
Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains

Mushroom-like Au/NiCo₂O₄ nanohybrid as high-performance binder-free catalytic cathode for lithium-oxygen batteries

Fangfang Tu, a Jian Xie, ab Shichao Zhang, Gaoshao Cao, Tiejun Zhu and Xinbing Zhao ba

^aState Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. E-mail: xiejian1977@zju.edu.cn; Fax: +86-571-87951451; Tel: +86-571-87952181

^bKey Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China

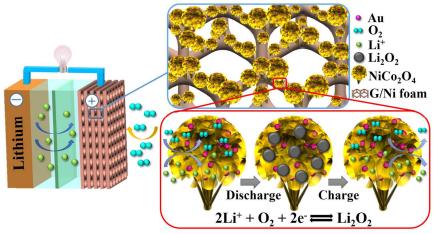
^cSchool of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

[†] Electronic supplementary information (ESI) available: SEM and Raman of 3D-G, nitrogen adsorption and desorption isotherms of Au/NiCo₂O₄/3D-G and NiCo₂O₄/3D-G, SEM images of NiCo₂O₄/3D-G after immersion in different solutions, SEM image of Au/NiCo₂O₄/3D-G and (b) the corresponding EDS mapping in a wide range, Nyquist plots of Li-O₂ batteries with different catalytic cathodes, the electrochemical performance of Li-O₂ batteries with 3D-G and Au/3D-G catalysts, TEM and SAED of the Au/NiCo₂O₄/3D-G electrode, Nyquist plots of Li-O₂ battery with Au/NiCo₂O₄/3D-G catalyst at different states, SEM of NiCo₂O₄/3D-G electrode after discharge and recharge on the 10th cycle, and SEM images and Li1s XPS of Au/NiCo₂O₄/3D-G electrodes at different states . See DOI:

Abstract

Li–O₂ (or Li–air) battery currently represents a hot topic in the field of energy storage and conversion. The electrochemical performance of Li–O₂ battery depends largely on the material and architecture of the catalytic cathode. In this work, we propose a unique design of binder-free catalytic cathode for Li–O₂ batteries. The electrode consists of novel mushroom-like Au/NiCo₂O₄ nanohybrid on three-dimensional graphene (3D-G) grown directly on the skeleton of Ni foam. The Au/NiCo₂O₄/3D-G catalyst exhibits good catalytic effect for Li–O₂ batteries, where Au directs the growth of Li₂O₂ mainly on the top of mushroom-like Au/NiCo₂O₄, and induces the crystallization of Li₂O₂ into thin-flake or thin-film form that is found to decompose relatively easily compared with large-particle form upon charge. Mushroom-like NiCo₂O₄ provides additional catalytic sites and acts as the support for both Au and Li₂O₂. Li–O₂ battery with Au/NiCo₂O₄/3D-G catalyst can deliver a capacity of around 1275 mAh g⁻¹ at 42.5 mA g⁻¹. When the capacity is limited at 510 mAh g⁻¹, the Li–O₂ battery can sustain a stable cycling for 40 times.

Introduction


Although Li-ion batteries recently show promising applications in electric vehicles (EVs) and hybrid electric vehicles (HEVs), the energy density of current Li-ion batteries is far from satisfying the requirements of EVs and HEVs.¹ Since first reported by Abraham et al.,² Li–O₂ (or Li–air) batteries have attracted a great attention due to their extremely high theoretical energy density of 11680 Wh kg⁻¹ (3548 Wh kg⁻¹ including oxygen), which is nearly equal to that of gasoline (13000 Wh kg⁻¹).^{3–5} However, Li–O₂ batteries still face significant challenges before practical applications,^{4,6–8} including sluggish oxygen reduction/evolution reaction (ORR/OER) kinetics related to the formation of insulating Li₂O₂,^{9,10} and the accumulation of the byproducts (e.g. Li₂CO₃) due to the side reactions of Li₂O₂ (or its intermediate LiO₂) with electrolyte or carbon.^{11,12} Typical binder, for example, polyvinylidene fluoride (PVDF), is also unstable in contact with Li₂O₂ (or LiO₂) with the formation LiF and –(CH=CF)– like species.¹³ A combination of these detrimental factors results in large overpotential, poor rate capability and limited cycle life of Li–O₂ batteries.

The use of catalysts has proven to be an effective measure to improve ORR/OER kinetics. ^{14,15} Although non-precious catalysts, ¹⁶ such as carbon materials ^{17,18} and transition metals oxides (TMOs: MnO₂, ^{19,20} Co₃O₄, ²¹ NiCo₂O₄, ²² etc), are preferred for practical applications, they exhibit limited catalytic activity. In contrast, noble metals, Au, ²³ Pt, ²⁴ PtAu, ²⁵ Pd, ²⁶ etc., show high catalytic activity towards ORR/OER. For instance, Peng et al. ²³ has reported that Li–O₂ battery with gold porous electrode could show a low overpotential and sustain a stable cycling up to 100 times. Lim et al. ²⁴ has found that Pt nanoparticles on carbon nanotubes could direct the growth of Li₂O₂, leading to reduced overpotential. Considering the high cost of noble metals, a compromise can be made by loading noble metals on a matrix, for example TMOs. ²⁷ Compared with carbon materials, TMOs are more stable against the attack of Li₂O₂ (or LiO₂) and/or are more catalytically active towards ORR/OER. ^{28–30} Besides the use of catalysts, the architecture of air electrode is another concern since it involves the deposition of insulating/insoluble Li₂O₂ and the byproducts.

It is well known that the charge potential of Li-O2 batteries is greatly influenced by the

morphology and distribution of discharge products. However, the exact effect of morphology of Li₂O₂ on its decomposition upon charge still remains controversial. Several groups have reported that large Li₂O₂ particles require high charge potential for their limited contact with catalysts, while thin Li₂O₂ deposits can decompose at low potentials due to their larger surface area, enhanced surface electronic conductivity and improved charge transfer at Li₂O₂/catalyst interfaces. ^{31,32} By contrast, Lu et al. indicates that large toroid-like Li₂O₂ can be charged at lower potential compared with film-like Li₂O₂ since the toroids are made up of nanosized grains and grain boundaries, which brings good electronic conductivity. ¹⁵ In this work, the effect of morphology of Li₂O₂ on its decomposition will be investigated by directing the Li₂O₂ growth with catalyst.

In this work, we propose a new design of air electrode by directly depositing Au-decorated NiCo₂O₄ (Au/NiCo₂O₄) onto the skeleton of three-dimensional graphene (3D-G) coated Ni foam. Nickel foam was considered as a good catalyst support due to its high porosity, stability and electrical conductivity.³³ Before the Au/NiCo₂O₄ deposition, graphene was first deposited on Ni foam to construct a 3D-G architecture. It has been reported that 3D macroporous graphene architecture can combine the superior intrinsic properties of graphene with additional 3D porous structure, which not only maintains high electrical conductivity and good chemical inertia of graphene, but also provides a high specific area and numerous porous channels to improve ion and electron transport. 34,35 NiCo₂O₄ was selected as the support for Au since it is highly efficient for ORR and OER. 22,36 We found that the top of NiCo₂O₄ nanowires could be converted into flower-like nanosheets with decorated Au nanoparticles after immersion in HAuCl₄·3H₂O aqueous solution, while the bottom of the nanowires was kept intact without Au decoration, leading to the formation of a mushroom-like structure as shown in Fig. 1. Importantly, the presence of Au could change the crystallization habit of Li₂O₂, alleviating the electrode passivation by directing the deposition of Li₂O₂ in a desirable form and at a favorable position of the electrode. The Au/NiCo₂O₄/3D-G catalyst demonstrates superior catalytic performance because of its unique structure and component.

Fig. 1 Schematic presentation of the structure and working mechanism of Li–O₂ battery with Au/NiCo₂O₄/3D-G catalytic cathode.

Experimental section

Preparation of Ni foam supported three-dimensional graphene (3D-G)

Nickel foam (density: ~285 g m⁻², thickness: ~1.6 mm, porosity: ≥96%, Heze Tianyu Technology Development Co., Ltd, China) was used as the 3D scaffold template to grow 3D-G by chemical vapor deposition (CVD) method.³⁷ Ni foam was first cut into pieces of 5 cm×20 cm and placed into the quartz tube of a horizontal tube furnace, followed by heating to 1000 °C rapidly at 100 °C min⁻¹ under Ar flow of 500 standard-state cubic centimeters per minute (sccm) and annealing at 1000 °C for 5 min to clean the surface of Ni foam. Afterwards, ethanol was introduced into the quartz tube by Ar flow at 250 sccm to initiate the graphene growth. After reaction at 1000 °C for 5 min, the furnace was cooled down to room temperature in Ar flow of 500 sccm. The graphene loading on Ni foam is 0.85 mg cm⁻² after the reaction.

Preparation of Ni foam supported NiCo₂O₄/3D-G

In a typical synthesis, Ni(NO₃)₂·6H₂O (2 mmol), Co(NO₃)₂·6H₂O (4 mmol), and urea (24 mmol) were dissolved into deionized (DI) water (60 mL) under vigorous magnetic stirring. The clear pink solution was then transferred into a Teflon-lined stainless steel autoclave and a piece of Ni foam supported 3D-G (2.5×2.5 cm²) was put into the autoclave. The autoclave was sealed and heated in

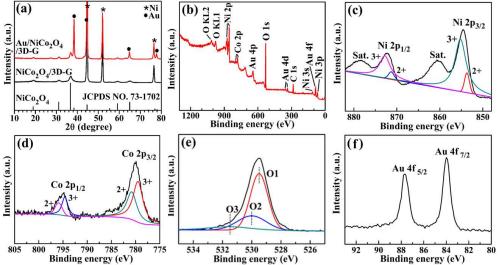
an electric oven at 120 °C for 6 h. After cooling down to room temperature, the hydrothermal product was taken out from the autoclave. Ni foam supported $NiCo_2O_4/3D$ -G was obtained after washing the product with DI water and absolute ethanol repeatedly, drying under vacuum at 60 °C overnight, and annealing at 400 °C for 3 h in air. The loading of $NiCo_2O_4$ on 3D-G is 0.78 mg cm⁻².

Preparation of Ni foam supported Au/NiCo₂O₄/3D-G

HAuCl₄·3H₂O (16 mg) was added into DI water (15 mL) to form a homogeneous solution under magnetic stirring. Ni foam supported NiCo₂O₄/3D-G was immersed in the solution for 12 h. After the immersion, the product was washed with DI water and absolute ethanol repeatedly, and dried at 60 °C under vacuum overnight. The loading of Au on NiCo₂O₄/3D-G is 0.37 mg cm⁻². For comparison, Ni foam supported Au/3D-G was also prepared in a similar way without NiCo₂O₄ deposition.

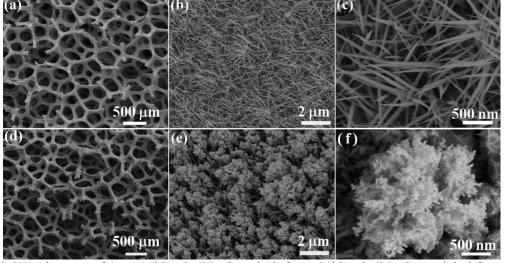
Materials characterization

The X-ray diffraction (XRD) patterns were obtained on a Rigaku D/Max-2550pc powder diffractometer with Cu K_{α} radiation (λ = 1.541 Å). X-ray photoelectron spectra (XPS) were acquired on a KRATOS AXIS ULTRA-DLD spectrometer using a monochromatic Al K_{α} radiation ($h\nu$ = 1486.6 eV). The morphology of the samples was characterized by field-emission scanning electron microscope (SEM) on a FEI-sirion microscope, transmission electron microscopy (TEM), and high-resolution TEM (HRTEM) on a JEM 2100F microscope. Raman spectrum was measured by a Jobin-Yvon Labor Raman HR-800 system with a 514.5 nm Ar-ion laser. Nitrogen adsorption and desorption isotherms were measured on an AUTOSORB-1-C apparatus.


Electrochemical measurements

Swagelok-type cells were used to investigate the electrochemical performance of Li–O₂ batteries. Battery assembly was carried out in an Ar-filled glove box. The Li–O₂ batteries were composed of lithium foil as anode, glass fiber membrane (Whatman) as separator, Au/NiCo₂O₄/3D-G (NiCo₂O₄/3D-G, Au/3D-G or 3D-G) supported on Ni foam as cathode, and 1,2-dimethoxyethane

(DME) containing 0.1 M LiClO₄ as electrolyte. The batteries were purged with O₂ flow of 30 sccm for 10 min before testing. Galvanostatic cycling was performed on a Neware battery tester (Shenzhen, China) at 2.0–4.5 V or 2.2–4.3 V. Cyclic voltammetry (CV) scanning was conducted on a VersaSTAT3 electrochemistry workstation at 0.05 mV s⁻¹ between 2.0 and 4.5 V. Electrochemical impedance spectroscopy (EIS) measurements were performed on the workstation by applying an AC signal of 5 mV amplitude over the frequency range 10⁻²–10⁵ Hz. All of the electrochemical measurements were carried out at room temperature.


Results and discussion

3D-G was prepared by a template-directed CVD method using 3D Ni foam as the template. NiCo₂O₄ was grown on 3D-G coated Ni foam by a hydrothermal method. Au decoration on NiCo₂O₄ was realized by a facile immersion process. Fig. 2a shows the XRD patterns of Au/NiCo₂O₄/3D-G and NiCo₂O₄/3D-G supported on Ni foam. XRD patterns clearly indicate the formation of phase-purity NiCo₂O₄/3D-G samples and the formation of Au in Au/NiCo₂O₄/3D-G sample. The chemical composition and oxidation state of Au/NiCo₂O₄/3D-G electrode were checked by XPS. The survey spectrum in Fig. 2b shows the expected elements in Au/NiCo₂O₄/3D-G. The Ni2p spectrum (Fig. 2c) can be fitted by two spin-orbit doublets (Ni²⁺ and Ni³⁺) and two satellites (denoted as "Sat.").^{38,39} Co₂p spectrum (Fig. 2d) is also fitted by two spin-orbit doublets (Co²⁺ and Co³⁺).^{38,39} The O 1s spectrum (Fig. 2e) can be divided into three peaks for different forms of oxygen (O1, O2, and O3).³⁸⁻⁴⁰ The O1 peak at 529.5 eV is related to typical metal-oxygen bonds, the O2 peak at 530.0 eV corresponds to oxygen in OH⁻ groups, and the O3 peak at 531.5 eV is related to oxygen ions in low oxygen coordination at the surface.³⁸⁻⁴⁰ The Au 4f spectrum (Fig. 2f) exhibits two peaks located at 84.0 and 87.7 eV, which is typical of Au⁰ oxidation state.⁴¹ confirming the formation of metallic Au.

Fig. 2 (a) XRD patterns of NiCo₂O₄/3D-G and Au/NiCo₂O₄/3D-G on nickel foam, (b) XPS survey spectrum of Au/NiCo₂O₄/3D-G, and (c) Ni2p, (d) Co2p, (e) O1s and (f) Au4f XPS of Au/NiCo₂O₄/3D-G.

Fig. 3 presents the SEM images of NiCo₂O₄/3D-G and Au/NiCo₂O₄/3D-G on Ni foam. Low-magnification images in Fig. 3a,d indicate that both NiCo₂O₄/3D-G and Au/NiCo₂O₄/3D-G were deposited only on the skeleton of Ni foam, copying its interconnected 3D scaffold structure with its large pores intact. The 3D-G, the interlayer between NiCo₂O₄ and Ni foam, exhibits a few-layered nature as revealed by the wrinkles in SEM image (See Fig. S1b in the ESI†) and the strong 2D Raman peak (see Fig. S1c in the ESI†). For NiCo₂O₄/3D-G, slender NiCo₂O₄ nanowires with a sharp tip are uniformly arranged on 3D-G (Fig. 3b,c). Typical NiCo₂O₄ nanowires have a diameter around 60 nm and a length of several microns. After immersion in a HAuCl₄·3H₂O aqueous solution, the top of the nanowires has been converted into flower-like nanosheets with Au nanoparticles decorated on the surface (Fig. 3e,f). As a result, a mushroom-like structure has been constructed. This conversion is favorable since it can supply more catalytic sites, increase the contact with electrolyte, and facilitate the deposition of Li₂O₂ by increasing the surface area (see Fig. S2 in the ESI†).

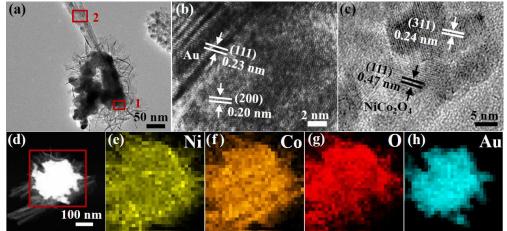


Fig. 3 SEM images of (a–c) NiCo₂O₄/3D-G and (d–f) Au/NiCo₂O₄/3D-G on nickel foam.

It is proposed that the formation of sheet-like NiCo₂O₄ is realized through a dissolution and recrystallization process catalyzed by Au. To clarify this assumption, we performed a series of experiments by immersing NiCo₂O₄/3D-G in various aqueous solutions containing HCl, H₂PtCl₆, Na₂PdCl₄, and Na₂PdCl₄/HCl under similar conditions. After immersion in H₂PtCl₆ solution, the conversion of nanowires into nanosheets could also occur (see Fig. S3b in the ESI†). In contrast, the nanowires structure of NiCo₂O₄ is still preserved in HCl (see Fig. S3a in the ESI†) or Na₂PdCl₄ solution (see Fig. S3c in the ESI†). Of note is that the conversion is also possible by immersing NiCo₂O₄ in a mixed solution containing Na₂PdCl₄ and HCl (see Fig. S3d in the ESI†). This indicates that the conversion could only occur via a combined effect of acidic condition and presence of noble metal.

TEM, HRTEM and energy dispersive X-ray spectrometry (EDS) mapping were applied to further investigate the microstructure of Au/NiCo₂O₄/3D-G. Fig. 4a shows a single mushroom-like structure composed of a nanowire and flower-like nanosheets with decorated nanoparticles. Fig. 4b,c presents the HRTEM images of two selected domains (1 and 2) in Fig. 4a. The fringe spacings of 0.23 and 0.20 nm in Fig. 4b correspond to the (111) and (200) planes of Au, and those of 0.24 and 0.47 nm in Fig. 4c correspond to the (311) and (111) planes of NiCo₂O₄. The dark-filed TEM image and the corresponding EDS mapping (Fig. 4d–h) further prove that the dark part on the

nanosheets is Au, and that no Au is present on the nanowires part of the mushroom-like NiCo₂O₄. The EDS mapping in a wider range was also given (see Fig. S4 in the ESI†), which indicates that Ni, Co, O and Au elements are dispersed evenly in the nanohybrid and reveals the uniformity of the obtained electrode.

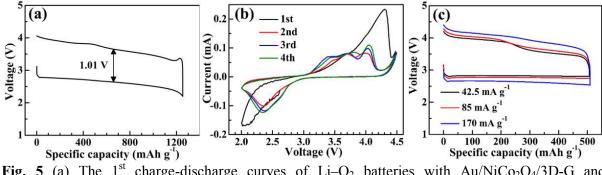


Fig. 4 TEM and EDS of the sample from the Au/NiCo₂O₄/3D-G electrode: (a) TEM image of a single mushroom-like structure, (b) HRTEM image of selected area 1 in (a), (c) HRTEM image of selected area 2 in (a), and (d-h) dark-field TEM image and the corresponding EDS mapping.

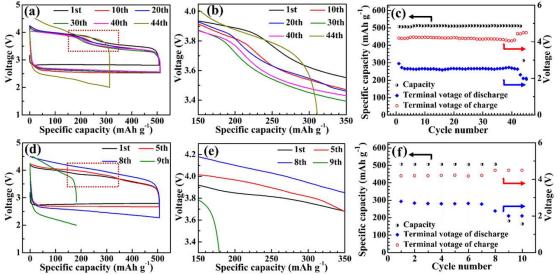
The electrocatalytic activity of Au/NiCo₂O₄/3D-G was evaluated in Li–O₂ batteries and compared with those of NiCo₂O₄/3D-G, Au/3D-G and 3D-G. All of the current densities and specific capacities of the electrodes are normalized by the total weight of the components on Ni foam. For example, the current density and specific capacity of the Au/NiCo₂O₄/3D-G electrode are normalized by the total weight of Au, NiCo₂O₄ and 3D-G on nickel foam. Fig. 5a shows the first discharge-charge curves of Li–O₂ batteries with Au/NiCo₂O₄/3D-G catalytic cathodes at 42.5 mA g⁻¹ (0.086 mA cm⁻²). The Li–O₂ battery with Au/NiCo₂O₄/3D-G catalytic cathodes can deliver a discharge capacity of 1275 mAh g⁻¹ and a relatively low mid-capacity overpotential (defined as the overpotential at half capacity) of 1.01 V. Note that most of the discharge product can be decomposed below 4.0 V.

EIS is used to understand the different catalytic effects between these catalysts (see Fig. S5 in the ESI†). The Nyquist plots and the corresponding fitting (see Table S1 in the ESI†) clearly

indicate that the Au introduction considerably reduces R_e and R_{ct} of the NiCo₂O₄/3D-G electrode, which is closely related to the mushroom-like structure and the decoration of highly catalytic and conductive Au. CV scanning was performed to study the ORR and OER of Au/NiCo₂O₄/3D-G catalyst (Fig. 5b). Apart from the first cycle, the CV plots show one reduction peak at 2.35 V and three oxidation peaks at around 3.4, 3.7 and 4.0 V, respectively. Multiple oxidation peaks and successive charge plateaus suggest that the decomposition of Li₂O₂ undergoes a stepwise process. As previously reported, ^{42–45} Li₂O₂ is first partially de-lithiated to form Li_{2-x}O₂ species at low potentials, followed by the oxidation of bulk Li₂O₂ at high potentials. Another possible explanation for the two-stage (or multi-stage) de-lithiation is that thin Li₂O₂ deposits can decompose at low potentials through electron tunneling, while thick Li₂O₂ deposits decompose at high potentials through polaron hopping. ³² Fig. 5c presents the rate capability of the Au/NiCo₂O₄/3D-G catalyzed Li-O₂ battery with the capacity limited at 510 mAh g⁻¹. At 170 mA g⁻¹ (0.344 mA cm⁻²), the battery can show a low average charge potential at around 4.0 V and a high discharge potential at 2.65 V.

Fig. 5 (a) The 1st charge-discharge curves of Li–O₂ batteries with Au/NiCo₂O₄/3D-G and NiCo₂O₄/3D-G cathodes at 42.5 mA g⁻¹, and (b) CV plots at 0.05 mV s⁻¹ and (c) rate performance at 510 mAh g⁻¹ of Au/NiCo₂O₄/3D-G catalyzed Li–O₂ batteries.

The stability of catalytic activity of $Au/NiCo_2O_4/3D$ -G and $NiCo_2O_4/3D$ -G cathodes was evaluated by galvanostatic cycling the Li- O_2 batteries under 42.5 mA g^{-1} at 2.0–4.5 V with the capacity limited at 510 mAh g^{-1} . As seen in Fig. 6a, the discharge plateau of $Au/NiCo_2O_4/3D$ -G

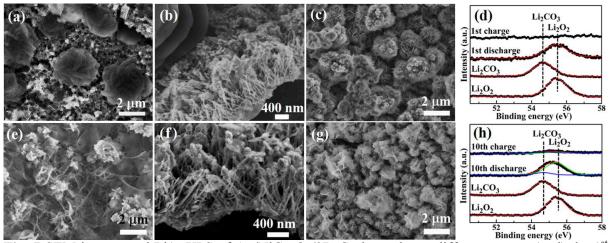

catalyzed battery is 2.80 V in the first cycle, and is stabilized at around 2.60 V up to 40 cycles. The charge curves exhibit two obvious plateaus at 3.45 and 3.95 V, indicating the stepwise decomposition feature of Li₂O₂. By contrast, this phenomenon can hardly be seen for the NiCo₂O₄/3D-G catalyzed battery (Fig. 6d). Fig. 6a also demonstrates that most of the Li₂O₂ can be decomposed below 4.0 V during 40 cycles. This is favorable since high charge potential will unavoidably lead to undesirable side reactions, for instance electrolyte decomposition. Fig. 6b illustrates the enlarged view of the rectangular area in Fig. 6a, which clearly shows that the charge potential is on the decrease till the 30th cycle, indicative of the activation process of the catalytic effect of Au. For the NiCo₂O₄/3D-G catalyzed battery, however, this process is not obvious (Fig. 6e).

As shown in Fig. 6c, the Li– O_2 battery with Au/NiCo₂O₄/3D-G catalytic cathode can sustain a stable cycling for 40 times. After that, the battery performance begins to degrade and finally fails. For the battery using NiCo₂O₄/3D-G catalyst, the stable cycling can last only 8 cycles (Fig. 6f). Obviously, Li– O_2 battery with Au/NiCo₂O₄/3D-G catalyst demonstrates significantly improved electrochemical performance than that with NiCo₂O₄/3D-G catalyst. For comparison, the electrochemical properties of Li- O_2 batteries with Au/3D-G and 3D-G catalysts were also evaluated under same conditions, namely, at a current density of 42.5 mA g⁻¹ with the specific capacity limited at 510 mAh g⁻¹. As seen in Fig. S6 in the ESI†, in both cases, the battery cannot sustain a capacity of 510 mAh g⁻¹ and rapid capacity fade is evident. In addition, both batteries demonstrate obviously higher overpotentials than the Au/NiCo₂O₄/3D-G catalyzed one.

It suggests that the performance enhancement can be ascribed to the unique microstructure and component of the Au/NiCo₂O₄/3D-G catalytic cathode. In this cathode, Au plays an important role in ensuring the good catalytic activity of the Au/NiCo₂O₄/3D-G cathode. First, Au increases the electrode conductivity of NiCo₂O₄/3D-G (see Fig. S5 in the ESI†) as mentioned above; second, Au provides highly efficient catalytic centers for ORR/OER; third, Au changes the crystallization behavior of Li₂O₂ in a favorable way which will be discussed below. Besides Au, the

mushroom-like NiCo₂O₄ is also responsible for the high catalytic performance of the Au/NiCo₂O₄/3D-G electrode. The mushroom-like NiCo₂O₄ has multiple functions in the cathode: (1) NiCo₂O₄ also shows good catalytic activity evidenced from the reduced overpotential of NiCo₂O₄/3D-G catalyzed Li–O₂ battery (Fig. 6d) compared with 3D-G catalyzed one (see Fig. S6a in the ESI†); (2) NiCo₂O₄ acts as the support for Au nanoparticles; (3) NiCo₂O₄ with sheet-like top is also a good support for Li₂O₂ deposition due to the large surface area, while the wire-like bottom is left almost intact for oxygen and Li-ion diffusion.

It should be noted that the decomposition of Li₂O₂ may become kinetically sluggish if it is deposited on Au/NiCo₂O₄ instead of conductive 3D-G. However, in situ SEM observation of the formation and decomposition of Li₂O₂ on carbon nanotube (CNT) showed that the decomposition of Li₂O₂ can occur on the surface of Li₂O₂ instead of on the Li₂O₂–CNT interface or on the Li₂O₂–electrolyte interface.⁴⁶ It means that the electronic conductivity of Li₂O₂ itself can support its decomposition, and that the mass transfer (O₂ release and diffusion) may be of equal importance as the charge transfer for Li₂O₂ decomposition. In the Au/NiCo₂O₄/3D-G electrode, Au/NiCo₂O₄ may provide acceptable conductive channels for charge transfer reaction, while its unique structure facilitates the rapid mass transfer such as O₂ release and diffusion. This is can explain lower charge overpotential of Au/NiCo₂O₄/3D-G (Fig. 6a) compared with Au/3D-G (see Fig. S6c in the ESI†).


Fig. 6 (a–c) Voltage profiles and cycling performance of Li– O_2 battery with Au/NiCo₂O₄/3D-G electrode under 42.5 mA g⁻¹ at a limited capacity of 510 mAh g⁻¹, and (d–f) voltage profiles and cycling performance of Li– O_2 battery with NiCo₂O₄/3D-G electrode under 42.5 mA g⁻¹ at a limited capacity of 510 mAh g⁻¹.

To clarify the effect of Au/NiCo₂O₄/3D-G catalyst on the electrochemical performance of Li–O₂ batteries, XPS and SEM characterizations on the cycled electrodes were performed as displayed in Fig. 7. We can see large particles and small flakes on the electrode after the first discharge to 510 mAh g⁻¹ (Fig. 7a). Cross-section view in Fig. 7b reveals that the particles and flakes are only on the top of NiCo₂O₄ mushrooms, while the bottom of the mushrooms is intact. The discharged product is confirmed to be Li₂O₂ by selected area electron diffraction (SAED, see Fig. S7b in the ESI†). After the recharge to 510 mAh g⁻¹, the particles disappear completely with the top of the mushroom-like structure exposed again (Fig. 7c). The decomposition of Li₂O₂ is further confirmed by SAED patterns (see Fig. S7c in the ESI†). XPS analysis in Fig. 7d indicates the reversible formation/decomposition of Li₂O₂ upon discharge/charge process, which is further verified by EIS (see Fig. S8 and Table S2 in the ESI†), where the increase/decrease in R_{ct} denotes the reversible deposition/removal of Li₂O₂ on the electrode.

As seen in Fig. 7e,f, Li₂O₂ grows into fluffy, thin-film form on the 10th discharge, which is decomposed after recharge as confirmed by SEM (Fig. 7g) and XPS (Fig. 7h). The morphology

transformation of Li₂O₂ from large particles to thin films is accompanied by gradual decrease in charge potential during cycling, suggesting that thin-film Li₂O₂ is easy to decompose at lower charge potential compared with large Li₂O₂ particles. This can be explained as follows. Large isolated Li₂O₂ particles are insulating and have limited contact with catalysts. Their decomposition requires high charge potential to obtain appreciable charge transport and drive partial delithiation. 31,32 By contrast, thin Li₂O₂ flakes or films have large surface area and distribute homogeneously on the catalyst surface, which benefit the increase in electronic conductivity and promote the charge transfer at Li₂O₂/catalyst interface, thus leading to a lower charge potential. 31,32 It is, therefore, reasonable to infer that Au induces the growth of Li₂O₂ into the fluffy, thin-film form, which in turn, reduces the charge potential. Directing the growth of Li₂O₂ was also observed for other noble metals supported on carbon materials. 24,26,31 In contrast, after the 10th discharge, large particles on the NiCo₂O₄/3D-G electrode can be seen (see Fig. S9a in the ESI†). After the subsequent charge, large particles are still remained (see Fig. S9b in the ESI†), indicating low catalytic activity of NiCo₂O₄/3D-G. This can explain the fast failure of the battery with NiCo₂O₄/3D-G catalyst. These results mean that the performance improvement of Li–O₂ batteries can be achieved by optimizing the structure and component of catalysts.

The formation of byproducts, for instance Li₂CO₃, is not detected during the initial cycles (Fig. 7h). However, side reactions, for example electrolyte decomposition, are unavoidable upon repeated cycling, ^{47,48} which results in the formation and accumulation of Li₂CO₃. The unobvious Li₂CO₃ in the initial cycles is probably due to the small content of Li₂CO₃ that is undetectable. However, as the cycle number increases, the formation and accumulation of Li₂CO₃ will become obvious (see Fig. S10 in the ESI†). Besides, large Li₂O₂ particles will form due to the degraded catalytic activity of the catalyst and the complete decomposition of large Li₂O₂ upon charge will become difficult with cycling (see Fig. S10 in the ESI†). As a result, the electrode will be passivated by the progressively accumulated, insulating Li₂O₂ and Li₂CO₃, leading to capacity fade and eventual failure of the battery.^{11,12}

Fig. 7 SEM images and Li1s XPS of Au/NiCo₂O₄/3D-G electrodes at different states: (a–d) the 1st cycle and (e–h) the 10th cycle. The batteries are charged and discharged to 510 mAh g⁻¹ at 42.5 mA g⁻¹.

Conclusions

In summary, a new design of binder-free catalytic cathode for Li– O_2 batteries has been proposed. The electrode is composed of mushroom-like Au-decorated NiCo₂O₄ on 3D-G coated Ni foam. In this design, the intrinsic porous structure of Ni foam ensures barrier-free oxygen transport and electrolyte penetration. Meanwhile, the introduction of Au and graphene can improve the electric conductivity of the electrode. The presence of Au directs the growth of Li₂O₂ dominantly on the top of the mushroom-like NiCo₂O₄ that minimizes the contact of Li₂O₂ (or LiO₂) with graphene. Au can guide the growth of Li₂O₂ into thin-flake or thin-film form that facilitates its decomposition at low overpotentials. Therefore, the side reactions related to electrolyte or graphene decomposition can be effectively refrained. Mushroom-like NiCo₂O₄ is also indispensable for the good catalytic performance of the Au/NiCo₂O₄/3D-G electrode. It provides additional catalytic sites for ORR/OER, and it is good support for both Au particles and Li₂O₂ due to the large surface area with the sheet-like top. In addition, its almost intact wire-like bottom is beneficial for oxygen and Li-ion diffusion. As a result, Li–O₂ batteries with Au/NiCo₂O₄/3D-G cathode exhibit good electrochemical properties due to its unique architecture and component.

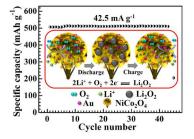
Acknowledgements

This work was supported by the National Basic Research Program of China (2013CB934001), Key Science and Technology Innovation Team of Zhejiang Province under Grant Number 2010R50013, and Program for Innovative Research Team in University of Ministry of Education of China (IRT13037).

References

- 1 F. T. Wagner, B. Lakshmanan and M. F. Mathias, J. Phys. Chem. Lett., 2010, 1, 2204–2219.
- 2 K. M. Abraham and Z. Jiang, J. Electrochem. Soc., 1996, **143**, 1–5.
- 3 T. Ogasawara, A. Débart, M. Holzapfel, P. Novák and P. G. Bruce, *J. Am. Chem. Soc.*, 2006, **128**, 1390–1393.
- 4 G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson and W. Wilcke, *J. Phys. Chem. Lett.*, 2010, 1, 2193–2203.
- 5. P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J. M. Tarascon, Nat. Mater., 2012, 11, 19–29.
- 6 R. Padbury and X. Zhang, J. Power Sources, 2011, **196**, 4436–4444.
- 7 F. J. Li, T. Zhang and H. S. Zhou, Energy Environ. Sci., 2013, 6, 1125–1141.
- 8 J. Lu, L. Li, J. B. Park, Y. K. Sun, F. Wu and K. Amine, Chem. Rev., 2014, 114, 5611-5640.
- 9 V. Viswanathan, K. S. Thygesen, J. S. Hummelshøj, J. K. Nørskov, G. Girishkumar, B. D. McCloskey and A. C. Luntz, *J. Chem. Phys.*, 2011, **135**, 214704.
- 10 J. M. Garcia Lastra, J. S. G. Myrdal, R. Christensen, K. S. Thygesen and T. Vegge, *J. Phys. Chem. C*, 2013, **117**, 5568–5577.
- B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J.
 K. Nørskov and A. C. Luntz, *J. Phys. Chem. Lett.*, 2012, 3, 997–1001.
- 12 M. M. Ottakam Thotiyl, S. A. Freunberger, Z. Q. Peng and P. G. Bruce, *J. Am. Chem. Soc.*, 2013, **135**, 494–500.
- 13 R. Black, S. H. Oh, J. H. Lee, T. Yim, B. Adams and L. F. Nazar, J. Am. Chem. Soc., 2012, 134,

- 2902-2905.
- 14 Y. Y. Shao, S. Park, J. Xiao, J. G. Zhang, Y. Wang and J. Liu, ACS Catal., 2012, 2, 844–857.
- 15 J. Lu, L. Cheng, K. C. Lau, E. Tyo, X. Y. Luo, J. G. Wen, D. Miller, R. S. Assary, H. H. Wang, P. Redfern, H. M. Wu, J. B. Park, Y. K. Sun, S. Vajda, K. Amine and L. A. Curtiss, *Nat. Commun.*, 2014, 5, 4895.
- 16 R. G. Cao, J. S. Lee, M. L. Liu and J. Cho, Adv. Energy Mater., 2012, 2, 816–829.
- 17 H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun and B. Scrosati, *Nat. Chem.*, 2012, 4, 579–585.
- 18 H. D. Lim, K. Y. Park, H. Song, E. Y. Jang, H. Gwon, J. Kim, Y. H. Kim, M. D. Lima, R. O. Robles, X. Lepró, R. H. Baughman and K. Kang, *Adv. Mater.*, 2013, 25, 1348–1352.
- 19 Y. Cao, Z. K. Wei, J. He, J. Zang, Q. Zhang, M. S. Zheng and Q. F. Dong, *Energy Environ. Sci.*, 2012, **5**, 9765–9768.
- 20 Y. Cao, M. S. Zheng, S. R. Cai, X. D. Lin, C. Yang, W. Q. Hu and Q. F. Dong, J. Mater. Chem. A, 2014, 2, 18736–18741.
- 21 Y. M. Cui, Z. Y. Wen and Y. Liu, Energy Environ. Sci., 2011, 4, 4727–4734.
- 22 L. X. Zhang, S. L. Zhang, K. J. Zhang, G. J. Xu, X. He, S. M. Dong, Z. H. Liu, C. S. Huang, L. Gu and G. L. Cui, *Chem. Commun.*, 2013, 49, 3540–3542.
- 23 Z. O. Peng, S. A. Freunberger, Y. H. Chen and P. G. Bruce, Science, 2012, 337, 563–566.
- 24 H. D. Lim, H. Song, H. Gwon, K. Y. Park, J. Kim, Y. Bae, H. Kim, S. K. Jung, T. Kim, Y. H. Kim, X. Lepró, R. Ovalle Robles, R. H. Baughmand and K. Kang, *Energy Environ. Sci.*, 2013, 6, 3570–3575.
- 25 C. C. Li, W. Y. Zhang, H. X. Ang, H. Yu, B. Y. Xia, X. Wang, Y. H. Yang, Y. Zhao, H. H. Hng and Q. Y. Yan, *J. Mater. Chem. A*, 2014, **2**, 10676–10681.
- 26 J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang and X. B. Zhang, Nat. Commun., 2013, 4, 2438.
- 27 D. Oh, J. F. Qi, Y. C. Lu, Y. Zhang, Y. Shao Horn and A. M. Belcher, *Nat. Commun.*, 2013, 4, 2756.
- 28 R. Younesi, M. Hahlin, F. Björefors, P. Johansson and K. Edström, *Chem. Mater.*, 2013, 25,


77–84.

- 29 F. J. Li, D. M. Tang, Z. L. Jian, D. Q. Liu, D. Golberg, A. Yamada and H. S. Zhou, *Adv. Mater.*, 2014, 26, 4659–4664.
- 30 F. J. Li, D. M. Tang, Y. Chen, D. Golberg, H. Kitaura, T. Zhang, A. Yamada and H. S. Zhou, *Nano Lett.*, 2013, **13**, 4702–4707.
- 31 X. Huang, H. Yu, H. T. Tan, J. X. Zhu, W. Y. Zhang, C. Y. Wang, J. Zhang, Y. X. Wang, Y. B. Lv, Z. Zeng, D. Y. Liu, J. Ding, Q. C. Zhang, M. Srinivasan, P. M. Ajayan, H. H. Hng and Q. Y. Yan, *Adv. Funct. Mater.*, 2014, 24, 6516–6523.
- 32 M. D. Radin and D. J. Siegel, *Energy Environ. Sci.*, 2013, **6**, 2370–2379.
- 33 S. X. Cai, D. S. Zhang, L. Y. Shi, J. Xu, L. Zhang, L. Huang, H. R. Li and J. P. Zhang, *Nanoscale*, 2014, **6**, 7346–7353.
- 34 H. Wang, D. S. Zhang, T. T. Yan, X. R. Wen, J. P. Zhang, L. Y. Shi and Q. D. Zhong, *J. Mater. Chem. A*, 2013, **1**, 11778–11789.
- 35 B. G. Choi, S. J. Chang, Y. B. Lee, J. S. Bae, H. J. Kim and Y. S. Huh, *Nanoscale*, 2012, 4, 5924–5930.
- 36 B. Sun, X. D. Huang, S. Q. Chen, Y. F. Zhao, J. Q. Zhang, P. Munroe and G. X. Wang, *J. Mater. Chem. A*, 2014, **2**, 12053–12059.
- 37 X. H. Cao, Y. M. Shi, W. H. Shi, G. Lu, X. Huang, Q. Y. Yan, Q. C. Zhang, H. Zhang, *Small*, 2011, **7**, 3163–3168.
- 38 J. F. Marco, J. R. Gancedo, M. Gracia, J. L. Gautier and E. Ríos, *J. Solid State Chem.*, 2000, **153**, 74–81.
- 39 C. Z. Yuan, J. Y. Li, L. R. Hou, L. Yang, L. F. Shen and X. G. Zhang, *J. Mater. Chem.*, 2012, **22**, 16084–16090.
- 40 T. Choudhury, S. O. Saied, J. L. Sullivan and A. M. Abbot, *J. Phys. D: Appl. Phys.*, 1989, **22**, 1185–1195.
- 41 A. Miranda, E. Malheiro, E. Skiba, P. Quaresma, P. A. Carvalho, P. Eaton, B. de Castro, J. A.

- Shelnutt and E. Pereira, Nanoscale, 2010, 2, 2209–2216.
- 42 S. Y. Kang, Y. F. Mo, S. P. Ong and G. Ceder, *Chem. Mater.*, 2013, **25**, 3328–3336.
- 43 Y. C. Lu, B. M. Gallant, D. G. Kwabi, J. R. Harding, R. R. Mitchell, M. S. Whittingham and Y. Shao Horn, *Energy Environ. Sci.*, 2013, **6**, 750–768.
- 44 D. Y. Zhai, H. H. Wang, J. B. Yang, K. C. Lau, K. X. Li, K. Amine and L. A. Curtiss, *J. Am. Chem. Soc.*, 2013, **135**, 15364–15372.
- 45 Y. C. Lu, Y and Shao Horn, J. Phys. Chem. Lett., 2013, 4, 93–99.
- 46 H. Zheng, D. D. Xiao, X. Li, Y. L. Liu, Y. Wu, J. P. Wang, K. L. Jiang, C. Chen, L. Gu, X. L. Wei, Y. S. Hu, Q. Chen and H. Li, *Nano Lett.*, 2014, **14**, 4245–4249.
- 47 B. D. McCloskey, D. S. Bethune, R. M. Shelby, G. Girishkumar and A. C. Luntz, *J. Phys. Chem. Lett.*, 2011, **2**, 1161–1166.
- 48 R. S. Assary, K. C. Lau, K. Amine, Y. K. Sun and L. A. Curtiss, *J. Phys. Chem. C*, 2013, **117**, 8041–8049.

Table of contents entry

Mushroom-like $Au/NiCo_2O_4/3D$ -G cathode on Ni foam exhibits superior catalytic effect for Li- O_2 batteries due to Au induced Li_2O_2 growth.

