytes. This relationship between expression of genes associated with maturing

240	2:1 in wound healing, due to an early increase in the deposition of Collagen III. ⁵² The hFF gene
241	expression pattern observed in this study suggests that the culture microenvironment of the $+$
242	gel+interface condition elicited a cellular response comparable to what would be expected from
243	an initial wound healing response in vivo. Early deposition of collagen III at the wound site
244	appears as a crucial step for evaluation of the non-scarring healing process. As Collagen III
245	synthesis is found to be upregulated by dermal fibroblasts in $+gel+interface$ condition, it is
246	possible that the microenvironment of $+$ gel $+$ interface condition may contribute to a
247	non-scarring wound healing process. ⁵²
248	Other studies of cellularized tissue engineered skin equivalents had difficulty in separation
249	of epithelia keratinocytes from dermal fibroblasts for further investigation. ^{7,41,53} Both
250	keratinocytes and fibroblasts could be readily released from our materials developed herein and
251	sorted by the FACS. Significantly, our results indicated that the unique microenvironment
252	created by C-PEG gel and CA scaffold along with air-liquid interface is able to direct cell
253	behavior towards a desirable proliferative response and stimulate the expression of relevant in
254	vivo wound healing markers and cellular activity in an in vitro environment.
255	Conclusions
256	In this study, we have demonstrated the fabrication and in vitro performance of a novel

257 C-PEG gel and CA composite scaffold that can accommodate fibroblasts and karatinocytes to

258 form a bi-layered tissue engineered skin equivalent. The composite scaffold segregated the two cell types into a three-dimensional dermal layer and a flat epidermal layer with 259 air-liquid-interface. In these unique microenvironments, both cell types expressed their 260 261 characteristic mRNA markers. Gene transcription expression confirmed that the bi-layered construct provided a microenvironment that stimulated an initial wound healing response with 262 263 enhanced collagen secretion in the dermal fibroblast compartment. The epidermal layer in the composite scaffold contributed expression of gene markers for differentiation, along with 264 histological features of keratinocyte differentiation into stratified layers. Furthermore, the 265 bi-phasic scaffold design may be applicable for the generation of other complex tissues 266 composed of two tissue types in tissue engineering or developmental biology contexts. 267

268

269 Experimental

270 Materials

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise
specified. Chitosan (85% de-acetylated, MW = medium), alginate (alginic acid from brown
seaweed, Mw = 80,000–120,000 Da) and methoxy-poly(ethylene glycol) (PEG, Mw = 2,000
Da) were used as received.

275 Dulbecco's Modified Eagle Medium (DMEM), antibiotic-antimycotic (AA), Dulbecco's

276	phosphate buffered saline (D-PBS), Trypsin-EDTA, Lipofectamine® 2000 reagent, and
277	haematoxylin-eosin (H&E) were purchased from Invitrogen (Carlsbad, CA). Plasmid Mega Kit,
278	QIAshredder columns, and SYBR Green PCR Master mix were purchased from Qiagen
279	(Valencia, CA, USA). The fetal bovine serum (FBS) was procured from Atlanta Biologicals
280	(Lawrenceville, GA).
281	Human foreskin fibroblasts (hFF) were purchased from American Type Culture Collection
282	(ATCC, Manassas, VA) and Keratinocytes (HaCaT) were purchased from Cell Lines Service
283	(Germany). The cells were maintained according to the instructions provided by each
284	manufacturer and fully supplemented in DMEM with 10% FBS and 1% AA at 37°C and 5%
285	CO ₂ in a fully humidified incubator.
286	
287	Scaffold preparation
288	Chitosan-poly(ethylene glycol) (C-PEG) hydrogel
289	C-PEG was prepared as previously reported.54, 55 Briefly, PEG-aldehyde was prepared
290	utilizing the following procedure to oxidatize PEG with DMSO/acetic anhydride. First, the PEG
291	was completely dissolved in anhydrous DMSO/chloroform (90/10, v/v), followed by the addition
292	of acetic anhydride to the mixture under a nitrogen atmosphere until the molar ratio of acetic
293	anhydride to PEG was 12. The mixture was then stirred for 12 hr at room temperature under a

294	nitrogen atmosphere and precipitated using excess diethyl ether. With chloroform, the precipitate
295	was dissolved and then once again precipitated with diethyl ether. After vacuum drying, a white
296	PEG-aldehyde powder was obtained. Utilizing a Schiff base formation, C-PEG was prepared by
297	the alkylation of chitosan using the PEG-aldehyde. To do this, chitosan and PEG-aldehyde with a
298	weight ratio of 0.3 were added into a mixture of acetic acid/methanol (80/100, v/v) to obtain a
299	solution of pH 6. Aqueous cyanoborohydride (NaCNBH3) solution was then added drop-wise
300	into the mixture of chitosan and PEG-aldehyde in a molar ratio of 0.02/0.3 to form
301	NaCNBH ₃ /PEG-aldehyde. Twenty hr after the reaction, the resultant mixture was dialyzed using
302	a dialysis membrane (MW 12000-14000 cut off) against DI water and 0.05 M NaOH, and then
303	DI water again until a neutral pH was reached. The solution was subsequently freeze-dried. With
304	excess acetone, residual PEG-aldehyde was removed from the freeze-dried samples resulting in
305	C-PEG powder. The C-PEG powder was sterilized with EtO gas prior to being re-constituted in
306	cell culture media. Finally, a 2% C-PEG hydrogel solution was prepared using DMEM
307	supplemented with 10% FBS.

309 Chitosan–alginate (CA) scaffolds

The CA scaffold was prepared as previously reported.^{22, 23, 56} First, two separate solutions were prepared: a 4% chitosan in 1% acetic acid aqueous solution, and a 4% alginate solution in

312	DI water. The two solutions were then blended using a mixer (ARM-300, Thinky) at 2000 rpm
313	for several min to obtain a homogenous mixture. The solution was then cast into each individual
314	well in a 24-well plate, maintained at -20°C for 24 hr, and lyophilized to form a porous CA
315	scaffold. The CA scaffold was then cross-linked by 0.2 M CaCl_2 for 10 min, and washed with DI
316	water. The CA scaffold was sanitized using 70% ethanol, and was repeatedly washed with PBS
317	to remove residual ethanol before cell culture.
318	
319	Plasmid DNA
320	Plasmids containing a CMV promoter and green fluorescence protein / red fluorescence
321	reporter (pGFP-N2, 4.7 kb/pRFP-N2, 4.7kb) were obtained from BD Biosciences Clontech (Palo
322	Alto, CA, USA). pGFP-N2/pRFP-N2 plasmid DNA were amplified in bacteria and extracted
323	using a Plasmid Mega Kit. The recovered plasmids were stored at 4°C in sterilized DI water. The
324	purified plasmids were analyzed by gel electrophoresis, while their concentration was measured
325	by UV absorption at 260 nm (V-530, Jasco, Tokyo, Japan).
326	
327	Cell transfection
328	Prior to transfection, an appropriated amount of HaCaT and hFF cells were separately
329	seeded into a 6-well plate containing antibiotic-free culture media. 24 hr after plating, HaCaT

	0
	0
	ິ
	Π
	\geq
	Ο
	Ф
	-
	9
	<u>()</u>
	U
	A 16
	U
	\mathbf{n}
	\leq
	10
	_
	Ξ
	S
	em
	Jem
	hem
	hem
	hem
	Chem
Ī	hem
	IIS Chem
	als Chem
Ī	als Chem
	rials Chem
	als Chem
	erials Chem
	terials Chem
	terials Chem
	terials Chem
	terials Chem
	terials Chem
	terials Chem
	terials Chem
	of Materials Chem
	I of Materials Chem
	I ot Materials Chem
	al of Materials Chem
	al of Materials Chem
	nal of Materials Chem
	rnal of Materials Chem
	rnal of Materials Chem
	urnal of Materials Chem
	ournal of Materials Chem
	urnal of Materials Chem

330	and hFF cells were transfected with pRFP-N2 and pGFP-N2, respectively using Lipofectamine®
331	2000 Reagent following the manufacturer's instructions. 48 hr after transfection, the cells were
332	washed with PBS and supplied with fresh medium, and then selected with G418-containing
333	media (500 μ g/mL). 2 weeks after selection, the cells were sorted by fluorescence activated cell
334	sorting (Aria III Sorter; Vantage SE). For simplicity, HaCaT+RFP is abbreviated as HaCaT, and
335	hFF+GFP as hFF hereafter.
336	
337	Characterization

338 Cell seeding and culturing

fibroblast (hFF) and karatinocytes (HaCaT) were cultured on the three The 339 340 microenvironments including (1) CA scaffold without gel in cell culture medium without air-liquid interface (-gel-interface), (2) CA scaffold permeated with C-PEG (+gel-341 interface) in cell culture medium without air-liquid interface, and (3) CA scaffold permeated 342 with C-PEG cultured at the air-liquid interface (+gel+interface). The schematic representations 343 of the three culture conditions were illustrated in Fig. 1a, 1b, and 1c, respectively. Specifically, 344 for the culture condition of -gel-interface, 10^5 hFF cells were seeded directly into CA 345 scaffold. 2 hr after the seeding of hFF, 5×10^5 HaCaT cells were seeded onto CA scaffold, 346 followed by addition 500 μL of DMEM. For the culture condition of $\,+\,gel-interface,\,10^{5}~hFF$ 347

348	cells were suspended in 200 μL of 2% C-PEG at 4°C, and subsequently poured onto a CA
349	scaffold. The <i>in situ</i> gelation of C-PEG was achieved by maintaining construct at 37°C for 2 hr.
350	After the gelation, 5×10^5 HaCaT cells were seeded on the top of the C-PEG layer, followed by
351	addition of 300 μL of DMEM. The medium changes were performed every other day. For the
352	culture condition of $+gel+interface$, all the conditions were the same as $+gel-interface$
353	except the CA scaffold sitting in a Transwell insert (polycarbonate membrane, 0.4 μ m, Corning,
354	Lowell, MA). To create the air-liquid-interface, 500 μ L of DMEM was added to the Transwell,
355	which was not higher than the surface of seeded HaCat cells. Fig. 1d shows the <i>in situ</i> gelation of
356	hFF/C-PEG gel mixture within CA scaffold. Fig. 1e shows $+gel+interface$ were overlaid by
357	HaCaT cells after 2 weeks of culture in the Transwell insert.

358 Cell proliferation

For cell number quantification, the scaffold was degraded to detach the seeded detach the seeded HaCaT+RFP and hFF+GFP cells at specific time interval of 5, 10, and 14 d. Specifically, the scaffold was immersed in the solution of 30 mM NaHCO₃ in 5 mM HEPES for 10 min at 37°C and the solution of 10 mM EDTA in 20 mM HEPES was then added for another 10 min immersion at 37°C. The solution was filtered through a 70 micron filter to eliminate the scaffold debris. The filtered cells were further detached with Trypsin EDTA (Invitrogen) and washed with PBS for 3 times. The cell pellet was re-suspended in 1% FBS in PBS, and were then sorted and

366	quantified by flow cytometry (BD Aria III Sorter; Becton Dickinson, San Jose, A). Cell sorting
367	was performed using RFP signals (excitation with the 561 nm laser, emission detection at 582/15
368	nm), and GFP signals (excitation with the 488 nm laser, emission detection at 530/30). Gates
369	were set to exclude necrotic cells and cellular debris and the fluorescence intensity of events
370	within the gated regions was quantified. The resulting sorted cells were re-suspended in fresh
371	media for further analysis (PCR).
372	Scanning electron microscopy
373	To conduct SEM analysis, cell-scaffold constructs were removed from culture medium after
374	2 weeks of culture, rinsed with PBS, and fixed with formalin for 30 min. Once fixed, specimens
375	were rinsed with DI water 3 times, dehydrated with sequential incubations in 70%, 85%, 95%
376	and 100% ethanol for 20 min each, and then critical point CO ₂ dried using a Hitachi HCP-2
377	(Hitachi, Tokyo, Japan). The specimens were sputter-coated with Au/Pd at 18 mA for 40 sec, and
378	imaged by scanning electron microscopy (SEM, JEOL JSM 7000).
379	
380	Histology
381	For histological analysis, cell-scaffold constructs were fixed with formalin for 30 min, then
382	dehydrated with sequential incubations in 70%, 85%, 95%, 100% ethanol, and xylene for 1 hr at

Journal of Materials Chemistry B Accepted Manuscript

383 each step. Samples were embedded into paraffin, cross sectioned into 10-µm-thick sections.

384 Samples were then stained with hematoxylin and eosin (H&E), and visualized with an optical
385 microscope (Nikon).

386

```
387 Real-time PCR
```

In each culture condition, cells were first detached from scaffolds, and then the HaCaT and the hFF cells were sorted by fluorescence activated cell sorting (FACS; Vantage SE) for further PCR analysis.

Cells were homogenized by vortexing and passed through the QIAshredder (Qiagen) 391 392 columns for each RNA separately. The total RNA was isolated using RNeasy with 30 ng of total RNA from a triplicate sample converted to cDNA following the manufacturer's instructions for 393 394 the QuantiTect Reverse Transcription Kit (Qiagen). SYBR Green PCR Master Mix (BioRad) was used with a primer for template amplification for each of the transcripts examined. 395 Thermocycling was performed at the following conditions: 95°C for 15 min, 45 cycles of 396 denaturation (94°C, 15 sec), annealing (55°C, 30 sec), and extension (72°C, 30 sec). The reaction 397 was monitored in real-time using a CFX96 Real-Time System (BioRad). For relative 398 399 quantification via the delta-delta Ct method, the ratio of the expression levels in the two samples was calculated using β -actin as a reference transcript for normalization. Samples were assayed in 400 triplicate, and primers used are listed in Table 1. 401

403

404

405

406

407

408

409

410

411

412

413 414

Statistical analysis The results were presented as mean values of triplicate samples \pm standard deviation. The statistical difference was determined by unpaired, two-tailed Student's t-test. Values were considered to be statistically significant at p < 0.05 (*). Acknowledgements This work is supported in part by NIH grant (NIH/NCI R01CA172455) and Kyocera Professor Endowment to M.Z. We acknowledge the use of resources at the Center for Nanotechnology and Department of Immunology at the University of Washington. Figures а b medium. HaCaT HaCaT hFF CA/C-PEG. hFF

416 Fig. 1. Schematic illustration of co-culture of HaCaT and hFF cells in (a) CA scaffolds (-gel-

417 interface, labeled in yellow) (b) CA scaffolds with C-PEG gel (+gel-interface, labeled in grey),

and (c) CA scaffolds with C-PEG gel and air-liquid interface (+gel+interface, labeled in grey
with air-liquid interface created by transwell insert). (d) *in situ* gelation of hFF/C-PEG gel
mixture within CA scaffold; this side-view picture emphasizes the C-PEG gel on of the surface
of CA scaffold. (e) Top-down view of C-PEG gel overlaid with HaCaT epithelial cells after 2
weeks of culture in the Transwell insert. Both scale bars represent 1 cm.

Fig. 2. Proliferation analysis of HaCaT and hFF cells in 3 different microenvironments over 14 days as determined by cell sorting. * indicates a statistical significance in cell numbers of hFF and HaCaT (p < 0.05) as compared to respective cells at the -gel-interface condition and at each respective time point.

438

Fig. 3. SEM images of HaCaT/hFF cells cultured in 3 different microenvironments for 2 weeks: -gel-interface (a, d, g), +gel-interface (b, e, h), and +gel+interface (c, f, i). For HaCaT cells, the black boxes in low magnification images (a, b, c, scale bar = 100 μ m) identify the areas in high magnification images (d, e, f, scale bar = 25 μ m). For hFF cells in g, h, i, scale bar = 15 µm.

- 447
- 448

Fig. 4. Histological analysis of HaCaT cells cultured in 3 different microenvironments for 2 weeks: -gel-interface (a, d), +gel-interface (b, e), and +gel+interface (c, f). For HaCaT cells, the black boxes in low magnification images (a, b, c, scale bar = 20 µm) identify the areas in high magnification images (d, e, f, scale bar = 5 µm).

Fig. 5. Fluorescent images of HaCaT/hFF cells cultured in 3 different microenvironments for 2 477 weeks: -gel-interface (a, d), +gel-interface (b, e), and +gel+interface (c, f). Cellular 478 nuclei are blue, HaCat and hFF cells express red and green fluorescence, respectively. Scale bar 479 480 $= 25 \,\mu m.$

- 481
- 482

-gel

+gel

-interface -interface +interface

489Fig. 6. RNA transcription of Keratin 5, and Keratin 10 by HaCaT cells cultured in 3 different490microenvironments for 2 weeks: -gel-interface, +gel-interface, and +gel+interface.491Results are normalized to β-actin mRNA. *indicates a statistical significance (p < 0.05) of +gel492+interface as compared to other conditions.

+gel

n

-gel

+gel

-interface -interface +interface

+gel

496 Fig. 7. RNA transcription of Collagen I and III, Fibronectin, and Vimentin expressed by hFF 497 cells cultured in 3 different microenvironments for 2 weeks: -gel-interface, +gel-interface, 498 and +gel+interface. Results are normalized to β-actin mRNA. * indicates a statistical 499 significance (p < 0.05) of +gel+interface as compared to other conditions. 500

Gene of Interest		Sequence (5'-3')
	Forward	TCGCATCAAGGCCCAAGAAA
β-actin (ACTA2)	Reverse	CAGGATTCCCGTCTTAGTCCC
	Forward	AGGTGCCTTCAGCTCAGTCT
Keratin 4 (KRT4)	Reverse	CCAAAGCAGGCACCTTGTCG
	Forward	AACCCACTAGTGCCTGGTTC
Keratin 5 (KRT5)	Reverse	AAGGACACACTTGACTGGCG
	Forward	CAGATAGGCCAGCTCTTCAGTCA
Keratin 10 (KRT10)	Reverse	GACATCAACGGCCTGCGTA
V	Forward	GTCACGCATCTCGTTGAGGA
Keratin 17 (KRT17)	Reverse	AGGTGGGTGGTGAGATCAATG
V /: 10 (VDT10)	Forward	TCATATTGGCTTCGCATGTCA
Keratin 19 (KRT19)	Reverse	CAGGTCAGTGTGGAGGTGGA
	Forward	ACATGTTCAGCTTTGTGGACC
Collagen I (COL1A1)	Reverse	CATGGTACCTGAGGCCGTTC
	Forward	ATGTTGTGCAGTTTGCCCAC
Collagen III (COL3A1)	Reverse	TCGTCCGGGTCTACCTGATT
	Forward	ACAGGAAAGAGATGCGCCAA
Fibronectin (FN1)	Reverse	GGAAGAGTTTAGCGGGGTCC
	Forward	TCACCTGTGAAGTGGATGCC
Vimentin (VIM)	Reverse	GCAGAGAAATCCTGCTCTCCT

501 Table 1: Primer sequences used for real-time PCR analysis.

502

504	Refere	ences
505	1.	H. Wendt, A. Hillmer, K. Reimers, J. W. Kuhbier, F. Schafer-Nolte, C. Allmeling, C.
506		Kasper and P. M. Vogt, PLoS One, 2011, 6, e21833.
507	2.	W. T. Seet, M. Manira, K. Khairul Anuar, K. H. Chua, A. W. Ahmad Irfan, M. H. Ng, B. S.
508		Aminuddin and B. H. Ruszymah, PLoS One, 2012, 7, e40978.
509	3.	R. Papini, BMJ, 2004, 329 , 158-160.
510	4.	J. Rnjak, Z. Li, P. K. Maitz, S. G. Wise and A. S. Weiss, Biomaterials, 2009, 30,
511		6469-6477.
512	5.	N. O. Ojeh, J. D. Frame and H. A. Navsaria, Tissue Eng, 2001, 7, 457-472.
513	6.	M. Kempf, Y. Miyamura, P. Y. Liu, A. C. Chen, H. Nakamura, H. Shimizu, Y. Tabata, R.
514		M. Kimble and J. R. McMillan, <i>Biomaterials</i> , 2011, 32 , 4782-4792.
515	7.	T. Lou, M. Leung, X. J. Wang, J. Y. F. Chang, C. T. Tsao, J. G. C. Sham, D. Edmondson
516		and M. Q. Zhang, J Biomed Nanotechnol, 2014, 10, 1105-1113.
517	8.	S. P. Zhong, Y. Z. Zhang and C. T. Lim, Wiley Interdiscip Rev Nanomed Nanobiotechnol,
518		2010, 2 , 510-525.
519	9.	N. C. Hunt, R. M. Shelton and L. Grover, Biotechnol J, 2009, 4, 730-737.
520	10.	V. M. Schoop, N. Mirancea and N. E. Fusenig, J Invest Dermatol, 1999, 112, 343-353.
521	11.	J. Rnjak-Kovacina, S. G. Wise, Z. Li, P. K. Maitz, C. J. Young, Y. Wang and A. S. Weiss,
522		Biomaterials, 2011, 32 , 6729-6736.
523	12.	S. R. Pajoum Shariati, M. A. Shokrgozar, M. Vossoughi and A. Eslamifar, <i>Iran Biomed J</i> ,
524		2009, 13 , 169-177.
525	13.	K. J. Doane, W. H. Ting, J. S. McLaughlin and D. E. Birk, Exp Eye Res, 1996, 62,
526		271-283.
527	14.	R. V. Shevchenko, S. L. James and S. E. James, J R Soc Interface, 7, 229-258.
528	15.	M. P. Curran and G. L. Plosker, <i>BioDrugs</i> , 2002, 16 , 439-455.
529	16.	L. Zaulyanov and R. S. Kirsner, Clin Interv Aging, 2007, 2, 93-98.
530	17.	J. Still, P. Glat, P. Silverstein, J. Griswold and D. Mozingo, Burns, 2003, 29, 837-841.
531	18.	H. M. Powell, D. M. Supp and S. T. Boyce, <i>Biomaterials</i> , 2008, 29, 834-843.
532	19.	A. D. Metcalfe and M. W. Ferguson, J R Soc Interface, 2007, 4, 413-437.
533	20.	M. Rinaudo, Polym. Int., 2008, 57, 397-430.
534	21.	M. P. Lutolf and J. A. Hubbell, Nature Biotechnology, 2005, 23, 47-55.
535	22.	Z. Li, H. R. Ramay, K. D. Hauch, D. Xiao and M. Zhang, Biomaterials, 2005, 26,
536		3919-3928.
537	23.	Z. Li, M. Leung, R. Hopper, R. Ellenbogen and M. Zhang, Biomaterials, 2009, 31,
538		404-412.

Journal of Materials Chemistry B

539	24.	Z. Li and M. Zhang, Journal of Biomedical Materials Research, 2005, 75A, 485-493.
540	25.	N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen and M. Zhang, <i>Biomaterials</i> , 2005,
541		26 , 6176-6184.
542	26.	IY. Kim, SJ. Seo, HS. Moon, MK. Yoo, IY. Park, BC. Kim and CS. Cho,
543		Biotechnol Adv, 2008, 26, 1-21.
544	27.	R. Jayakumar, M. Prabaharan, S. V. Nair and H. Tamura, Biotechnol Adv, 2010, 28,
545		142-150.
546	28.	K. Y. Lee, L. Jeong, Y. O. Kang, S. J. Lee and W. H. Park, Adv Drug Deliv Rev, 2009, 61,
547		1020-1032.
548	29.	Chen SH, Tsao CT, Chang CH, Lai YT, Wu MF, Chuang CN, Chou HC, Wang CK and H.
549		KH., Mater Sci Eng C Mater Biol Appl, 2013, 33, 2584-2594.
550	30.	N. Bhattarai, H. R. Ramay, J. Gunn, F. A. Matsen and M. Zhang, J Control Release, 2005,
551		103 , 609-624.
552	31.	N. Bhattarai, F. A. Matsen and M. Zhang, Macromol Biosci, 2005, 5, 107-111.
553	32.	R. A. Clark, J Invest Dermatol, 1990, 94, 128S-134S.
554	33.	K. W. M. S. N. Coolen, E. Middelkoop, M. W. Ulrich, Arch Dermatol Res, 2010, 302,
555		47-55.
556	34.	M. C. Heng, Int J Dermatol, 2011, 50, 1058-1066.
557	35.	Z. Qiu, A. H. Kwon and Y. Kamiyama, J Surg Res, 2007, 138, 64-70.
558	36.	S. Werner, T. Krieg and H. Smola, J Invest Dermatol, 2007, 127, 998-1008.
559	37.	M. M. Vaidya and D. Kanojia, J Biosci, 2007, 32, 629-634.
560	38.	H. Torma, <i>Dermatoendocrinol</i> , 2011, 3 , 136-140.
561	39.	H. Alam, L. Sehgal, S. T. Kundu, S. N. Dalal and M. M. Vaidya, Mol Biol Cell, 2011, 22,
562		4068-4078.
563	40.	X. Fu, X. Sun, X. Li and Z. Sheng, Lancet, 2001, 358, 1067-1068.
564	41.	J. Attia, N. Bigot, D. Goux, Q. T. Nguyen, K. Boumediene and J. P. Pujol, J. Bioact.
565		Compat. Pol., 2011, 26, 71-88
566	42.	M. M. Vaidya and D. Kanojia, J. Biosci., 2007, 32, 629-634.
567	43.	R. K. Schneider, J. Anraths, R. Kramann, J. Bornemann, M. Bovi, R. Knuchel and S.
568		Neuss, Biomaterials, 2010, 31 , 7948-7959.
569	44.	L. Weber, E. Kirsch, P. Muller and T. Krieg, J. Invest. Dermatol., 1984, 82, 156-160.
570	45.	C. N. Metz, Cell Mol. Life Sci., 2003, 60, 1342-1350.
571	46.	N. Coolen, K. W. M. Schouten, E. Middelkoop and M. W. Ulrich, Arch. Dermatol. Res.,
572		2010, 302 , 47-55.
573	47.	K. A. Bielefeld, S. Amini-Nik, H. Whetstone, R. Poon, A. Youn, J. Wang and B. A.

- 574 Alman, J. Biol. Chem., 2011, 286, 27687-27697.
- 575 48. A. B. Hilmi, A. S. Halim, A. Hassan, C. K. Lim, K. Noorsal and I. Zainol, *Springerplus*, 2013, 2, 79-87.
- 577 49. R. A. Bader, K. T. Herzog and W. J. Kao, *Polym Bull*, 2009, **62**, 381-389.
- 578 50. D. Nowinski, P. Hoijer, T. Engstrand, K. Rubin, B. Gerdin and M. Ivarsson, J Invest
 579 Dermatol, 2002, 119, 449-455.
- 580 51. M. Prunieras, M. Regnier and D. Woodley, J Invest Dermatol, 1983, 81, 28s-33s.
- 52. J. Attia, K. Boumédiène, J. P. Pujol, J. M. Valleton, E. Huet and Q. T. Nguyen, *J. Bioact. Compat. Pol.*, 2009, 24, 329-349.
- 53. J Attia, Nicolas Bigot, Didier Goux, Quang Trong Nguyen, K. Boumediene and J. P.
 Pujol, *J Bioact Compat Pol*, 2011, 26, 71-88
- 585 54. N. Bhattarai, H. R. Ramay, J. Gunn, F. A. Matsen and M. Zhang, J. Control. Release,
 586 2005, 103, 609-624.
- 587 55. N. Bhattarai, F. A. Matsen and M. Zhang, *Macromol. Biosci.*, 2005, 5, 107-111.
- 588 56. Z. Li and M. Zhang, J. Biomed. Mater. Res., 2005, 75A, 485-493.
- 589
- 590