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Abstract

Tap density of granular powders was found to be better fitted with the stretched exponential

law. In our previous work, the stretched exponential tap density equations were derived with

the rate process theory and free volume concept, under the assumption that the particle packing

rate during the tapping process obeys the stretched Arrhenius equation, which, however, has an

empirical origin. In this article, the assumption above is eliminated and attempts are made to

obtaining the stretched exponential tap density equations from very fundamental bases. In a

vertical tapping process, the probability of particles attaining certain energy states is assumed

to obey Boltzmann distribution and particles traveling from one sites to another are assumed to

follow a very common memoryless random exponential law. The stretched exponential tap density

equation is thus derived and all parameters acquire clear physical meanings. The most important

parameter, the stretched exponential, is demonstrated to correlate with the interparticle forces:

a small value may indicates a strong adhesive or cohesive interaction. Therefore, the stretched

exponential could be a better indicator for powder flowability correlated with particle interactions

as well.
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I. INTRODUCTION

Granular powder materials are easily found in daily life: the soils we see on grounds

or mountain tops, the dusts we encounter everywhere, the flours we use to make breads,

the cements we use in constructions, the snow we embrace in winter time, etc.. Moreover,

pharmaceutical drug tablets are made from powder mixtures, wall paints originally are

colloidal suspensions made from powders dispersed in a liquid medium, cosmetic lotions and

sunscreen creams are also colloidal suspensions containing much finer particles, and so on.

All those above indicate that granular powders are often tied together with colloidal systems

and are very important in practical applications.

Although understanding the physical properties of granular powders like the density,

flowablity, and compressibility can be dated back to many centuries ago, there still are a

lot of unknowns, as granular powders are athermal systems that may not be adequately

addressed with the knowledge extracted from regular gases, liquids, and solids. Neverthe-

less, many studies have shown that granular powders empirically obey the laws discovered

in disordered thermal systems like glassy materials and colloidal dispersions. For example,

the tap density of granular powders are found to be better fitted with either the inverse

logarithmic law1–5 or the stretched exponential law.6–8 By utilizing Eyring’s rate process

theory9and the free volume concept widely used in both liquids10,11 and solids,12 the inverse

logarithmic and stretched exponential laws were derived pretty successfully.13 An unsatis-

factory lies in the derivation of the stretched exponential law: the tapping processing rate

was assumed to obey the stretched exponential Arrhenius equation, which still has empirical

origin.14,15 Although many physical properties were found to follow the stretched exponen-

tial laws, like Motts variable range hopping conductivity model,16 the discharge phenomenon

of a capacitor,14 dielectric spectra of polymers by Williams and Watts,15 a large range of

relaxations in disordered thermal systems such as glasses,17,18 the origin of the stretched

exponential is physically not clear, and the attempts have been made to assume that relax-

ations are dependent on the random walks of polarized molecules,19 the trapping process at

long time range,20 and the system size,21 for the purpose of directly coming up the stretched

exponential law.

In this article, we will put effort on the derivation of the stretched exponential tap density

equations of granular powders from more fundamental levels. The basic ideas were mainly
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stimulated from Theodor Förster’s theory, dealing with the energy transfer from donors to

random distributed acceptors.22,23 A very complicated quantum mechanical treatment was

employed by Förster to calculate the frequency overlap between donors and acceptors for es-

timating the probability that the donor and acceptor molecules will share a same frequency

or energy; Only the basic mathematical backbones related to randomly distributed systems,

as extracted by Blumen24 and Klafter,25 rather than the theoretical details is borrowed and

modified to treat granular powers, where particle packing process may be considered to have

randomness features. Most strikingly, largely different physical meanings must be rendered

to those random distribution equations, though they share same mathematical forms. Read-

ers shouldn’t be surprised if similarities cannot be drawn from the literature cited above and

from the description detailed in section II, as almost everything borrowed from literature is

given a new look and the connections may be very hard to detect; Furthermore, a complete

different system and problems are addressed in this article, indeed.

For the purpose of applying fundamental principles extracted from the thermal systems

to granular powders, we have to assume that the energy will be transferred from the external

mechanical movements to the internal powder bed during tapping process; Such an energy

injected from an external mechanical source is responsible for particle movements, which is

quite random due to the randomness of particle distribution spatially in the powder column

at the beginning. It is the particle movements that induce particle packing process, driving

the system reach a steady state where particles cannot be packed more densely at current

conditions. Such a movement induced by external mechanical vibration could be analogously

compared to the thermal motion observed in thermal systems, and therefore fundamental

principles extracted from thermal systems could be utilized to describe granular powders.

II. THEORY

Let’s consider a granular powder residing in a column like a graduated cylinder as showed

in Fig.1. This cylinder can move up and down repeatedly in a controllable manner, L =

L0 exp(iωt), where L0 is the tapping amplitude and ω is the radian tapping frequency, and

t is time. The energy flow rate into the powder system due to the vertical tapping process

may be expressed as26:
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similar way: causing particle motions in a confined space. In such a scenario, we may

expect granular powders behave similarly and obey the laws extracted from thermal systems.

In condensed matter physics and statistic mechanics, there basically are three types of

distribution statistics called Boltzmann distribution, Bose-Einstein distribution, and Fermi-

Dirac distribution, when N identical particles present in a confined system.27,28 Boltzmann

distribution29 works for identical but distinguishable particle systems like classic gases, while

both Bose-Einstein and Fermi-Dirac distributions work for identical and indistinguishable

particle systems like electrons or Bosons. We thus use Boltzmann distribution to describe

granular powders, which can be expressed as:

P (E) = A exp(
−E

kBT
) (3)

where P is the probability of particles that can achieve the energy state E, A is constant, kB

is Boltzmann constant and T is the temperature, and kBT scales molecular kinetic energy.

However, as we stated earlier, in granular powder systems the thermal energy is unable to

drive particles move around and thus kBT must be replaced with a different term, w(R),

which is analogously assumed to be the energy required to drive particles move in powder

systems. Therefore, for granular powders, Eq. 3 may be re-written as:

P (E) = A exp[
−E

w(R)
] (4)

For a particle A traveling to the position of the particle B, there are many possible routes

available in the powder bed, as shown in Fig. 2. The particle may take the route R, the

straight line between the sites A and B. However, we know it is unlikely, as during tapping

process the particles may stick with other neighboring particles due to the interparticle

interactions, or may collide frequently with neighbored particles, and the actual route to

reach the site B may be the route R2 or R3, depending on micro-environment. Especially,

the particles at the different depth of the column may experience different pressure from the

particles sitting above, as shown in Janssen’s Equation30 expressed below:

Pv =
ρgD

4µK
[1− exp(−

4µKz

D
)] (5)

where ρ is the density of particle material, g is again the gravity constant, D is the diameter

of the cylinder, µ is the frictional coefficient between the particles and the cylinder wall when

particles move vertically down, K is the ratio of the lateral stress to the vertical pressure,

and z is the depth where the particle A resides, counted from the top of the powder bed. If
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w(R)1 = [
4πr3ρg

3
+

ρπr2gD

4µK
[1− exp(−

2µKh

D
)]]R sin θ

= (πr2ρg)[
4r

3
+

D

4µK
[1− exp(−

2µKh

D
)]]R sin θ

= BR sin θ

(7)

where h is the height of the powder column, as shown in Fig. 1, B is a material and cylinder

shape related constant, B = (πr2ρg)[4r
3
+ D

4µK
[1− exp(−2µKh

D
)]].

The next question is how likely the particle A may take the exact straight route R. In a

random process environment, it is very likely that the particle A may take other routes like

R2 and R3 as shown in Fig. 2. Eq. 7 may never work for real situations. Any other routes

will be longer than R, and a modification of Eq. 7 is definitely needed. We may assume

there is a simple power law relationship between w(R)1 and R:

w(R)1 = BRf (8)

where f is a positive number that can change with the routes that the particle A is going

to take. For example, f would be less than 1 if the particle A takes the straight route, or

larger than 1 if the particle A takes other routes longer than the route R. This simplistic

relationship may well cover all possible routes, as no matter which route that the particle

A may take, one may alway find a suitable value of f to scale the traveling distance. We

may also assume a more complicated exponential relationship, w(R)1 = B exp(−γR), where

both γ and B are some numerical constants. As indicated in literature2425 , this exponential

relationship would lead to an ”enhanced” stretched exponential law in the end with just

more complicated mathematical derivations. The readers are referred to those two articles

cited above for more detailed information if interested in. In other words, no matter which

assumption is used, a similar stretched exponential form will be derived in the end. For

simplification reason, we will only consider the simple power law relationship as shown

in Eq. 8. If there are N particles in the system, the total minimum work should be

w(R) = Nw(R)1 = BNRf . Finally, Eq. 4 may be rewritten as:

P (E) = A exp(
−ER−f

NB
) (9)

In the meanwhile, even the particle A is assumed to only take straight routes, there are

many other sites that locate at the same level as the site B and can allow the particle A

straightly reach there, as shown in Fig. 3. The probability of the particle A moving to
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under the assumption that E is larger enough, E ≫ 1/C. A same solution was shown to

similar integrals in literature.20,25 C is a constant can be expressed as:

C = (NB)−1(p/f)f (1 + f)1+f (13)

Clearly, Eq. 12 shows that the particle packing rate k has a stretched exponential relation-

ship with the energy input into the powder system. By assuming β = 1
1+f

, substituting Eq.

2 into Eq. 12 leads to:

k = Ap exp[−(nMgL0C)β] = Ap exp[−(
n

τ
)β] (14)

with τ as:

τ =
NB

MgL0(p/f)f (1 + f)1+f

=
1

L0(p/f)f (1 + f)1+f
[1 +

3D

16rµK
[1− exp(−

2µKh

D
)]]

(15)

as Mg = 4πr3Nρg
3

by the definition. τ may be called as a characteristic rate constant and

seems to have nothing to do with the weight of powder particles in the column and the

tapping frequency. It is inversely proportional to the tapping amplitude, probably because

this parameter will make the tapping process reach the steady state in a much quick pace; It

is also related to the diameter of the cylinder and the particle radius: smaller particles tend

to take longer time to reach the steady state; It correlates with the frictional coefficient,

the height of the column, and the ratio between the lateral and the vertical stresses. Most

interestingly, the characteristic rate constant is related to the particle interaction parameter

f or β: strong particle interaction results in longer time to reach steady state, which seems

to be reasonable. As one may tell from Eq. 8, if the cohesive or adhesive interaction forces

between particles are larger, there should be a strong drag force preventing particles from

traveling from one site to another during tapping process, thus f should be large and one

may have a small β. Now the stretched exponential acquires a physical meaning: it actually

scales the interaction force between particles with large values for weak interactions between

particles and small ones for strong interactions. One may expect that there may be no or

little interparticle forces when β = 1. β may thus be a better parameter for indicating

particle interactions and then powder flowability than the popular Carr index.13,32

Once we have the relationship between the particle packing rate k and the tapping number

n, as described in Eq. 14, the remaining derivations will be the same as detailed in ref.,13

9
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with the utilization of both Eyring’s rate process theory and free volume concept. For

avoiding redundancy, please go to the reference13 for details, and we just provide the final

equations below:

φ = φm − Ap(φm − φ0) exp[−(
n

τ
)β] (16)

when a simple free volume calculation formula is used; or

φ1/3 = φ1/3
m − (Ap)1/3(φ1/3

m − φ
1/3
0 ) exp[−

1

3
(
n

τ
)β] (17)

when a precise free volume calculation formula is used. φ is packing volume fraction at

tapping number n, φm is the maximum packing volume fraction where the steady packing

state is achieved, φ0 is the initial particle volume fraction. Other parameters remain the

same meanings as indicated earlier. Again, when Ap = 1, Eq. 16 will be reducible to the

empirical stretched exponential equation widely used in literature.

III. DISCUSSION

The derivation ideas used in this article are stimulated from several excellent publica-

tions that deal with energy transfer between donors and randomly distributed acceptors or

relaxation phenomena observed in disordered systems. However, as emphasized previously,

only the backbone mathematical formulas rather than the detailed treatment methods are

borrowed and more importantly, they are rendered with new and intuitive physical mean-

ings. Although granular powder systems are athermal systems, substantially different from

all the systems presented in the literature where the backbone mathematical formulas are

used, similarities can be definitely drawn if the tapping process is analogously considered

as a driving force to move particles around as the thermal energy does in regular thermal

systems. The success of utilization of both Eyring’s rate process theory and free volume

concept that are extracted from thermal systems to derive both the Chicago logarithmic

and stretched exponential laws of tap density of granular powders demonstrates that ”dry”

granular powders may share similar physical mechanisms as are discovered in liquids and

colloidal suspensions. Attempts made in this article may further strengthen the similari-

ties mentioned above: even the randomness distribution is same for both granular powders

and regular thermal systems, which may lay the foundation for utilizing other fundamental

principles observed in many thermal systems to model granular powders in the future.
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One thing we want to emphasize is that the laws we borrowed from thermal systems can

only be applied to the granular powders where particles can randomly move around like in

tapping processes we focus on now. Those laws may not be applicable to a granular powder

system without particle movements. The particle movements don’t need to be excited from

an external source, and a free flowing powder may obey those laws, too.

IV. CONCLUSION

The stretched exponential tap density equations of granular powders are derived on the

basis of two general assumptions: 1) Since particles are vigorously moving around during

tapping process, the energy that particles can acquire may follow the fundamental Boltz-

mann distribution; 2) The probability of a particle moving from one site to another neigh-

boring site may follow the simple exponential relationship with the distance. Both these

two principles are commonly used in describing particle random walks in disordered thermal

systems. The particle packing rate is assumed to be directly proportional to the product of

the probability of particles acquiring the necessary energy to move freely both laterally and

vertically and the probability of particles moving to the next equilibrium site. The obtained

stretched exponential tap density equations clearly tell that the tapping rate has nothing to

do with how much amount of powders are placed into the column and the tapping frequency.

The tapping rate is inversely proportional to tapping amplitude; Smaller particles tend to

take a longer time to reach the steady state; It also correlates with the frictional coefficient,

the height of the column, and the ratio between the lateral and the vertical stresses. Most

importantly, the obtained equations demonstrate that the characteristic rate constant is de-

pendent on particle interaction parameter f or β: a large f or small β may indicate strong

particle interactions. The parameter β may thus be a better indicator for scaling particle

interactions and then powder flowability than the popular Carr index. All parameters in

original empirical stretched exponential equation now render clear physical meanings. The

characteristic tapping rate constant τ now have an exact relationship with the parameters

that are supposed to make a contributions to tapping processes.
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APPENDIX A:

SADDLE POINT INTEGRATION OF EQ. 11

Here briefly is showing how we come up Eq. 12 from Eq. 11 using the saddle point

integration method. Please refer to the classical literature33 and34 for detailed information

on this method. For a integration equation with a generic form:

I(S) =

∞
∫

0

f(x)eSg(x)dx (A1)

where f and g are some real functions of x, and S is a constant. The function f(x)eSg(x)

will very likely go through either a maximum or minimum points (called saddle points),

the integration is thus dominated by those peaks, especially the biggest peak. Assume at

x = x0, the function reaches the peak point, the integration thus can be approximated as:

I(S) = f(x0)e
Sg(x0)

√

2π

−Sg′′(x0)
(A2)

under an assumption that S is a large number. Back to Eq. 11, one may find:

f(x) = exp(−pR) (A3)

g(x) = R−f (A4)

S = −
E

NB
(A5)

It would be very easy to find out R0 at which the integrated function reaches the minimum

or maximum by simple differentiating it and assigning the obtained differential function is

equal to zero:

R0 = (−
Sf

p
)

1

1+f = (
Ef

pNB
)

1

1+f (A6)

Thus one may find
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f(R0) = exp[−p(
Ef

pNB
)

1

1+f ] (A7)

g(R0) = (
Ef

pNB
)−

f

1+f (A8)

g′′(R0) = f(1 + f)(
Ef

pNB
)−

f+2

f+1 (A9)

Substituting the equations showing above into Eq. A2, one may obtain:

k = Ap exp[−
E

NB
(
p

f
)f (1 + f)1+f ]

1

1+f = Ap exp(−CE)
1

1+f (A10)

which exactly is Eq.12. Again, A is a constant.
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