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Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very
small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dy-
namics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such
fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based
simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature
of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the
dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct
motors with specific characteristics.

1 Introduction

Synthetic nanomotors that use chemical energy to produce di-
rected motion are under active investigation because the au-
tonomous motion of these motors can be exploited in new
applications involving dynamics on very small scales. Start-
ing with the first bimetallic rod nanomotors that move through
self-electrophoresis as a result of an asymmetric distribution
of catalytic activity1,2, motors made from a variety of mate-
rials with various shapes and operating by different mecha-
nisms were constructed.3 Experiments demonstrated their po-
tential uses as cargo transport vehicles and as elements in mi-
crofluidic devices, to name two of their many possible appli-
cations.3–5

The motion of an individual nanomotor and the interactions
among many motors depend on the chemical gradients that
arise from asymmetrical chemical activity and the fluid flows
generated by motor motion. Both of these factors are integral
parts of phoretic propulsion mechanisms and are strongly in-
fluenced by motor geometry. Janus motors with catalytic and
noncatalytic faces have been studied extensively because these
motors have a simple spherical geometry that facilitates theo-
retical modeling and fabrication.6–10 For motors with more
complex shapes it is important to understand how geometry
influences motor motion and the dynamics of motor ensem-
bles. In an effort to understand the role of geometry more
thoroughly, we present a detailed study of a motor with a
more complex but still analytically tractable chemical shape:
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a sphere-dimer motor where the catalytic and noncatalytic re-
gions are confined to two linked spheres11. While such motors
have been made and studied in the laboratory12, their theoret-
ical analysis is quite involved and the details of the propulsion
mechanism differ from those of Janus motors.

Studies of small motors present challenges for theory since
they operate out of equilibrium and often in the regime that
lies on the borderline where macroscopic descriptions of their
motion may break down. The macroscopic continuum theory
for the self-diffusiophoretic motion of sphere-dimer motors is
presented and tested against coarse-grained microscopic dy-
namics. The basis of the theoretical description has its an-
tecedents in early work of Stimson and Jeffery13, and more
recent work of Popescu, Tasinkevych and Dietrich14. The
theoretical description is generalized to treat spheres of arbi-
trary size with reactive boundary conditions that can account
for both diffusion and reaction control. The characteristics of
the flow field that arise in diffusiophoretic motion are com-
puted. Our results show how various factors such as catalytic
and noncatalytic sphere sizes, dimer bond length and reaction
rates can be used to tune the motor velocity. The concentration
and flow field results provide information that is needed to de-
scribe the nature of the propulsion of single motors as well as
the collective interactions of many dimer motors.

2 Continuum Theory

Consider a sphere-dimer motor where a catalytic (S1) sphere
with radius r1 is linked by a rigid bond of length d to a non-
catalytic (S2) sphere with radius r2. The surrounding fluid is
composed of A and B molecules and these species undergo
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the chemical reaction A+S1→ B+S1 on the catalytic sphere
with an intrinsic rate constant k0. The chemical species in-
teract with the catalytic and noncatalytic spheres in the dimer
through intermolecular potentials, U1,α and U2,β (α = A,B),
respectively. We choose the interactions of A and B molecules
with the S1 sphere to be the same and those with the S2 sphere
to be different, but other choices are possible. For this choice
the reaction at the S1 sphere produces an inhomogeneous dis-
tribution of A and B species and the gradient of these species
around the S2 sphere is responsible for the propulsion of the
motor. We assume that there is a large supply of the “fuel”
A far from the motor so that concentration of A has the value
cA = c0 far from the motor.

The sphere dimer is described in bispherical coordinates
(θ ,η ,φ ), 0 ≤ θ ≤ π , −∞ ≤ η ≤ ∞, and 0 ≤ φ ≤ 2π , shown
in Fig. 1, which are related to the Cartesian coordinates
(x,y,z) by the relations, x = ξ sinθ cosφ/(coshη − cosθ),
y = ξ sinθ sinφ/(coshη− cosθ) and z = ξ sinhη/(coshη−
cosθ), where ξ (> 0) is a scale factor.15,16 The S1 and S2
spheres are represented by the parameters η = η1(> 0) and
η = η2(< 0), respectively. By choosing values of sphere radii
of the S1 and S2 spheres, r1 and r2, and any separation dis-
tance, d, greater than the sum of their radii, the bispherical
coordinate parameters, ξ , η1 and η2 are given by

ξ =
1

2d

√
(d2− r2

1− r2
2)

2−4r2
1r2

2,

η1 = ln
(

ξ/r1 +

√
1+(ξ/r1)

2
)
,

η2 = − ln
(

ξ/r2 +

√
1+(ξ/r2)

2
)
. (1)

Diffusiophoretic propulsion

The dimer velocity and the fluid flows associated with motor
motion can be computed in the context of the diffusiophoretic
mechanism.14 In the continuum theory for diffusiophoretic
self-propulsion17–20, the self-generated concentration gradient
gives rise to a fluid flow that results in a “slip” velocity at the
outer edge of a boundary layer beyond which forces vanish.
For the sphere dimer model we consider here, the catalytic re-
action at the S1 sphere is the source of this concentration gra-
dient and its effect is felt at the noncatalytic S2 sphere where
the interaction potentials of the A and B species differ.

The cA concentration field can be found by solving the
steady-state diffusion equation, ∇2cA = 0, where the advec-
tion term is considered to be negligible. For the sphere dimer
this equation must be solved subject to the boundary condi-
tions,

(JJJ · η̂ηη)η=η1 = k̄0cA(η = η1),

(JJJ · η̂ηη)η=η2 = 0, (2)

x

zφz2 = ξ coth η2

d

η = 0
(z = 0 plane)

r2
r1

η̂

θ̂

φ̂

η̂

θ̂

φ̂

z1 = ξ coth η1

S1 (η = η1)

S2 (η = η2)

Fig. 1 Bispherical coordinate system (θ , η , φ ) with the base unit
vectors, θ̂θθ , η̂ηη , φ̂φφ , for the sphere-dimer motor. The labels S1 (η = η1)
and S2 (η = η2) represent the surfaces of the catalytic and
noncatalytic spheres with radii r1 (red) and r2 (blue), respectively.
The spheres with centers z1 and z2 are separated by a bond distance
d.

at the catalytic and at noncatalytic spheres, respectively, where
JJJ = −D∇cA is the flux of the A concentration field, k̄0 =
k0/(4πr2

1), and D is the common diffusion constant of the A
and B species. The direction of η̂ηη is the normal to the surface
of the spheres. The cB field can be found from the conserva-
tion condition, cA + cB = c0, and is given by15

cB(θ ,η) =−
√

coshη−µ

×
∞

∑
l=0

[Ale(l+
1
2 )η +Ble−(l+

1
2 )η ]Pl(µ), (3)

where Pl(µ) is a Legendre function and µ = cosθ . The Al and
Bl coefficients can be determined from the boundary condi-
tions by solving a set linear matrix equations (see Appendix).

Given this concentration field, the slip velocity of the fluid
at the outer edge of a boundary layer can be written as vvvs =
−κ∇θ cB,18,19 where κ = (kBT/µ̄)Λ and

Λ =
∫

∞

0
r[e−U2,B(r)/(kBT )− e−U2,A(r)/(kBT )]dr, (4)

with µ̄ the shear viscosity, kB the Boltzmann constant, and T
the temperature. The fluid flow field outside of the interfa-
cial region is governed by the Stokes equation, ∇p = µ̄∇2vvv,
with the incompressibility condition, ∇ · vvv = 0, where p is
the pressure and vvv is the fluid velocity field. The fluid ve-
locity may be expressed in terms of Stokes’ stream function
ψ from vvv = φ̂φφ/ρ ×∇ψ 16, where ρ = ξ sinθ/(coshη − µ).
The stream function satisfies E4(ψ) = 0, where E4 = E2(E2)
and E2 = (coshη−µ)/ξ 2[∂/∂η{(coshη−µ)∂/∂η}+(1−
µ2)∂/∂ µ{(coshη−µ)∂/∂ µ}].13,16

In the laboratory frame where the motor moves with veloc-
ity V , the boundary conditions at the outer edges of interfacial
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regions around the S1 and S2 spheres are given by

(ψ + 1
2 ρ

2V )|η=η1,η2 = 0,

∂/∂η(ψ + 1
2 ρ

2V )|η=η1 = 0,

∂/∂η(ψ + 1
2 ρ

2V )|η=η2 = κρ∂cB/∂θ |η=η2 . (5)

The stream function equation can be exactly solved and the
solution is13

ψ = (coshη−µ)−
3
2

∞

∑
l=1

Wl(η)Vl(µ), (6)

where Wl(η) = al cosh(l− 1
2 )η +bl sinh(l− 1

2 )η +cl cosh(l+
3
2 )η + dl sinh(l + 3

2 )η and Vl(µ) = Pl−1(µ)−Pl+1(µ). The
coefficients al , bl , cl , and dl are determined by the boundary
conditions (see Appendix).

Since no external forces act on the system and the sphere-
solvent forces are zero outside the interfacial zone, we have

Fz =
∫

S1

ΠΠΠz · n̂nndS+
∫

S2

ΠΠΠz · n̂nndS = 0, (7)

where ΠΠΠ is the stress tensor, ΠΠΠz = ẑzz ·ΠΠΠ, n̂nn is the surface normal
vector and the surface integrals are taken at the outer edge
of the interfacial zone. The system is symmetric around the
azimuthal angle φ and only the force in the z-direction needs
to be considered. The velocity of sphere dimer follows from
this condition and is

V = ξ κ

∞

∑
l=1

(2l +1)ΦlΞl/∆l

∞

∑
l=1

(2l +1) fl(āl + c̄l)/∆l

, (8)

where the coefficients in this equation are given in the Ap-
pendix.

3 Microscopic dynamics

In the microscopic model the fluid (solvent) comprising A and
B species is represented by Ns particles of mass m with posi-
tions rrri(t) and velocities vvvi(t), where i = 1, . . . ,Ns. We con-
sider a single sphere-dimer motor. The spheres in the dimer
motor interact with the A and B molecules through repulsive
Lennard-Jones (LJ) potentials, U = 4ε[(σ/r)12− (σ/r)6]+ ε

for r < 21/6σ and U = 0 for r ≥ 21/6σ , with energy ε and
distance σ parameters. As noted earlier, we choose the inter-
action energies of A and B molecules with the S1 sphere to be
the same (εA = εB = ε) and those with the S2 sphere to be dif-
ferent (εB < εA = ε). For εB < εA the dimer motor moves with
the S1 sphere at its head. An irreversible chemical reaction
A→ B occurs at the catalytic sphere S1 whenever A encoun-
ters S1. Collisions of A or B molecules with the noncatalytic

sphere S2 do not lead to reactions. To maintain a large supply
of the “fuel” A far from the motor, B is converted to A at a
distance dp.

The dynamics of this system is simulated using a hybrid
method that combines molecular dynamics (MD) for sphere
dimers and multiparticle collision (MPC) dynamics for the
fluid particles.21 In this method there are no explicit inter-
molecular potentials among the solvent particles; these inter-
actions are accounted for by multiparticle collisions. The dy-
namics consists of alternating streaming and collision steps.
In the streaming step, the particles move by Newton’s equa-
tions of motion. At time intervals h, called the collision time,
the solvent particles are sorted into cubic cells of side length a
and their relative velocities, with respect to the center-of-mass
velocities of each cell, are rotated around a randomly oriented
axis by a fixed angle α . The particle velocity after collision
is given by vvvi(t + h) = vvvcm(t)+R(α)(vvvi(t)− vvvcm(t)), where
R(α) is the rotation matrix and vvvcm =Σ

Nc
j=1vvv j/Nc is the center-

of-mass velocity of the particles in the cell to which the parti-
cle i belongs, and Nc is the number of particles in that cell. A
random shift of the collision lattice is applied at every collision
step to ensure Galilean invariance.22

All quantities are reported in dimensionless units where
length, energy, mass and time are measured in units of the
MPC cell length a = σ , ε , the solvent mass m, and σ

√
m/ε ,

respectively. Multiparticle collisions are carried out by di-
viding the cubic simulation box with linear dimension L into
L3 = 603−1203 cubic cells and performing velocity rotations
by an angle α = 130◦ about randomly chosen axes at time
intervals of h = 0.1 for the MPC collision steps. The aver-
age solvent number density is c0 = 10 and the temperature is
kBT = 1. The MD time step is ∆t = 0.01. The parameters in
the S2 sphere-solvent repulsive LJ potentials are εA = 1.0 and
εB = 0.1 for A and B, respectively, while εA = εB = 1.0 for the
S1 sphere. The σi (i = 1,2) values fix the sizes of the S1 and S2
spheres. The sphere mass is Mi = 4π(21/6σi)

3c0/3 (i = 1,2).
The transport properties of the fluid depend on h, α , and Nc.
and these parameters were chosen to model fluids with a high
Schmidt number Sc and low Reynolds number Re. The fluid
viscosity is µ̄ = mNcν = 8.7, where ν is the kinematic vis-
cosity, the diffusion constant is given by D = 0.0514 and the
Schmidt number is Sc = ν/D = 17, which ensures that mo-
mentum transport dominates over mass transport. In addition,
the small value of the Péclet number, Pe =Va/D < 1, implies
that diffusion is dominant over advection.

4 Comparison of continuum and microscopic
dynamics

The continuum cB concentration field is shown in Fig. 2(a)
in the xz-plane. It is not spherically symmetrical around the
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Fig. 2 Normalized (cB/c0) cB field in the xz plane (y = 0) from (a)
the continuum theory and (b) MD-MPCD simulations; dashed circle
indicates where the potential goes to zero. (c) Plot of cB versus r in
the ϑ = 90◦ plane in the spherical polar coordinate (r,ϑ ,φ ) from the
center of S1; continuum theory (black solid line), its asymptote
(dotted lines); and simulation results for different system sizes:
L = 60 (dp = 28) (green line), L = 90 (dp = 43) (blue line), and
L = 120 (dp = 58) (red line) . (d) Log-log plot showing the
asymptotic decay of cB. Color coding same as in (c).

catalytic sphere, and gives rise to the concentration gradi-
ent around the noncatalytic sphere which is responsible for
propulsion. Figures 2(c) and (d) shows the cB field in more
quantitative detail in a specific region of the ϑ = 90◦ plane
with respect to the catalytic sphere, where ϑ = cos−1(z/r)
is the polar angle in spherical polar coordinates, (r,ϑ ,φ );
x = r sinϑ cosφ , y = r sinϑ sinφ , and z = r cosϑ . It decays
with distance and for large r one has cB ∼ −

√
2ξ ∑

∞
l=1(Al +

Bl)/r+O(1/r2), with a r−1 decay as expected for the solution
of a diffusion equation.

The simulated cB field is shown in Fig. 2(b) (cf. Fig. 2(a))
and compared with the continuum theory in panel (c). One
can see that theory and simulation agree very well, but there
are discrepancies at distances far from the dimer that can be
ascribed to finite-size effects. From Figs. 2(c) and (d) one ob-
serves that as the system size increases, the simulation results
approach the theoretical curve.

The sphere sizes, fluid transport coefficients and boundary
condition parameters that enter the theoretical formulas must
be specified to make such comparisons. The results in the fig-
ure are for a dimer with σ1 = 2 and σ2 = 4 and bond length
d = 6.5, and these values were used as radii and bond dis-
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Fig. 3 (a) Plot of V versus r1/r2 for r2 = σ2 = 3: continuum theory
(solid line), simulation (bullets). (b) Plot of V versus d for several
different dimers: continuum theory (solid lines), simulation
(symbols). The parameter values are given in the text.

tance in the theoretical equations. Due to the soft nature of
the repulsive LJ potentials there is some ambiguity, of the or-
der of the boundary layer thickness, in the precise choice of
radius. The intrinsic reaction rate constant can be estimated
from simple collision theory as k̄0 ∼

√
kBT/2πm ∼ 0.4, and

this approximate value was used in the boundary condition.
Figure 3 plots the motor velocity V for various sphere sizes

and bond distances d = r1 + r2 +∆. Experiments and earlier
simulations suggested that V exhibits a maximum as r1 (cat-
alytic sphere) increases for fixed r2 and ∆.12 Panel (a) shows
that the continuum theory predicts such a maximum and also
provides the shape of the curve for the entire range of radius
values. The extensive MPC simulation results are in good
agreement with the theoretical results. By contrast, for fixed r1
one finds that V increases approximately logarithmically with
increasing r2. The theory is also able to describe the varia-
tion of V with d for fixed r1 and r2

14, including the d−2 de-
cay at large distances (see Fig. 3(b)); however, there are small
discrepancies in the absolute magnitude of the velocity, espe-
cially for motors with spheres of unequal size. The continuum
theory does not fully describe microscopic details within the
boundary layer and the boundary conditions involve input pa-
rameters that can be specified only approximately. Nor does it
account for the presence of thermal fluctuations. Nevertheless,
the general trends of the variations of V with d are captured by
the continuum theory.

5 Fluid Flow Fields

The streamlines describing fluid motion may be constructed
from the stream function by setting ψ = constant. The fluid
velocity may also computed from the stream functions using
vvv = φ̂φφ/ρ×∇ψ .

Figure 4 shows the fluid streamlines and velocity fields near
to and far from the dimer. In the near-field, one sees a complex
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Fig. 4 Fluid streamlines for a dimer motor with the radii, r1 = 2,
r2 = 4, and the bond length d = 6.5 are shown in the near field
(upper left) and in the far field (lower left) for εB < εA. The
corresponding velocity fields are shown in the near field (upper
right) and in the far field (lower right).

fluid flow field with several vortices. Fluid is pushed from the
front of the catalytic sphere and, as a result of local circula-
tion, it returns to the rear of this sphere. This influx of fluid is
strongly expelled in a direction tangential to the noncatalytic
sphere, and then again returns to the rear of the sphere. This
picture of the near-field fluid flow was partially captured in
earlier simulations.23–25. The far-field flow is more difficult
to obtain from simulations because of finite-size limitations.
Our analytical results show that fluid flows toward the sphere
dimer from both the front and back, and moves away from
the dimer in the lateral directions, a pattern characteristic of a
point-force-dipolar flow field, − f d0(3cos2 ϑ −1)r̂rr/(8πµ̄r2),
where f is the magnitude of force, d0 is the separation be-
tween the point forces, and r is the distance from the force
dipole. (See also Hernandez-Ortiz, et al.26)

Figure 5 shows the fluid streamlines for various motor bond
lengths. When the bond length is small (d . 9), the stream-
lines and the velocity field are similar to those discussed in
Fig. 4. As the bond length increases, the circulation of fluid
with a stagnation region in front of the catalytic sphere (seen
in the panel (a)) retreats from the catalytic sphere. For a bond
length d ∼ 9 (Fig. 5 (b)), the streamlines have a symmetric
form with several local circulation regions and no stagnation
region. As the bond length increases to even larger values
(d & 9) (Fig. 5 (c)), a stagnation region appears in the vicinity

 0  20  40  60
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 20

 40
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 0  20  40  60
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 20
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(d)(c)

(a) (b)

Fig. 5 Fluid streamlines for the various dimer bond lengths: (a)
d = 7, (b) d = 9, (c) d = 13, and (d) d = 18.

of the noncatalytic sphere. Fluid enters in the lateral direc-
tions and is pushed to the frontward and backward directions
as a result of local circulation. When the bond length increases
further (d ∼ 13) (Fig. 5 (d)), the dimer motor behaves approx-
imately as two independent spheres subject to external forces.
The fluid field around the catalytic sphere displays a pattern
characteristic of sedimentation, and the fluid flow around the
noncatalytic sphere shows a dipolar field pattern similar to a
spherical Janus motor.

Figure 6 plots the magnitude of the fluid velocity ver-
sus distance from the dimer. If vvv is written in the
form vvv = vθ θ̂θθ + vη η̂ηη , and its components are expanded
in terms of the distance r from the origin, then, from
the force-free condition, we obtain the asymptotic expres-
sions: vθ = −

√
2sinϑ(1 − 3cos2 ϑ)Ω/r2 + O(1/r3) and

vη = 2
√

2cosϑ(1− 3
2 sin2

ϑ)Ω/r2 + O(1/r3), where Ω =

∑
∞
l=1(2l + 1){(l− 1/2)bl + (l + 3/2)dl}. Thus, vvv decays as

r−2, consistent with recent simulations.25 Two representative
examples of the variation of the magnitude of the fluid velocity
with r for small (d = 6.8) and large (d = 13) bond lengths are
shown in Fig. 6 (a) and (b). A stagnation region (sharp dip in
curve) appears only in front of the catalytic sphere (ϑ = 0◦) for
the small bond length dimer (d = 6.8) (Fig. 6 (a) and see also
Fig. 5 (a)) and only behind the noncatalytic sphere (ϑ = 180◦)
for the large bond length dimer (d = 13) (Fig. 6 (b) and also
Fig. 5 (c)). When the bond length is smaller than a certain
critical length (d ∼ 9), the stagnation point moves to larger r
as the bond distance increases (Fig. 6 (c)). However, when
the bond length is larger than this critical value, the stagnation
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u r -2(a)   r -2 ϑ = 0o  ϑ = 90o ϑ = 180o(b)   

10110-910-810-710-610-510-410-310-2  d = 6.5   d = 7.3 d = 8.0   d = 8.5
(c)   

u

r/(r1+r2) 101   
(d) r/(r1+r2)

 d = 9.5   d = 10 d = 11    d = 13
Fig. 6 Plots of the magnitude of the fluid velocity, v =

√
v2

θ
+ v2

η ,
for dimers with bond lengths (a) d = 6.8 and (b) d = 13, in the
forward (black, ϑ = 0◦), backward (blue, ϑ = 180◦), and side (red,
ϑ = 90◦) directions as a function of distance r from the origin (ϑ is
the polar angle in the spherical polar coordinate system); (dotted
lines) asymptotic limits (see text). A stagnation region is seen due to
the fluid circulation shown in Fig. 5. The magnitude of fluid velocity
versus r for dimers with different bond lengths are shown in (c)
ϑ = 0◦ directions and (d) ϑ = 180◦ directions.

point moves to smaller r as the bond length increases (Fig. 6
(d)).

6 Propulsion force

In the diffusiophoretic mechanism the self-generated concen-
tration gradient that arises from the asymmetrical motor cat-
alytic activity leads to a body force on the motor. Since the
entire system is force-free, momentum conservation requires
that fluid flows are generated in the system, and these flows
are an integral part of the propulsion mechanism. Our detailed
calculations have shown how the motor velocity can be deter-
mined from this picture of the dynamics. The forces that the
motor experiences are very different from those that give rise
to Stokes law friction coefficients when a colloidal particle is
subject to an external force.

The body force on the motor is a well-defined mechanical
quantity that is determined by the intermolecular interactions
of the solvent species with the motor, and it depends on the
fuel and product concentration fields in the vicinity of the mo-
tor. It is ultimately this force that is the origin of the propul-
sion. Through total momentum conservation this force is op-
posite to the total force on the solvent. If U(rN) is the total
potential energy, the body force exerted on the motor by in-
teractions with the fluid is F = ∑

N
i=1 ∂U/∂ri where ri is the

10 20 3040060080010001200
 

 
Fp /V

 r1=2, r2=2    r1=3, r2=4 r1=1, r2=4    r1=4, r2=4 r1=3, r2=3

d
Fig. 7 Plots of the ratio (Fp/V ) versus bond length d for dimer
motors with the various radii. The solid lines are analytic
calculations and the dashed lines indicate 4πµ̄(r1 + r2). The black,
red, green, blue, magenta lines correspond to radii (r1,r2) = (2,2),
(1,4), (3,3), (3,4), (4,4), respectively.

position of fluid particle i. Momentum conservation was used
to express this force in terms of derivatives with respect to sol-
vent coordinates. The steady state average value of this force
projected along the propagation direction, Fp, is defined to be
the propulsion force.

We first consider a spherical Janus particle where catalytic
reactions on one side of the particle convert fuel A to product
B, A→ B. The A and B species interact with the Janus par-
ticle through central intermolecular potentials UJ,A and UJ,B.
The diffusiophoretic velocity along the propagation direction
of the motor, ẑzz, can be determined from the surface average,
〈. . .〉S , of the slip velocity, V = −〈ẑzz · vvvs〉S , where the slip
velocity at the outer edge of the boundary layer surrounding
the Janus particle is given by vvvs = −(kBT/µ̄)ΛJ∇θ cB(rJ ,ϑ),
with ΛJ defined by

ΛJ =
∫

∞

0
r[e−UJ,B(r)/(kBT )− e−UJ,A(r)/(kBT )]dr. (9)

The surface average of the slip velocity can be re-expressed
using integration by parts to give,

V =
kBT
µ̄rJ

ΛJ

∫ 1

−1
dµ µcB(rJ ,µ), (10)

where µ is now given by µ = cosϑ in the spherical polar co-
ordinate system. The Janus particle propulsion force can be
written a similar form,

Fp = 4πkBT ΛJ

∫ 1

−1
dµ µcB(rJ ,µ). (11)

Since both the average velocity and propulsion force for the
Janus particle are known, we may use the ratio, ζJ = Fp/V ,
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which is simply another expression for total momentum con-
servation, to define an effective friction coefficient, ζJ . Using
the above equations, this ratio, Fp/V = 4πµ̄rJ , is 2/3 of the
stick Stokes friction, ζS = 6πµ̄rJ . As expected, the effective
friction coefficient defined in this way is not equal to the fric-
tion coefficient for the particle subject to an external force.

The propulsion force for the sphere dimer may be computed
explicitly 11 and its value depends on the intermolecular po-
tentials and steady state concentration fields. It may be written
as

Fp = 4πkBT Λ

∫ 1

−1
dµ µcB(µ,η2), (12)

where µ = cosθ in bispherical coordinates. Since the av-
erage velocity of the dimer is known (the expression for
this quantity was given in Eq. (8)), we may use the ratio,
ζ (r1,r2,d) = Fp/V , to define an effective friction coefficient
for the dimer motor. This ratio, which now also depends on
the dimer bond length as well as the sphere radii, is plotted
versus d in Fig. 7 for various values of r1 and r2. For large
bond lengths, ζ (r1,r2,d) becomes independent of d and ap-
proaches ζ = ζ1 + ζ2, the sum of individual friction coeffi-
cients of the two spheres, where ζi = 4πµ̄ri. As the bond
length d decreases, ζ (r1,r2,d) increases sharply, and this re-
flects the change in character of the fluid flow fields as the
dimer bond length changes, which was discussed in the previ-
ous section.

7 Conclusions

Motor geometry can strongly affect motor velocity, concen-
tration gradients and hydrodynamics flow fields. In particular,
we have shown how changes in the sphere sizes and dimer
bond length can influence the magnitude of the motor veloc-
ity. The force dipolar flow field and r−2 power law decay for
dimer motors with small bond lengths resemble those of mi-
croorganisms such as C. reinhardtii (puller) that can also be
described as a point-force-dipole and exhibit the same power
law decay.27 Also, when εB > εA, the sphere dimer will re-
verse direction and the flow field will be characteristic of a
pusher, similar to that of E. coli.28 Thus, sphere dimers ex-
hibit far-field hydrodynamic effects similar to those of biolog-
ical swimmers and different from the r−3 decay of spherical
Janus motors. Moreover, it is notable that the far-field flow
pattern reverses as the bond length changes. For small bond
lengths, the far-field flow pattern is characteristic of a puller
as noted above, but it changes to a pattern characteristic of a
pusher for large dimer bond lengths. Consequently, depending
on its bond length, a dimer motor can exhibit flow patterns that
are similar to those of pusher or puller biological swimmers.
More generally, we have seen that the short and long range
structures of the cB and vvv fields are very different and this, in
turn, will lead to phenomena that depend in non-trivial ways

on the concentration of motors when the collective behavior
of sphere-dimer and other complex motors is studied.29–32

Acknowledgments: This work was supported in part by a
grant from the Natural Sciences and Engineering Council of
Canada. A portion of the computational work was performed
at the SciNet, which is funded by the Canada Foundation for
Innovation under the auspices of Compute Canada, the Gov-
ernment of Ontario, Ontario Research Fund-Research Excel-
lence, and the University of Toronto.

8 Appendix: Derivation of solutions

8.1 Concentration distribution

The steady-state cA field around the sphere dimer satisfies the
diffusion equation, ∇2cA = 0, subject to the radiation and re-
flecting boundary conditions for the S1 and S2 spheres given in
Eqs. (2). The general solution of the cA concentration field can
be expressed in the form given in Eq. (3) using cA + cB = c0.

The coefficients Al and Bl in this equation can be deter-
mined as follows: The boundary conditions, Eq. (2), can be
rewritten in terms of the Legendre functions using the for-
mula,15

1√
coshη−µ

=
√

2
∞

∑
l=0

e−(l+
1
2 )|η |Pl(µ), (13)

and the recurrence relation,33

(2l +1)µPl = (l +1)Pl+1 + lPl−1. (14)

We obtain the following equality for the lth term (l > 1) in Leg-
endre series from the radiation boundary condition in Eq. (2),

− le(l−
1
2 )η1Al−1 + le−(l−

1
2 )η1Bl−1

+[{sinhη1 +(2l +1)coshη1}+2ξ k̄0/D]e(l+
1
2 )η1 Al

+[{sinhη1− (2l +1)coshη1}+2ξ k̄0/D]e−(l+
1
2 )η1Bl

− (l +1)e(l+
3
2 )η1Al+1 +(l +1)e−(l+

3
2 )η1Bl+1

=−2
√

2ξ k̄0

D
C0e−(l+

1
2 )η1 . (15)

From the reflecting boundary condition in Eq. (2), we obtain

− le(l−
1
2 )η2Al−1 + le−(l−

1
2 )η2Bl−1

+[sinhη2 +(2l +1)coshη2]e(l+
1
2 )η2Al

+[sinhη2− (2l +1)coshη2]e−(l+
1
2 )η2Bl

− (l +1)e(l+
3
2 )η2Al+1 +(l +1)e−(l+

3
2 )η2Bl+1 = 0. (16)

In Eqs. (15) and (16), the coefficients Al and Bl may be solved
by writing the equations as infinite matrix formulas,34

MAAA+NBBB = EEE,

OAAA+PBBB = OOO, (17)
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Table 1 The elements of matrices and vectors in Eq. (17) (l > 1).

Ml,l = {sinhη1 +(2l−1)coshη1}e(l−
1
2 )η1 +

2ξ k̄0

D
e(l−

1
2 )η1 ,

Ml+1,l =−le(l−
1
2 )η1 ,

Ml,l+1 =−le(l+
1
2 )η1 ,

Nl,l = {sinhη1− (2l−1)coshη1}e−(l−
1
2 )η1 +

2ξ k̄0

D
e−(l−

1
2 )η1 ,

Nl+1,l = le−(l−
1
2 )η1 ,

Nl,l+1 = le−(l+
1
2 )η1 ,

Ol,l = {sinhη2 +(2l−1)coshη2}e(l−
1
2 )η2 ,

Ol+1,l =−le(l−
1
2 )η2 ,

Ol,l+1 =−le(l+
1
2 )η2 ,

Pl,l = {sinhη2− (2l−1)coshη2}e−(l−
1
2 )η2 ,

Pl+1,l = le−(l−
1
2 )η2 ,

Pl,l+1 = le−(l+
1
2 )η2 ,

AAAl = Al−1,

BBBl = Bl−1,

EEE l =−
2
√

2ξ k̄0C0

D
e−(l−

1
2 )η1 ,

OOOl = 0.

where M, N, O and P are the tridiagonal infinite matrices and
AAA, BBB, EEE, and OOO are the infinite column vectors. The elements
of these matrices and vectors are given in Table 1. By formally
inverting the matrices, the vectors AAA and BBB are found to be

AAA = [M−NP−1O]−1EEE,

BBB =−P−1O[M−NP−1O]−1EEE. (18)

8.2 Propulsion velocity

If we define χ = ∑
∞
l=1 Wl(η)Vl(µ), the boundary conditions in

Eq. (5) are given by

χ|η=η1,η2 =−
ξ 2V (1−µ2)

2(coshη−µ)1/2

∣∣∣∣
η=η1,η2

,

∂ χ

∂η

∣∣∣∣
η=η1

=
ξ 2V (1−µ2)sinhη

4(coshη−µ)3/2

∣∣∣∣
η=η1

,

∂ χ

∂η

∣∣∣∣
η=η2

=
ξ 2V (1−µ2)sinhη

4(coshη−µ)3/2

∣∣∣∣
η=η2

+ξ κ

∞

∑
l=0

[
Ale(l+

1
2 )η

+Ble−(l+
1
2 )η
][
− (1−µ2)Pl

2

+(coshη−µ)(1−µ
2)

∂Pl

∂ µ

]∣∣∣∣
η=η2

. (19)

Using the relations,13,33

(1−µ
2)Pl =

(l +1)(l +2)
(2l +1)(2l +3)

Vl+1−
l(l−1)

(2l +1)(2l−1)
Vl−1,

(1−µ
2)

dPl

dµ
=

l(l +1)
(2l +1)

Vl ,

µVl =
l−1

2l−1
Vl−1 +

l +2
2l +3

Vl+1, (20)

and Eq. (13), we may expand the right hand sides of Eq. (19)
in a series of Vl as

χ =−ξ 2V√
2

∞

∑
l=1

l(l +1)
2l +1

[
e∓(l−

1
2 )η

2l−1
− e∓(l+

3
2 )η

2l +3

]
Vl , (21)

for η = η1,η2 and

∂ χ

∂η
=± ξ 2V

2
√

2

∞

∑
l=1

l(l +1)
2l +1

[e∓(l−
1
2 )η − e∓(l+

3
2 )η ]Vl +Γ, (22)

where Γ = 0 for η = η1 and Γ = ξ κ ∑
∞
l=1 ΦlVl for η = η2.

The upper sign and lower sign are taken for η = η1 and η =
η2, respectively. Since both sides of Eqs. (21) and (22) are
expanded in a series of Vl , we can determine the unknown
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coefficients of Wl(η) in Eq. (6) from the following equations:

al cosh(l− 1
2 )η1 +bl sinh(l− 1

2 )η1

+ cl cosh(l + 3
2 )η1 +dl sinh(l + 3

2 )η1

=−γl{(2l +3)e−(l−
1
2 )η1 − (2l−1)e−(l+

3
2 )η1},

al cosh(l− 1
2 )η2 +bl sinh(l− 1

2 )η2

+ cl cosh(l + 3
2 )η2 +dl sinh(l + 3

2 )η2

=−γl{(2l +3)e(l−
1
2 )η2 − (2l−1)e(l+

3
2 )η2},

(2l−1){al sinh(l− 1
2 )η1 +bl cosh(l− 1

2 )η1}
+(2l +3){cl sinh(l + 3

2 )η1 +dl cosh(l + 3
2 )η1}

= (2l−1)(2l +3)γl{e−(l−
1
2 )η1 − e−(l+

3
2 )η1},

(2l−1){al sinh(l− 1
2 )η2 +bl cosh(l− 1

2 )η2}
+(2l +3){cl sinh(l + 3

2 )η2 +dl cosh(l + 3
2 )η2}

=−(2l−1)(2l +3)γl{e(l−
1
2 )η2 − e(l+

3
2 )η2}

+2ξ κΦl , (23)

where γl = flV . The solution of the above equations for the
unknown coefficients al , bl , cl , dl is given by

∆lXXX = γlYYY − 1
2 ξ κΦlZZZ, (24)

where XXX = {al ,bl ,cl ,dl}, YYY = {āl , b̄l , c̄l , d̄l}, and ZZZ =
{z1

l ,z
2
l ,z

3
l ,z

4
l }. The elements of the vectors are given in Ta-

ble 2. If the motor is not self-propelled, the slip velocity does
not exist. By taking κ = 0, we obtain XXX = γlYYY/∆l , which is
the solutions for the motion of two linked spheres with the
velocity V derived by Stimson and Jeffery.13

In the bispherical coordinate system,13,16 the forces on in-
dividual spheres given in Eq. (7), and denoted here as F1 at the
S1 sphere (η = η1) and F2 at the S2 sphere (η = η2), are given
by

F1 =
2
√

2πµ̄

ξ

∞

∑
l=1

(2l +1)(al +bl + cl +dl),

F2 =
2
√

2πµ̄

ξ

∞

∑
l=1

(2l +1)(al−bl + cl−dl). (25)

Thus, the total force is

Fz =
4
√

2πµ̄

ξ

∞

∑
l=1

(2l +1)(al + cl). (26)

From the force-free condition, Fz = 0, and Eq. (24), we
can find the propulsion velocity of the dimer motor given in
Eq. (8).
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