Journal of Materials Chemistry A Accepted Manuscript This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about *Accepted Manuscripts* in the **Information for Authors**. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains ## Hetero-Structured TiO₂/SrTiO₃ Nanotube Array Film with High-Reactive Anatase TiO₂ {001} Facets Juan-Ru Huang, ^{a,b} Xin Tan, ^{a,b} Tao Yu^{*}, ^{a,c}, Lin Zhao, ^b Song Xue, ^d Wen-Li Hu^b ^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China ^bSchool of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China ^cTianjin University-National Institute for Materials Science Joint Research Center, Tianjin University, Tianjin, 300072, China ^dDepartment of Applied Chemistry, Tianjin University of Technology, Tianjin, 300191, China $\textbf{*Corresponding Author} : Yu\ Tao,\ Huang\ Juan-Ru$ Tel.: 86-22-2350-2142. E-mail: yutao@tju.edu.cn, huangjuanru@tju.edu.cn ABERSTRACT: In recent years, highly reactive anatase TiO₂ with controllable facets has expanded rapidly because its unique properties provides a new sight of interfacial chemistry to TiO₂ as photocatalyst, electrode materials and so on. Herein, we develop for the first time to fabricate hetero-structured TiO₂/SrTiO₃ nanotube arrays with the preferred orientation to anatase TiO₂ {001} facet by a typical anodization and subsequent hydrothermal approach, followed by an annealing process. Based on XRD, FE-SEM, FE-TEM, XPS and Raman measurement, partial TiO₂ is successfully converted into SrTiO₃ attached on in-situ TiO₂ nanotubes and the hetero-structured interface of TiO₂/SrTiO₃ with preferred growth of anatase TiO₂ {001} facet is definitely formed after hydrothermal process. In addition, the resulting hetero-structured samples are used as the photocatalyst to decolorize "target molecular" methylene blue (MB) of aqueous solution in a photocatalytic and photoelectrocatalytic process, and the hetero-structured samples reveal enhanced photocatalytic properties compared to the reference TiO₂ nanotube arrays. **KEYWORDS** High-Reactive, TiO₂ {001} facet, Hetero-Structured Nanotube Arrays, Photocatalysis, Photoelectrocatalysis The Design and fabrication of anatase TiO₂ nanostructures have attracted much attention because of their extensive application in photocatalysis, ¹⁻³ dye-sensitized solar cell, ^{4,5} sensors and related fields.6, 7 Previous work mainly focused on the most prevalent anatase TiO2 with the thermodynamically stable {101} (up to 94%) and minor {001} facets due to the minimization of average surface energy during the crystal growth processes under equilibrium conditions, which is described to the calculated surface energy $(0.44 \text{ J/m}^2 \text{ for } \{101\} < 0.53 \text{ J/m}^2 \text{ for } \{100\} = \{010\}$ < 0.90 J/m² for {001}) based on Wulff construction and density-functional theory (DFT) calculations.^{8, 9} and the calculations⁸ also deduce that these facets with under-coordinated fivefold Ti atoms (Ti_{5c}) possess superior reactivity than that of Ti_{4c} and, thereby, {001} and {100} facets with 100% Ti_{5c} manifest high activity based on the lattice structure of anatase TiO₂. A breakthrough work is acquired to fabricate anatase TiO₂ single crystals with dominant {001} facet using HF as a capping agent under hydrothermal conditions. ¹⁰ Subsequently, the related investigation employ large doze-ratio fluoride to promote high-active facets and then enhance the photo-generated electron transport to improve photocatalytic activity, 1, 11-20 and the free-fluorine synthetic strategies with H₂SO₄, gray mineral, carbonate ions and amine stimulate the oriented growth of specific facets and then synthesis anatase TiO₂ with dominant {001} facet.^{2, 21-24} Recently, 1D TiO₂ nanotube arrays with the preferred growth of {001} facets, which are assembled via anodizing Ti substrate in a electrolyte containing F, investigated to enhance the photovoltaic performance since these high-reactive {001} facets and the structural advantage of 1D nanomaterials effectively reduce the combination of photo-generated electrons and holes. 25, 26 The photochemical properties of semiconductor materials are determinated by the cooperative mechanism of surface atomic structure (the density of undercoordinated atoms) and surface electronic structure (the energy of photoexcited electrons), ¹⁹ which directly triggers the increasing attempt to construct the coupling semiconductors,^{3, 27-29} and then the resulting composite can generate enhanced photoelectrochemical properties compared with single semiconductor. In such an approach, the proper coupling of TiO₂ and SrTiO₃ bestow positive energetics and synergies in attaining spatial delocalization of photo-generated electrons and holes because of the unique energy band structure.³⁰ In particular, hetero-structured TiO₂/SrTiO₃ (TSr) nanotube arrays on a Ti substrate are successfully synthesized with using anodic TiO₂ nanotubes as a structure template and initial reactant in in-situ hydrothermal synthesis route, and a partial conversion of TiO₂ to SrTiO₃ on the surface of TiO₂ nanotubes is investigated to yield considerably improved photoelectrochemical properties in comparison to pure TiO₂ nanotubes.³¹⁻³⁶ Here, we firstly report a facile hydrothermal approach to directly grow hetero-structured TSr nanotube arrays with the preferred growth {001} facet of anantase TiO₂ adhered on a Ti substrate, using TiO₂ nanotube arrays by anodization as a "structure-directed" template and initial reactant, and the resulting hetero-structured film exhibits enhanced photocatalytic and electrochemical properties than reference TiO₂ (TSr₀) nanotube array film. High-reactive hetero-structured TSr nanotube array film on a Ti (TSr/Ti) substrate is fabricated by a typical hydrothermal method, utilizing TiO₂ nanotube arrays as a template and initial reactant to generate the hetero-structured in a rational manner (experimental details, Electronic Supporting Information), and the reference TSr₀ nanotube array film with a Ti substrate (TSr₀/Ti) is synthesized according to our previous report⁴. The XRD patterns of the resulting hetero-structured TSr₃₀₁/Ti (the subscript represents that the hydrothermal concentration and time are 0.025 M Sr(OH)₂ and 30 min, respectively), TSr₃₀₁*/Ti ("*" points out this sample without annealing) and reference TSr₀/Ti, Ti samples are shown in Fig. 1a, the XRD patterns of TSr₀/Ti reveal that anatase TSr₀ with diffraction peaks at about $2\theta = 25.7^{\circ}$, 38.4° , 48.5° , 53.5° , 55.6° , 63.3° , 75.5° is perfectly indexed to the (101), (004), (200), (105), (211), (204), (115) facet of anatase TiO₂ (JCPDS No.75-1537), and the patterns of Ti substrate are in good accordance with the Ti (JCPDS No.44-1294). After the hydrothermal reaction, the XRD patterns of the TSr_{30} */Ti sample illuminate that the several diffraction peaks at about $2\theta = 33.0^{\circ}$, 47.1°, 58.4°, 68.5° are indexed to the crystal facets (110), (200), (211), (220) of perovskite SrTiO₃ (JCPDS No. 35-0734) and, thereby, confirm that part of TiO₂ is successfully converted into SrTiO3 particles on the surface of "structure-directed" TiO2 nanotubes by an in-situ dissolution-precipitation process, 35, 37 and this process is described to two steps: (1) The Ti-O bonds of the TiO₂ precursor are firstly broken via hydrolytic attack to from soluble [Ti(OH)₆]²- $(TiO_2 + 2OH^- + 2H_2O \rightarrow [Ti(OH)_6]^{2-})$, (2) Small SrTiO₃ particles, which originate from the Sr²⁺ of Sr(OH)₂ substituting for Ti²⁺ of [Ti(OH)₆]²⁻, are precipitated on the surface of TiO₂ nanotubes $(Sr^{2+} + [Ti(OH)_6]^{2-} \rightarrow SrTiO_3 + 3H_2O)$, thus the total reaction is expressed: $TiO_2 +$ $Sr(OH)_2 \rightarrow SrTiO_3 + H_2O$. With the annealing at 450 °C, a sharp peak at about $2\theta = 38.4^{\circ}$ appears in the XRD patterns of TSr₃₀₁/Ti and is in good agreement with the preferred {001} facet of anatase TiO₂. 12, 19, 24, 25, 38 Compared with the XRD patterns of the hetero-structured and reference samples, the bonding of $SrTiO_3$ on the "bone structure" of TiO_2 nanotubes in the hydrothermal process directly propels the oriented growth of anatase TiO_2 {001} facet in the hetero-structure, which is further proved by regulating $Sr(OH)_2$ concentration of hydrothermal solution. The XRD patterns of the resulting TSr_{300}/Ti , TSr_{301}/Ti , TSr_{302}/Ti (corresponding to 0.010 M, 0.025 M, 0.050 M $Sr(OH)_2$ hydrothermal solution) and the reference TSr_0/Ti and Ti samples are revealed in Fig. 1b. Compared with the reference samples, these XRD patterns, which along with anatase TiO_2 (101), (004), (200), (105), (211), (204), (115) facets and perovskite $SrTiO_3$ (110), (200), (211), (220) facets, displays inconsistent variation for these hetero-structured samples. With Sr(OH)₂ concentration from 0 M to 0.010 M and 0.025 M, 0.050 M, the XRD patterns of the resulting TSr₃₀₀/Ti show no evident difference compared with the reference TSr₀/Ti, however, the resulting TSr₃₀₁/Ti, TSr₃₀₂/Ti with oriented-growth {001} facet of anatase TiO₂ are signified by XRD patterns. What is worth mentioning, anatase TiO₂ {101} peak can be measured from these resulting hetero-structured sample except for TSr₃₀₁/Ti, which probably results from the characteristic features of XRD and FE-TEM measurements. In addition, the resulting hetero-structured sample TSr₃₀*/Ti annealing at 250 °C (See Fig. S1) reveals poor crystallize because of no characteristic diffraction peaks of anatase TiO₂ and weak variation of peak intensity of perovskite SrTiO₃ compared to the resulting sample TSr₃₀₁*/Ti without annealing. With the increasing temperature to 450 °C, the preferential oriented-growth anatase TiO₂ {001} facet can be definitely measured by XRD measurement (See Fig. 1). From the above results, the fabrication of the hetero-structured film with preferential oriented-growth {001} facet of anatase TiO₂ is probably attributed to the synergistic effect of the formation of SrTiO₃ on the "structure" TiO₂ nanotubes and the appropriate annealing treatment, and the insitu substitution of the suitable content Sr to Ti on the surface of TiO₂ nanotubes probably impels the preferential growth of anatase TiO₂ {001} facet after the annealing. To confirm the topographic features of the hetero-structured sample, these samples are further characterized by FE-SEM and FE-TEM. In Fig. 2, FE-SEM views with EDX spectra of the hetero-structured TSr₃₀₁/Ti and reference TSr₀/Ti samples are showed, respectively. The cross-section views of these samples reveal similar morphology in Fig. 2a and Fig. 2d, their corresponding magnifying views from the selected area, however, indicate wide difference in Fig. 2b and Fig. 2e, and compared to the bamboo-shaped nanotubes with small "ripples" for the reference TSr₀/Ti sample,^{39, 40} the numerous "small gibbosity" distribute uniformly on the surface of nanotubes and thus the steep surface is fabricated for the hetero-structured sample,^{32, 34, 36} which is originated form the SrTiO₃ particles precipitation on the surface of TiO₂ nanotubes in a hydrothermal dissolution-precipitation process.^{35, 37} Meanwhile, the EDX spectra of the hetero-structured and reference sample also confirm the existence of Ti, O, Sr elements in Fig. 2c and Ti, O elements in Fig. 2f, respectively. In addition, SEM views of the template TSr₀*/Ti sample (See Fig. S2, Supporting Information) show that the precipitation from the reactive system is attached on the top of TiO₂ nanotubes and these anodizing nanotubes are closely connected with the Ti substrate before hydrothermal treatment. In Fig. 3, FE-TEM views of the hetero-structured TSr₃₀₁ indicate that the fabricating SrTiO₃ attach and overlap over the "structure-directed" TiO₂ nanotubes, and the measurement from the several selected areas in Fig. 3a determinately manifest the preferential growth of anatase TiO₂ {001} facet and the mixed phases of SrTiO₃ and TiO₂. In Fig. 3b, high-resolution FE-SEM view signifies that the lattice spacing of the selected area A is 0.234 nm and 0.346 nm with their interfacial angle 69.3°, which is identified as the {001} and {101} facet of anatase TiO₂,^{2,41}, ⁴² and the slight difference of the interfacial angle is probably caused by the SrTiO₃ fabrication of in-situ Sr substitution for Ti on the surface of TiO₂ nanotubes. In Fig. 3c, the electron diffraction patters of selected area B point out the presence of anatase TiO₂ (004), (211) facet with the interfacial angle 79.6° and further confirm that anatase TiO₂ nanotubes with {001} facet preferred growth is a single-crystal-like crystal. Nevertheless, high-resolution FE-TEM views of TSr₀ (reference TiO₂ nanotube) and its corresponding SEAD patters in Fig. S3 (See Supporting Information) demonstrate that the reference sample is polycrystalline in good correspondence with the XRD result of Fig. 1 and the published work.^{4, 4,3} In Fig. 3d-e, the lattice spacing of high-resolution FE-TEM views is 0.275 nm and the corresponding FFT in the inset of Fig. 3d indicates the lattice spacing 0.275 nm with the interfacial angle 60°, which is good accordance with cubic SrTiO₃ (011), (110), (101) facet with their intersection angle, and this magnifying hetero-structured junction with the lattice spacing is 0.235 nm, 0.276 nm is also identified in Fig. 2f, and, thereby, prove the hetero-structured existence of the preferred growth {001} facet of anatase TiO₂ and the (110) facet of cubic SrTiO₃ based on the above. These results definitely demonstrate the preferential growth of anatase TiO₂ {001} facet and the formation of TiO₂ and SrTiO₃ phase in the hetero-structured sample, which is perfectly coincident with the XRD patterns. In Fig. S4 (See Supporting Information), FE-TEM views of the hetero-structured TSr₃₀₂ also reveal that Sr is substituted for Ti to fabricate SrTiO₃ particles and, thus, bond and superpose on the surface of TiO₂ nanotubes, and FE-TEM views of the selected areas and EDX spectrum are definitely demonstrate the preferred-growth {001} facet of anatase TiO₂ and the hetero-structured existence. In Fig. S4b, high-resolution FE-TEM view of the selected area B indicates the lattice spacing 0.346 nm, 0.469 nm with their corresponding interfacial angle 68.8° and the lattice spacing 0.349 nm, 0.469 nm with their angle 68.5°, which accord with the {101} and {001} facet of anatase TiO₂. In Fig. S4c, high-resolution FE-TEM view of the selected area C points out the lattice spacing 0.275 nm consistent with perovskite SrTiO₃ {110} facet. In addition, the EDX spectrum of Fig. S4d reveals the elemental composition Ti, Sr, O of the sample (Cu element from the measurement). Fig. 4 shows the XPS spectra of the hetero-structured TSr_{301}/Ti , $TSr_{301}*/Ti$ and reference TSr_0/Ti , TSr_0*/Ti samples. Their full spectra (See Fig. 4a) reveal that the peak of F1s exists in the $TSr_{301}*/Ti$, TSr_0*/Ti sample and disappears in the TSr_{301}/Ti , TSr_0/Ti sample, which results from F ions of NH₄F in the anodizing electrolyte system, and the peak of F1s almost disappears when the annealing temperature increases to 450 °C. Fig. 4 b-d indicate Ti 2p, O 1s, Sr 3d spectra in the TSr₃₀₁/Ti sample and their corresponding peaks at 458.91 eV and 464.55 eV for Ti 2p, 529.82 eV and 531.55 eV for O1s, 132.77 eV and 134.10 eV for Sr 3d, 30, 33, 43, 44 respectively. Based on the above XRD, FE-SEM, FE-TEM and XPS measurement, TiO₂ nanotubes overwhelmingly dominate the hetero-structured samples and the following Raman spectra of the hetero-structured TSr₃₀₁/Ti and reference TSr₀/Ti sample (See Fig. S5, Supporting Information) further certify this point. The reference TiSr₀/Ti sample exhibits characteristic peaks of six phonon scattering modes $(A_{1g} + 2 B_{1g} + 3 E_{1g})$ of crystalline anatase, ^{12, 45-47} the modes E_g (1), E_g (2), B_{1g} (1), $A_{1g}+B_{1g}$ (2), E_{g} (1) are indexed to the peaks at about 153 cm⁻¹, 206 cm⁻¹, 404 cm $^{-1}$, 526 cm $^{-1}$, 645 cm $^{-1}$, the difference of resonant frequency between A_{1g} and $B_{1g}(2)$ band is only 6 cm⁻¹ and they usually overlap in these spectra. Likewise, the Raman spectrum of the hetero-structured TSr₃₀/Ti sample also illuminates the six similar phonon scattering modes (A_{1g} $+ 2 B_{1g} + 3 E_{1g}$) with the site at 151 cm⁻¹, 204 cm⁻¹, 404 cm⁻¹, 524 cm⁻¹, 642 cm⁻¹, which is similar to those of the TSr₀/Ti sample, and the broadening and offset of these scattering peaks appear compared to those of TSr₀/Ti sample, which is probably ascribed to the partial conversion of TiO₂ to SrTiO₃ on the surface of the TiO₂ nanotubes. In addition, the hetero-structured and reference samples are measured to investigate their photoelectrochemical properties. In Fig. S6, the curves of CV and LSV points out the peak value at about 0.5 v and their corresponding currents at this voltage is about 0.00318 A, 0.00138 A, respectively. Compared to the reference TSr₀/Ti electrode, the hetero-structured TSr₃₀₁/Ti electrode with the higher current is probably attributed to excite the transference electrons from the conduction bands (CB) of SrTiO₃ to the CBs of TiO₂ under the appropriate applied voltage. The photocatalytic and photoelectrocatalytic decoloration of MB solution are implemented to evaluate their activities of the hetero-structured samples. Fig. 5a-b show the photocatalytic, photoelectrocatalytic decoloration of MB solution using the hetero-structured TSr₃₀₀/Ti, TSr₃₀₁/Ti, TSr₃₀₂/Ti, TSr₃₀₁*/Ti and reference TSr₀/Ti catalysis and their corresponding pseudofirst-order kinetics. With the reaction time to 120 min, the photocatalytic efficiency of decoloring MB solution is about 59.87%, 93.92%, 83.92%, 18.00%, 50.34% and 1.68% corresponding to the hetero-structured TSr₃₀₀/Ti, TSr₃₀₁/Ti, TSr₃₀₂/Ti, TSr₃₀₁*/Ti, reference TSr₀/Ti samples and Blank, and the adsorption spectra of TSr₃₀₁/Ti and reference TSr₀/Ti with different reaction time (See Fig. S7, Supporting Information) is also verified this result, these according reaction-rate constants are 0.00750 min⁻¹, 0.02302 min⁻¹, 0.01536 min⁻¹, 0.00575 min⁻¹, 0.00169 min⁻¹, 6.55884 E⁻⁵ min⁻¹, respectively. Likewise, the photoelectrocatalytic reaction (0.5V) of decolorizing MB solution also exhibits the catalytic activities of the hetero-structured samples. With the time from 0 to 15 min, the decolorizing efficiency of the hetero-structured TSr₃₀₁/Ti, TSr₃₀₂/Ti catalysts soars to 99.66%, 97. 69%, the hetero-structured TSr₃₀₀/Ti with the efficiency of 68.66% manifests almost equivalent activities to the reference TSr₀/Ti with that of 63.77%, the hetero-structured TSr₃₀₁*/Ti, however, displays the lowest activity with the efficiency of 28.00%, and the reaction-rate constants are 0.04662 min⁻¹, 0.38492 min⁻¹, 0.26143 min⁻¹, 0.04214 min⁻¹, 0.01273 min⁻¹, 3.61447 E⁻⁴ min⁻¹ corresponding to the hetero-structured TSr₃₀₀/Ti, TSr₃₀₁/Ti, TSr₃₀₂/Ti, TSr₃₀₁*/Ti, reference TSr₀/Ti samples and Blank, and the adsorption spectra of TSr₃₀₁/Ti and reference TSr₀/Ti are further verified the photoelectrocatalytic result (See Fig. S8, Supporting Information). The above photocatalytic and photoelectrocatalytic results reveal the accordant tendency for the catalytic activities of hetero-structured samples, and the applied voltage can extraordinary improve their catalytic performance. Compared with the hetero-structured TSr₃₀₀/Ti, TSr₃₀₁*/Ti and reference TSr₀/Ti, the catalytic properties of the hetero-structured TSr₃₀₁/Ti and TSr₃₀₂/Ti are mostly attributed to the dominant high-reactive {001} facet of anatase TiO₂ and the junction interface of mixed phases TiO2 and SrTiO3 in the hetero-structured samples. High-reactive anatase TiO₂ {001} facet improves the effective separation of photo-generated electron-hole pairs and increase the electron diffusion length in the photocatalytic process, 17, 25, 38, 48-50 and the transference electrons of junction interface generate the electrons flow and then cause an efficient spatial separation of electron-hole pairs. 30, 32 Based on the catalytic activities and characterizations, the activity of hetero-structured TSr₃₀₀/Ti is probably described to the phase composition similar to the reference TSr₀/Ti, and the activity of TSr₃₀₁*/Ti is probably distributed to the contribution of perovskite SrTiO₃. Especially, with the increasing concentration of Sr(OH)₂ solution, the hetero-structured TSr₃₀₁/Ti with the best photocatalytic activity is attributed to the synergetic effect of the high-reactive anatase TiO₂ {001} facet and the positive coupling of SrTiO₃ and TiO₂ phases, and the positive cooperation derives from the appropriate coverage of in-situ fabricating SrTiO₃ on the "structure-directed" TiO₂ nanotubes in the dissolution-precipitation process and, thus, increases the accessibility of the active sites of TiO₂ nanotubes surface to favor charge carriers transfer. ^{35, 44} In summary, we report a simple hydrothermal method to synthesize the hetero-structured TSr nanotube array film with the oriented-growth {001} facet of anatase TiO₂ nanotubes attached on a Ti substrate, and the SrTiO₃ fabrication on the surface of TiO₂ nanotubes by a dissolution-precipitation process and the following appropriate annealing directly impel the preferential growth of high-reactive {001} facet during anatase TiO₂ crystal growth. Furthermore, this hetero-structured film reveals the improved photocatalytic and photoelectrochemical activities compared with the reference TiO₂ nanotubes, and these result is probably caused by the synergistic effects: (1) The high-reactive {001} facets effectively accelerate the transfer mechanism of photo-generated charges in the hetero-structured nanotubes, (2) The hetero-structured interface plays a positive role in suppressing the photo-generated charges combination of the heterojuction. More importantly, this work, here, provides a new strategy to synthesis the coupling of TiO₂ and perovskite ABO₃ (SrTiO₃, BaTiO₃, CaTiO₃ etc.) with controllable high-reactive facets, and further utilize the synergy mechanism of high-active facet and the junction interface to enhance their photo-electrochemical, photovoltaic performance and, thereby, expand their application in those related fields. #### **ACKNOWLEDGMENTS** This work was supported by National Basic Research Program of China (973 program, No. 2012CB720100, No. 2014CB239300), Science Foundation for the Excellent Youth Scholars of Ministry of Education of China (No. 20130032120019), and China Postdoctoral Science Foundation of China (No. 2013M541180), Natural Science Foundation of Tianjin (No. 13JCQNJC05700). † **Supporting Information**. Details of experimental section; FE-TEM view of the reference TSr_0 and hetero-structured TSr_{302} sample, Raman Spectra of the hetero-structured TSr_{301}/Ti and reference TSr_0/Ti samples, CV and LSV curves of the hetero-structured TSr_{301}/Ti and reference TSr_0/Ti samples, and the adsorption spectra of MB solution over the hetero-structured and reference TSr_0/Ti samples. #### REFERENCES 1 H. Xu, P. Reunchan, S. Ouyang, H. Tong, N. Umezawa, T. Kako and J. Ye, *Chem. Mater.*, 2013, 25, 405-411. - N. Roy, Y. Sohn and D. Pradhan, *Acs Nano*, 2013, 7, 2532-2540. - Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang and P. Wang, *Nano Lett.*, 2013, 13, 14-20. - 4 J. R. Huang, X. Tan, T. Yu, L. Zhao and S. Xue, *Rsc Adv.*, 2012, 2, 12657-12660. - 5 K. L. Li, Z. B. Xie and S. Adams, *Electrochimi. Acta*, 2012, 62, 116-123. - 6 Y. Y. Song, F. Schmidt-Stein, S. Bauer and P. Schmuki, *J. Am. Chem. Soc.*, 2009, 131, 4230-4232. - 7 Z. X. Su and W. Z. Zhou, *J. Mater. Chem.*, 2011, 21, 8955-8970. - 8 M. Lazzeri, A. Vittadini and A. Selloni, *Phys. Rev. B*, 2001, 63, 155409. - 9 M. Lazzeri, A. Vittadini and A. Selloni, *Phys. Rev. B*, 2002, 65, 119901. - 10 H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, *Nature*, 2008, 453, 638-U634. - 11 L. Sun, Z. L. Zhao, Y. C. Zhou and L. Liu, *Nanoscale*, 2012, 4, 613-620. - 12 A. S. Ichimura, B. M. Mack, S. M. Usmani and D. G. Mars, *Chem. Mater.*, 2012, 24, 2324-2329. - W. Yang, J. Li, Y. Wang, F. Zhu, W. Shi, F. Wan and D. Xu, *Chem. Commun.*, 2011, 47, 1809-1811. - 14 J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer and X. W. Lou, *J. Am. Chem. Soc.*, 2010, 132, 6124-6130. - 15 G. Liu, C. Sun, H. G. Yang, S. C. Smith, L. Wang, G. Q. Lu and H. M. Cheng, *Chem. Commun.*, 2010, 46, 755-757. - 16 Y. Alivov and Z. Y. Fan, *J. Phys. Chem. C*, 2009, 113, 12954-12957. - 17 M. M. Maitani, K. Tanaka, D. Mochizuki and Y. Wada, *J. Phys. Chem. Lett.*, 2011, 2, 2655-2659. - 18 H. Xu, S. Ouyang, P. Li, T. Kako and H. J. Ye, *ACS Appl. Mater. Inter.*, 2013, 5, 1348-1354. - 19 J. Pan, G. Liu, G. Q. Lu and H. M. Cheng, *Angew. Chem. Int. Edit.*, 2011, 50, 2133-2137. - 20 B. X. Y. M. Y Xing, H. Yu, B. Z. Tian, S. Bagwasi, J. L. Zhang and X. Q. Gong, *J. Phys. Chem. Lett.*, 2013, 4, 3910-3917. - 21 Z. Zhao, Z. Sun, H. Zhao, M. Zheng, P. Du, J. Zhao and H. Fan, *J. Mater. Chem.*, 2012, 22, 21965-21971. - 22 X. Han, B. Zheng, J. Ouyang, X. Wang, Q. Kuang, Y. Jiang, Z. Xie and L. Zheng, *Chem.- Asian J.*, 2012, 7, 2538-2542. - 23 X. Han, X. Wang, S. Xie, Q. Kuang, J. Ouyang, Z. Xie and L. Zheng, *Rsc Adv.*, 2012, 2, 3251-3253. - Z. Zhao, H. Tan, H. Zhao, D. Li, M. Zheng, P. Du, G. Zhang, D. Qu, Z. Sun and H. Fan, Chem. Commun., 2013, 49, 8958-8960. - S. Lee, I. J. Park, D. H. Kim, W. M. Seong, D. W. Kim, G. S. Han, J. Y. Kim, H. S. Jung and K. S. Hong, *Energy Environ. Sci.*, 2012, 5, 7989-7995. - 26 M. H. Jung, M. J. Chu and M. G. Kang, *Chem. Commun.*, 2012, 48, 5016-5018. - 27 S. Li, J. Chen, F. Zheng, Y. Li and F. Huang, *Nanoscale*, 2013, 5, 12150-12155. - 28 R. Li, Q. Li, L. Zong, X. Wang and J. Yang, *Electrochimi. Acta*, 2013, 91, 30-35. - J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai and H. Huang, *Small*, 2013, 9, 3864-3872. - J. Ng, S. Xu, X. Zhang, H. Y. Yang and D. D. Sun, Adv. Funct. Mater., 2010, 20, 4287-4294 - 31 Y. Yang, K. Lee, Y. Kado and P. Schmuki, *Electrochem. Commun.*, 2012, 17, 56-59 - 32 J. Zhang, J. H. Bang, C. C. Tang and P. V. Kamat, Acs Nano, 2010, 4, 387-395. - 33 X. M. Zhang, K. F. Huo, L. S. Hu, Z. W. Wu and P. K. Chu, *J. Am. Ceram. Soc.*, 2010, 93, 2771-2778. - 34 Y. Zhang, Y. Bu, J. Yu and P. Li, *J. Nanopart. Res.*, 2013, 15, 1717. - 35 C.W. Kim, M. J. Choi, Y. S. Kang and Y. S. Kang, *J. Mater. Chem. A*, 2013, 1, 11820-11827 - 36 Z. Jiao, T. Chen, J. Xiong, T. Wang, G. Lu, J. Ye and Y. Bi, *Sci. Rep.-UK*, 2013, 3, 2720. - 37 Y. Xin, J. Jiang, K. Huo, T. Hu and P. K. Chu, *Acs Nano*, 2009, 3, 3228-3234. - 38 M. H. Jung, M. J. Chu and M. G. Kang, *Chem. Commun.*, 2012, 48, 5016-5018. - 39 S. Q. Li, G. M. Zhang, D. Z. Guo, L. G. Yu and W. Zhang, *J. Phys. Chem. C*, 2009, 113, 12759-12765. - 40 Q. W. Chen and D. S. Xu, *J. Phys. Chem. C*, 2009, 113, 6310-6314. - 41 D. Wu, Z. Gao, F. Xu, J. Chang, S. Gao and K. Jiang, *Crystengcomm*, 2013, 15, 516-523. - 42 W. Wang, C. Lu, Y. Ni and Z. Xu, *Crystengcomm*, 2013, 15, 2537-2543. - 43 H. Bai, J. Juay, Z. Liu, X. Song, S. S. Lee and D. D. Sun, *Appl. Catal. B-Environ.*, 2012, 125, 367-374. - 44 P. T. Cao, J. Y. Li, H. C. Wang, L. C. Shao and C. Y. Liu, *Langmuir*, 2011, 27, 2946-2952. - J. Felipe Montoya, I. Ivanova, R. Dillert, D. W. Bahnemann, P. Salvador and J. Peral, *J. Phys. Chem. Lett.*, 2013, 4, 1415-1422. - M. Giarola, A. Sanson, F. Monti, G. Mariotto, M. Bettinelli, A. Speghini and G. Salviulo, *Phys. Rev. B*, 2010, 81,174305. - 47 F. Tian, Y. Zhang, J. Zhang and C. Pan, *J. Phys. Chem. C*, 2012, 116, 7515-7519. - 48 X. C. Ma, Y. Dai, M. Guo and B. B. Huang, *J. Phys. Chem. C*, 2013, 117, 24496-24502. - 49 C. Liu, X. Han, S. Xie, Q. Kuang, X. Wang, M. Jin, Z. Xie and L. Zheng, *Chem.- Asian J.*, 2013, 8, 282-289. - 50 W. Q. Fang, X. Q. Gong and H. G. Yang, *J. Phys. Chem. Lett.*, 2011, 2, 725-734. ### **Figure Captions:** **Fig. 1** XRD patterns of the hetero-structured TSr₃₀₁/Ti, TSr₃₀*/Ti and reference TSr₀/Ti, Ti substrate (a) and TSr₃₀₀/Ti, TSr₃₀₁/Ti, TSr₃₀₂/Ti and reference TSr₀/Ti, Ti substrate (b). **Fig. 2** FE-SEM views and their corresponding EDX of the TSr_{301}/Ti (a, b, c) and reference TSr_0/Ti (d, e, f) sample. **Fig. 3** FE-TEM views of the hetero-structured TSr₃₀₁ sample. (a) Low-resolution FE-TEM view of the TSr₃₀ sample with several selected areas. (b) High-resolution FE-TEM view of the selected area A and identified as {001}, {101} facet with their interfacial angle 69.3 °. (c) The SAED patters of the selected area B and identified as a single-crystal-like TiO₂ nanotube and their angle 79.6° of anatase TiO₂ (004) and (211) facet. (d, e) High-resolution FE-TEM views of the selected areas d, e and identified as {110} facet, the inset of (d) with SrTiO₃ (011), (110), (101) facets and their interfacial angles 60°. (f) The interface of heterojuction with TiO₂ {001} and SrTiO₃ {110} facet. **Fig. 4** XPS spectra of the hetero-structured TSr_{301}/Ti , $TSr_{301}*/Ti$ and reference TSr_0/Ti , TSr_0*/Ti samples. (a) The full spectra of the TSr_0*/Ti (1), TSr_0/Ti (2), $TSr_{301}*/Ti$ (3), TSr_{301}/Ti (4) samples. (b, c, d) The Ti 2p, O1s, Sr 3d, F1s spectra of the hetero-structured TSr_{301}/Ti sample. **Fig. 5** (a, b) The photocatalytic decoloration of MB solution using the hetero-structured TSr₃₀₀/Ti, TSr₃₀₁/Ti, TSr₃₀₂/Ti, TSr₃₀₁*/Ti, reference TSr₀/Ti samples and their pseudo-first-order kinetics; (c, d) The photoelectrocatalytic decoloration of MB solution using the hetero-structured TSr₃₀₀/Ti, TSr₃₀₁/Ti, TSr₃₀₂/Ti, TSr₃₀₁*/Ti, reference TSr₀/Ti samples and their pseudo-first-order kinetics. The blank experiment is also showed Fig 1 Fig 2 Fig 3 Fig 4 Fig 5