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How confinement or a physical constraint modifies polymer chains is not only a classical problem in polymer physics but
also relevant in a variety of contexts such as single-molecule manipulations, nanofabrication in narrow pores, and modelling of
chromosome organization. Here, we review recent progress in our understanding of polymers in a confined (and crowded) space.
To this end, we highlight converging views of these systems from computational, experimental, and theoretical approaches, and
then clarify what remains to be clarified. In particular, we focus on exploring how cylindrical confinement reshapes individual
chains and induces segregation forces between them – by pointing to the relationships between intra-chain organization and chain
segregation. In the presence of crowders, chain molecules can be entropically phase-separated into a condensed state. We include
a kernel of discussions on the nature of chain compaction by crowders, especially in a confined space. Finally, we discuss the
relevance of confined polymers for the nucleoid, an intracellular space in which the bacterial chromosome is tightly packed, in
part by cytoplasmic crowders.

1 Introduction

Polymers are chain molecules consisting of many repeated
subunits or monomers 1–3 (see Fig. 1). If biomolecules or
biopolymers (e.g., DNA) are naturally-occurring ones, syn-
thetic ones include polyethylene. Some of them carry electric
charges in aqueous solution (e.g., polyvinyl sulfonic acid and
many biopolymers)4 or have nontrivial topologies or architec-
tures, e.g., ring, star, branched, or cross-linked (see Fig. 1).
Because of their flexibility, chain molecules store many inter-
nal degrees of freedom. The essence of this is well captured
in the metaphor of these molecules as ‘freedom in chains,’5

as illustrated in Fig. 1(a). Unlike other materials such as met-
als, the conformational entropy, associated with these degrees
of freedom, often dominates their thermodynamic quantities
such as chain elasticity and segregation.

Accordingly, polymers often behave as entropic objects.
How they are modified by confinement or physical constraints
is not only a classical problem in polymer physics1,2,6–8 but
also relevant in various contexts such as single-molecule
manipulations or nanofabrication in narrow pores,9–18

chromosome organization, especially in elongated bacterial
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cells,19–23 and viral DNA packing in a viral capsid or release
into a host cell24,25 (see the illustrations in Fig. 1(b)-(d)).
For instance, in a recent experimental study, chromosomes
released from lysed E. coli cells were manipulated mechan-
ically and osmotically.14 A confined polymer model proves
to be useful for interpreting force-compression or osmotic
compaction of the chromosomes.14 This physical approach
complements earlier results for single-chromosome organi-
zation, especially into (topologically-independent) structural
units.26–28

In this review, we attempt to present several key results for
polymers in a confined (and crowded) space in an effort to of-
fer a coherent view of their single chain properties and the way
they interact. Indeed, a set of converging results has recently
emerged from computational, experimental, and theoretical
approaches. In particular, we focus on exploring the bene-
fits of cylindrical confinement in reshaping individual chains
and inducing (entropic) segregation forces between them. For
this, we discuss the relationships between intra-chain organi-
zation and chain segregation. Intriguingly, polymers can be
compacted entropically in the presence of crowding particles.
We include a kernel of discussions on the nature of chain
compaction by crowders, highlighting the interplay between
crowding and confinement effects. Finally, we discuss the rel-
evance of confined polymers for the nucleoid, an intracellular
space in which the bacterial chromosome is tightly packed, in
part by cytoplasmic crowders.

Considering the availability of a few excellent reviews on
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Depletion (Entropic) Forces by Molecular Crowding Alone Can Com-
press Chromosomes to in Vivo Size. The findings presented above
raised the question of why a nucleoid occupies only a subvolume

of the cell but expands to several times the size of the cell upon
lysis (Fig. 1). Three possibilities have been discussed in the litera-
ture (31): nucleoid-associated proteins such as HU and H-NS
that can hold DNA together, DNA supercoiling, and the entropic
effect of molecular crowding. However, most HU remained on
the chromosome during the fast initial expansion of the chromo-
some after lysis (Figs. 1D and 2). Further, recent experiments
demonstrated that supercoiling has only a minor effect on the size
of in vitro chromosome (38).

Are depletion forces by molecular crowding sufficient to cause
compaction of the chromosome in vivo? A typical E. coli cell
contains on the order of one million proteins in the cytoplasm
(ref. 2, chap. 3). Because each depletant has an effect of order
kBT (39), the change in free energy due to molecular crowding
available for chromosome compaction may be approximately
106 kBT. This is about one order of magnitude more significant
than the estimated approximately 105 kBT free energy stored
mechanically in the in vivo chromosomes.

We tested this idea by using high molecular weight polyethy-
lene glycol (PEG 20000) to simulate the crowded cytoplasmic
environment in our device (Fig. 4A). Here, the response of the
chromosomes to molecular crowding can be monitored in real
time by controlling the ambient buffer. The results were striking.

Fig. 4B and Movie S5 show that the addition of high-concen-
tration PEG caused sudden collapse of the chromosomes in mi-
crochannels. Conversely, removal of the PEG rapidly restored the
chromosomes to their expanded conformations. This compac-
tion–decompaction by PEG was completely reversible and repea-
table for many cycles, over the course of more than 1 h, similar to
the compression-decompression by mechanical force observed in
the micropiston experiments.

We repeated the experiments with a wide range of PEG con-
centrations. Only at or above the PEG volume fraction compar-
able to that of cytoplasmic proteins (about 12% to 17%) (40) did
we observe compaction of the chromosomes back to their in vivo

A

B

Fig. 3. Mechanical compression of equilibrated chromosomes. (A) A poly-
styrene microbead held by optical tweezers was used to compress the
chromosome against the closed channel end. The residual membrane of the
cell after lysis was used as a gasket to prevent leakage of the chromosome. (B)
(Inset) Raw force-compression data shows two groups of curves that represent
one and two nucleoids. The error bars denote the standard deviation (SD) of
multiple measurements. When rescaled by the fitted “spring constant” A
and the equilibrium length R0 (mean A ¼ −2.04 pN with SD ¼ 1.24 pN, mean
R0 ¼ 10.1 μm with SD ¼ 2.2 μm) all data collapsed onto a single master curve.
By integrating to the equivalent in vivo size (R∕R0 ¼ 0.1, about half the
smallest measurement R∕R0 ≈ 0.2), we estimated the micromechanical energy
stored in the in vivo chromosome to be on the order of 105 kBT .

A B C

Fig. 4. Depletion (entropic) forces bymolecular crowding induce chromosome compaction. (A) Illustration of depletion interactions. (Upper) When twomacro
objects (red squares) are in each other’s proximity such that the volume ΔV between them is inaccessible to the depletants (white), there is effective attraction
between the macro objects due to random collisions with the depletants. By integrating the ideal gas law over the volume ΔV in the illustration, we obtain the
free-energy reduction ΔF ≈ ΔV · c · kBT , where c is the concentration of the depletants, (Lower) Essentially the same physics applies to long chains; ı.e., deple-
tion interactions can cause collapse of the chains (see SI Appendix, Section II.C). (B) Addition of PEG at a volume fraction comparable to that of cytoplasmic
proteins caused full compaction of the equilibrated chromosomes (multiple traces in grey) back to their in vivo volume. Removal of PEG caused the chromo-
somes to spring back to their equilibrium in vitro volume in about 10 s, comparable to the expansion timescale after initial lysis. The experiment was repeatable
for at least 11 successive cycles of PEG addition and removal. (C) Effective size of the chromosomes at different PEG concentrations. (Experiment) Just below the
transition point (PEG volume fraction 11–13%), we observed interesting coexistence of compacted and decompacted regions within individual chromosomes
(arrows in the snapshots). The areas of the purple and yellow circles represent the relative fraction of the decompacted and compacted regions within the
chromosomes, respectively. The fraction of the decompacted chromosomes (purple) drops sharply before transition. (Theory) The solid line shows the mean
chromosome length as a function of PEG concentration calculated using Eq. 1 and amodified Odijk theory (23). (The dashed line shows the result of the original
Odijk theory.) Our theory predicts collapse of the chromosome at ½PEG# ¼ 18% volume fraction, in a reasonable agreement with the data (11–19%). In both our
theory and the Odjik theory, the volume of completely collapsed DNA is zero.

E2652 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1208689109 Pelletier et al.
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Fig. 1 (a) Polymers as ‘freedom in chains’5: linear polymers (upper) and polymers with a branch-like structure or cross-links (lower). (b)
Polymer model of the nucleoid: a model chromosome is packed in part by depletion forces induced by molecular crowding. Each monomer
represents the ‘structural unit’ of the bacterial chromosome. (Modified from Ref.35 by permission of the Royal Society of Chemistry.) (c)
Single-molecule manipulations in a confined space, adapted from Ref.14 (d) Polymer chain release from a confined into free space,
reminiscent of the injection of packed viral DNA into a host cell.

similar topics,13,19,29 it is worth clarifying the scope of this
work and its relationship with others. First, the recent review
by Reisner et al.13 is focused on utilizing physical confine-
ment in accessing genetic information encoded in single DNA
molecules. In the other reviews,14,29 some concepts from
confined-polymers (e.g., linear ordering and chain segrega-
tion, and fractal globules) are used as tools for understanding
chromosome organization; if the review by Jun and Wright14

relies on scaling pictures, especially at the two-chain level,
Ref.29 is focused on single confined chains. In contrast, we
place an emphasis on the merits of confined polymers as in-
triguing physical objects. Also we include new results that
have emerged in the last few years; for instance, the role of
crowders in organizing chain molecules under confinement
has been clarified (see Sec. 3).

While we mainly focus on the equilibrium properties of
confined polymers (single or two chains), dynamic quantities
such as chain relaxation times can be extracted (see a recent
study13,30 and references therein). Our discussion on poly-
mer chromosome models will be less conclusive. Because
of the simplicity of polymers and the complexity of chromo-
somes, this subfield has evolved more rapidly, in concert with
the progress in our understanding of these intricate biological
objects.

Other interesting polymer problems include the glassy be-
havior of polymers31,32 and the ordering of heteropolymers
(e.g., diblock copolymers) into various phases,33,34 in which
confinement has nontrivial effects on their physical (e.g., mo-
bility) or morphological behavior. We believe they deserve
separate, more complete discussion, and will not be discussed
here.

This review is organized as follows: in Sec. 2, single-chain
properties are discussed. Sec. 3 is devoted to chain organiza-

tion by crowding effects, mostly focused on the single-chain
case. In Sec. 4, we collect some results for the spatial organi-
zation of two chains, especially in a closed confined space. In
Sec. 5, we compare a few polymer models of bacterial chro-
mosomes and discuss their implication for chromosome orga-
nization and segregation.

Note that unless otherwise stated length scales are measured
in units of a the monomer size, as is particularly the case for
simulation results.

2 Single-chain case

In this section, we first introduce a few basic concepts such as
excluded volume, the Flory exponent, and blobs, primarily as
background information for our discussion on confined poly-
mers later in this section. In order to offer a coherent view
of confined polymers, we bring together the blob-scaling ap-
proach (subsec. 2.2) and Flory theory (subsec. 2.3) as essential
theoretical tools and show how they have been reconciled with
numerical data. Based on what they offer, we discuss various
results regarding single polymer chains (e.g., chain elastic-
ity and confinement free energy), especially under cylindrical
confinement. For instance, we present a quantitative basis of
(compression) blobs and show how the blob-scaling approach
provides a simple physical picture of confined polymers. Flory
theory was originally developed as an approximate scheme for
calculating the size of linear polymers with excluded volume
in an unconfined space. Later in this section, it is extended
to such cases as ring polymers and stiff chains, in a cylindri-
cal space. In the course of our discussion, we emphasize how
these approaches have benefited each other by offering a com-
plementary picture of single-chain physics under confinement.
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2.1 Flory exponent and blobs

Consider a polymer chain carrying N spherical monomers of
size a each in solution (in the absence of confienment). Let R
be the end-to-end vector of the chain, as shown in Fig. 1(a).
The equilibrium size of the chain is often measured by

√
〈R2〉.

Here and below, 〈...〉 is an ensemble average. Qualitatively
speaking, this is the radius of the chain-explored region, as-
sumed to be overall spherical. In the high-temperature limit or
equivalently in an athermal solvent, the excluded volume (the
volume taken up by each monomer) υ ≈ a3 but it decreases
as the temperature is lowered and becomes negative below a
certain temperature called the Θ temperature. Indeed, υ can
be written as υ ≈ a3(1−Θ/T ), where T is the temperature
(see for instance Refs.2,3).

The chain is swollen by the excluded-volume interaction
between monomers and is often referred to as a self-avoiding
chain. A perturbative approach, in which the excluded volume
interaction is treated as a perturbation, leads to3〈

R2〉= R2
0
(
1+ 4

3 z−2.075z2 + ...
)
, (1)

where R0 = a
√

N is the ideal-chain size (υ = 0) and z is the
expansion or chain interaction parameter given by2,3

z =
(

3
2π

)3/2
υ

a3

√
N. (2)

When υ = a3, the series in Eq. 1 diverges even for small
N. This means that the effect of self-avoidance is signifi-
cant for any realistic N value, more so for larger N, or at
any length scale somewhat beyond a. For υ/a3 < 1, however,
self-avoidance is significant for N larger than a certain value,
denoted as gT . The corresponding length scale is known as
the thermal blob size ξT = a√gT .1,2 By setting the second
term in Eq. 1 with N = gT to unity, we find √gT ≈ a3/υ and
ξT ≈ a4/υ .1,2

The perturbation expansion is, however, not useful for cal-
culating the size of an excluded-volume chain. Flory theory is
a much celebrated theoretical scheme for calculating the chain
size or the Flory radius RF (see also Subsec. 2.3), which pro-
duces1,2

RF =
√
〈R2〉 ≈ ξT

(
N
gT

)ν

≈ a
(

υ

a3

)2ν−1
Nν −→

υ =a3
aNν , (3)

where the Flory exponent ν = 3/5 (in three dimensions) is
larger than 1/2 expected for an ideal or random walk chain. ∗

Unless otherwise stated, for simplicity, we mainly focus our
consideration on the athermal case υ ≈ a3 or stiff chains.

∗The Flory exponent is close to a more accurate value of ν ≈ 0.588 (see Ref. 3

and relevant references therein).

A related quantity is the free energy of a self-avoiding chain
with the two ends held at R = |R|, which assumes the follow-
ing scaling form

F (R)≈ kBT
(

R
RF

)δ

, (4)

where δ = 2 for R < RF and δ = 5/2 for R > RF .1–3 As a
result, a self-avoiding chain responses to an external force f
as1,2,36

f =
∂F (R)

∂R
≈
(

kBT
RF

)(
R

RF

)δ−1

. (5)

Here R should be understand as a new equilibrium chain size
under f along the force direction (R f is often used for this
quantity1,2).

Note that a single exponent cannot characterize F(R) fully.
For R<RF , the exponent δ = 2 is well aligned with our expec-
tation that the chain behaves as a Hookean spring for small de-
formations with an effective spring constant kchain ≈ kBT/R2

F .
For large f , corresponding to R > RF , the force-extension re-
lation is non-linear: f ≈ (kBT/RF)(R/RF)

3/2.1,36

Our discussion below relies much on the notion of
blobs.1,2,36 (Thermal blobs are simple examples of blobs.) It
is thus instructive to offer a blob picture of the result in Eq. 4,
especially in the large-R limit. (See Refs.1,2,36 for more de-
tails.) Imagine stretching a self-avoiding chain with an exter-
nal force f , as shown in Fig. 2(d). The force tends to align
the chain along the force direction. This tendency is, how-
ever, opposed by chain entropy, which favors coiled confor-
mations. As a result, the force effect will be felt only beyond
a length scale ξ , the tensile-blob size. The chain can then be
viewed as a linear string of (tensile) blobs, each consisting of
g monomers: R ≈ (N/g)ξ , where ξ ≈ agν (athermal). Since
each blob stores an excess free energy of kBT , † one can es-
tablish

F (R)
kBT

≈ N
g
≈ R

ξ
≈
(

R
RF

)5/2

, (6)

where we eliminated g and N in favor of R and RF via R ≈
(N/g)ξ and RF ≈ aNν , respectively, in the final step. This is
identical to the large-R result in Eq. 4 and is thus consistent
with the non-linear force-extension relation. It also offers a
free-energy picture of a blob: a free-energy cost of kBT per
blob for stretching a self-avoiding chain.

It is straightforward to show ξ f ≈ kBT or ξ ≈ kBT/ f from
Eq. 6. ‡ In other words, the work required for aligning a blob
along the force direction is comparable to kBT , consistent with

† Thermal blobs can be interpreted similarly: ξT is a length scale at which the
(excess) excluded volume interaction becomes comparable to kBT , as detailed
in subsec. 2.3.

‡ This can be rewritten as f ≈
(
kBT/ξ 2)ξ . It is a special case of the small R

result in Eq. 4 for R = RF = ξ .
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our view of blobs: inside each, the effect of f is not felt ap-
preciably.

Under cylindrical confinement, a self-avoiding chain will
experience a similar alignment along the long symmetry axis
of the cylinder. The stretched and cylindrically-confined cases
can map onto each other through D≈ ξ ≈ kBT/ f .1,6 Various
quantities can be obtained within the blob picture, as detailed
below.

2.2 Blob-scaling theory and numerical data

It is hard to overstate the impact on polymer physics of the
blob-scaling approach pioneered by de Gennes.1 It allows us
to visualize how internal interactions or external perturbations
influence chain statistics and conformations; subsec. 2.1 only
catches a glimpse of this. In this picture, a chain is viewed
as a string of blobs (see Ref.37 for a quantitative picture of
blobs); within each blob, chain statistics is assumed to be un-
altered by internal or external perturbations: the influence of
other segments on the same chain (internal) or that of other
chains, confinement, or external forces (external). This sim-
ple picture has proven to be useful for understanding vari-
ous polymeric systems: semidilute polymer solutions1,2 and
electrically-charged38–40 or confined polymers.1,2,6,41–43 It en-
ables one to obtain scaling results for reptation and chain re-
laxation times.1,2 The blob scaling approach has recently been
extended to study how two chain molecules are spatially orga-
nized in an open cylinder44 or closed two-dimensional box.45

2.2.1 Flexible chains–If trapped in an open cylindrical
space, a polymer chain breaks up into a linear string of (com-
pression) blobs, as illustrated in Fig. 2(a)-(c).1,2 Let N be the
number of monomers, D the diameter of the cylinder, ξ the
blob size (ξ ≈ D), and g the number of monomers per blob.
One can then establish g ≈ (D/a)1/ν , where ν = 3/5 is the
Flory exponent.1,2,6,7 This leads to the equilibrium chain size

L0 = 〈X〉 ≈
(

N
g

)
ξ ≈ Na

(
D
a

)1−1/ν

≈ Na
(

D
a

)−2/3

. (7)

Here and below, X is the longitudinal size of a confined chain;
recall 〈...〉 is an assemble average.

By assigning kBT to each blob, the confinement-free energy
can be obtained as1,2,6,7

Fconf

kBT
≈ N

g
≈ N

(
D
a

)−1/ν

≈ N
(

D
a

)−5/3

. (8)

If we consider the chain as a series connection of independent
blobs with a spring constant kblob ∼ kBT/D2 each,§ we arrive

§ This can be readily obtained from Eq. 4 with δ = 2. Alternatively, the
weak blob-deformation free energy can be written as Fblob/kBT ≈ (u j+1−
u j)

2/2ξ 2, where ξ ≈ D and u j is the position of the j-th blob. 6 Let δξ de-
scribe the blob-size deformation. Then this free energy implies Fblob/kBT ≈
(δξ )2/2ξ 2, resulting in kblob = kBT/ξ 2.

at the spring constant of the chain given by30,46,47

kchain

kBT
≈ 1

(N/g)D2 ≈ N−1D−1/3a−5/3. (9)

Linear ordering induced by cylindrical confinement has a
direct consequence on the way two chains interact and segre-
gate. If mixed and arranged in parallel with each other in a
cylindrical space (with open ends), each chain can be viewed
as trapped in an imaginary cylinder with a reduced diameter
Deff ≈ D/

√
2.21 This enables us to calculate the free energy

of a mixed state:

Fmix = 21/2νFseg > Fseg, (10)

where Fseg is the free energy of a segregated state given by
Fseg = 2Fconf, where Fconf is the confinement free energy of
each chain given in Eq. 8. This means that chain mixing is
disfavored by free energy.

Similarly, a polymer in a spherical cavity of diameter D can
be considered as being made of blobs (see Fig. 2(e)). The
main difference is that there is no directionality in this case,
in contrast to the cylindrical case, in which the long symmetry
axis of the cylinder naturally serves as the director. In a self-
avoiding walk analogy, there is no preferred directionality for
the walker in a spherical space. Thus, the confined polymer is
a random packing of blobs of size ξ , given by

ξ ≈ a
(
D3/a3N

) ν

(3ν−1) ≈ aφ
− ν

(3ν−1) ≈ aφ
−3/4, (11)

where φ is the volume fraction of monomers. The
confinement-free energy can be obtained by assigning kBT to
each blob41,48:

Fconf

kBT
≈ D3

ξ 3 ≈
(

D3

a3

)
φ

3ν

(3ν−1) ≈ Nφ
1

(3ν−1) ≈ Nφ
−5/4. (12)

Note that the final expression is linear with N for a fixed φ .
If N doubles while φ or ξ remains fixed, Fconf also doubles,
similar to what we would expect from the cylindrical case. In
the latter case,

Fconf

kBT
≈ N

(
D
a

)−1/ν

≈ N
(

ξ

a

)−1/ν

≈ Nφ
1

(3ν−1) ≈ Nφ
−5/4.

(13)
The scaling form of Fconf for spherical confinement (or

simply Fsphere) was confirmed numerically.41,42 For φ < 0.15,
the blob-scaling picture remains valid (assuming RF > D), as
also shown in Fig. 2(f). For φ > 0.15 (in the yellow region in
the graph), however, the blob picture breaks down. In this
regime, three-body terms contribute appreciably to Fsphere.
This explains why the free energy curve is steeper in this
regime.

The analogy between the spherically and cylindrically con-
fined cases seems obvious since in both cases kBT is assigned
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Fig. 2 Confined or constrained flexible polymers with self-avoidance (adapted from Ref.37 by permission of the Royal Society of Chemistry).
(a)-(c) Cylindrically-confined polymers. The diameter D is defined in (a) so that D→ 0 the confined chain becomes “perfectly” linearly
organized, in parallel with the continuum analogue. (a) As a measure of the chain size L, one can use the end-to-end distance, the farthermost
distance, or the length of a tube (red-dashed) occupied by the chain; the latter two can be used interchangeably. In (b), the piston-piston
distance naturally defines the chain size. (c) For a ring polymer, the farthermost distance or the tube length can be chosen as the chain size. (d)
A stretched chain with an external force f maps onto the chain in (a)-(b), if D≈ kBT/ f is chosen (as long as D is somewhat larger than 10a or
if each blob is “well-defined”37).1,2 (e) A spherically-confined chain can be viewed as being made of several ‘subchains’41; a subchain is a
section of the confined chain from somewhere on the wall to elsewhere on the wall, inside which the direct wall effect is not felt. It can map
onto an equivalent semi-dilute solution, the cylindrically-confined (b) or stretched chain in (d). In all these cases, the free energy cost for
perturbing the chains by confinement, f , or other sub-chains is kBT per blob (if each blob is well defined). The graph in (f), partly based on
the blob picture, shows how the free energy for case (e) varies as a function of the monomer volume fraction φ [Reprinted (adapted) with
permission from Ref.42 Copyright (2006) American Chemical Society.] This analogy between (a), (b) (d) and (e) helps us understand when
the kBT -per-blob picture breaks down and why the non-blob scaling regime emerges.37

to each blob. However, it appears to deviate from the more
conventional view that the confinement free energy increases
more rapidly in the spherical case if plotted against the degree
of confinement RF/D (recall RF ≈ aNν is the Flory radius).42

As pointed out in Ref.,37 however, this is a seeming differ-
ence. As D decreases, φ increases more rapidly in the spher-
ical case; as a result, the confinement free energy increases
more rapidly. But for a given φ , the free energy is linear in
both cases.

On the other hand, the analogy between a polymer under
cylindrical confinement and a polymer under tension has long
been appreciated1,6 (see Fig. 2(d)). As discussed earlier, the
two cases map onto each other through ξ ≈ D ≈ kBT/ f or
f ≈ kBT/ξ ≈ kblobξ (recall kblob ≈ kBT/ξ 2). This relation,
describing a Hookean response of a blob, holds for both ideal
and self-avoiding chains. Under this condition, the work
required to align a blob along the direction of f becomes
W = f ξ ≈ kBT , ı.e., comparable to kBT ; inside a blob, the
effect of f is a small perturbation.

Despite its much appreciation, however, the blob scaling
approach has only recently been tested against numerical
and theoretical results. For instance, a theoretical approach,
known as a uniform expansion method,3 confirmed the scal-
ing relation in Eq. 7.49 On the other hand, Fig. 3 summarizes
some of recent numerical results37: (a) the internal distance

Ri j =
√
〈R2(|i− j|)〉 defined as the average distance between

monomers at i and j, (b) L0 = 〈X〉 as a function of D, and (c)
the variance of the chain size σ2

L (per monomer) vs. D. The
results in (a) offer a quantitative basis of blobs: self-avoiding
walk within ξ ≈ D and linear ordering beyond ξ . The graph
in (b) confirms the scaling relation in Eq. 7. It also suggests
that the farthermost distance is a better choice as the chain
size than the end-to-end distance, in the sense that the former
(filled symbols) follows the blob-scaling picture (the dashed
line) in a wider parameter range.37

The results in (c) clarify the applicability of Eq. 9 (see
(c)).37 In this connection, it is worth mentioning that the blob
scaling limit is more readily reached for L0 than for kchain.37,46

The variance σ2
L is related to kchain as kchain = kBT/σ2

L . (The
right axis is the relaxation time given by τ ∼ σ2

L/N, measured
in the absence of hydrodynamic interactions37; it is thus di-
rectly related to σ2

L/N.) For small D, the results in Fig. 3(c)
deviate from the blob scaling picture, which predicts a slope
1/3 in this log-log plot. The crossover at D ≈ 10 (in units of
a) from the blob-scaling to formally-called unexpected regime
(characterized by a large slope 0.9)30,46,47 can be attributed
to the “fate” of blobs for small D. ¶ As discussed earlier in

¶ Note that the slope of a fitting curve for the small D range may depend some-
what on simulation details or fitting methods. For instance, refer to Fig. 2(a)
for the definition of D. Also it is worth noting that a few data points for D < 2
deviate slightly from and fall below the fitting curve (dashed line). As a result,
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Fig. 3 Blobs, linear ordering, and chain elasticity (adapted from Ref.37 by permission of the Royal Society of Chemistry). (a) The simulation

results for the internal distance Ri j =
√〈

R2(|i− j|)
〉

in (a) show how the confined chain is organized: it resembles a self-avoiding chain

within each blob of size ξ ≈ 0.7D and is linearly ordered beyond ξ , the blob size, This offers a quantitative basis of compression blobs.1,6 (b)
The farthermost distance (filled symbols) follows the blob-scaling picture (the dashed line) in a wider parameter range than the end-to-end
distance (unfilled symbols) does, since this quantity is less sensitive to chain-end effects. As D→ 0, the difference between the two sets of
data (filled and unfilled) becomes insignificant but they deviate somewhat from the simple power-law relation. (c) The variance of the chain
size σ2

L is displayed against D; σ2
L is related to the (effective) chain spring constant as kchain = kBT/σ2

L . (The right axis is the relaxation time
given by τ ∼ σ2

L/N, measured in an imaginary immobile solvent or in the absence of hydrodynamic interactions 37; it is thus directly related to
σ2

L/N.) The blob picture predicts a single slope 1/3 in this log-log plot. It, however, breaks down as D→ 0. This explains the crossover at
D≈ 10 (in units of a) from the blob-scaling to formally-called unexpected behavior (with a slope 0.9). It was noted that this crossover can be
best understood by drawing an analogy between this case and the corresponding spherically confined case.37
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correction with Fsphere in Fig. 2(f), the notion of blobs be-
comes less meaningful as they become sufficiently small. It
was noted that this crossover can be best understood by draw-
ing an analogy between this case and the corresponding spher-
ically confined case.37

Indeed it was also shown that the blob scaling results for
chain elasticity are applicable when these two conditions are
simultaneously met: the blob size should exceed 10a and
N > Nmin.37 Intriguingly, Nmin depends on how the chain size
is measured (see Fig. 2(a) for the end-to-end distance, the far-
thermost distance, and the length of a tube enclosing the chain
are depicted): Nmin ≈ 1000, if the farthermost distance is used
as the chain size (as in Fig. 3(c)). As a result, σ2

L becomes less
sensitive to chain-end effects. These unfavorable effects can
be “corrected” in a micro-nano-piston experiment, where the
two chain ends are attached to the piston wall (see Fig. 2(b)).
Also the farthermost distance is relevant for ring polymers
with no ends as shown in Fig. 2(c) (e.g., bacterial chromo-
somes). The radius of gyration is expected to be less sensitive
to chain-end effects and will be a convenient choice for poly-
mers with non-linear topology (e.g., branched or ring poly-
mers).37 The chain-end effect is significant, if the end-to-end
distance is used as the chain size, and as a result Nmin≈ 12000.
Even in the limit N→∞, however, the blob scaling regime for
keff will not be reached for D < 10a.37

A similar discrepancy was seen and resolved in the prob-
lem of a self-avoiding chain subject to an external force f .36

According to the blob picture,1,36 the chain extension along f
varies nonlinearly as f 2/3. This scaling relation was not ob-
served in a numerical study with N = 1600.50 More recently,
however, experiments with single stranded DNA (10.5 kilo-
base pair long) verified the existence of this regime.51 Con-
sidering the analogy between the stretched and cylindrically-
confined cases, it will be useful to simulate a longer chain so
that it contains many well-defined ‘tensile’ blobs.1,36

2.2.2 Semiflexible chains or flexible chains with weak
self-avoidance–So far, we have focused on flexible chains
consisting of beads modelled as hard spheres with the ex-
cluded volume given by υ ≈ a3. Recall that this is relevant in
an athermal solvent. The conformation of such a chain resem-
bles the trajectory of a self-avoiding walk with a step length
a. Under different conditions, the strength of self-avoidance
can be weaker. For instance, as the temperature is lowered,
the excluded-volume interaction between monomers is dimin-
ished (and can even be attractive).1–3 (see Ref.52 for chain
collapse at a low temperature). Chain stiffness gives rise to
similar effects. As a result, a new length scale enters into our
consideration: the size of a thermal blob ξT , within which
self-avoidance is not felt, as illustrated in Fig. 4. As discussed

the slope will depend on whether these points are included; if more of such
data points were included, the slope would be somewhat larger.

in subsec. 2.1, for spherical monomers, ξT ≈ a4/υ ∝ a.1,2

(For cylindrical monomers of length b and width w each in
an thermal solvent, υ ≈ b2w and ξT ≈ b4/υ ≈ b2/w (see sub-
sec. 2.3.3 and Ref.2) How will this influence chain statistics
and elasticity?

Fig. 4 shows how the crossover between different regimes
occurs as D decreases. For D� ξT (see Fig. 4(a)), the con-
fined chain can still be viewed as a linear array of approxi-
mately spherical blobs of size ξ each, as assumed in the blob
approach1; as it turns out ξ ≈ 0.7D for spherical monomers
in an athermal solvent.37 Also the scaling relations presented
in subsec. 2.2.1 remain relevant in the sense that the N-D de-
pendence of L0, Fconf, and kchain remains unaltered. (See the
Flory radius in Eq. 3 for an unconfined analogue; the scaling
form of the Flory radius remains invariant.)

In contrast, these blobs will be elongated along the long
axis of the cylinder, if D > ξT is not satisfied – weakening of
self-avoidance delays the emergence of the linear regime, as
illustrated in Fig. 4(b). In this case, the confined chain can
be viewed as a linear array of elongated blobs of size ξ‖ each
(ξ‖ > D). The corresponding regime is often refereed as the
‘extended de Gennes’ regime.13,15–17

The elongated-blob picture does not modify the scaling
form of L0; up to a numerical prefactor, L0 is the same in
the de Gennes and extended de Gennes regimes.15–17 Ob-
viously, L0 ∼ N, since the chain is linearly ordered beyond
ξ‖. The D-dependence is less obvious but can be obtained
using single physical arguments (see subsec. 2.3.3). In con-
trast, the confinement free energy can be approximated as
Fconf ∼ N(D/a)−2kBT , which has the same scaling form as
the confinement free energy of a corresponding ideal chain1

(see Ref.16 and relevant discussions below). In other words,
self-avoidance is not reflected well in Fconf. This can be un-
derstood as follows: for D� ξT , the elongated blobs do not
serve as free-energy “currency” (ı.e., kBT /blob). In a self-
avoiding walk (SAW) analogy, there will be a free energy cost
each time the “weak” SAW changes its direction upon collid-
ing into the cylindrical wall or each time it travels a distance
comparable to D in the transverse distance. On the other hand,
within this distance, it behaves as a random walk (RW). This
explains why self-avoidance is not reflected in the confinement
free energy in the extended de Gennes regime. (As it turns out,
the effect of self-avoidance is subdominant, as detailed in the
next section.)

As D decreases further, a new regime known as the Odijk
regime emerges (see Fig. 4(c)). This regime is more mean-
ingful for stiff chains for which the persistence length `p can
be much larger than D, as originally assumed.53–55 In this
case, a new length scale known as the deflection length λdef
becomes relevant, which is given by λ 3

def ≈ D2`p. This is a
length scale within which the stiff chain does not feel cylin-
drical confinement. The confinement free energy of a long

1–25 | 7

Page 8 of 26Soft Matter



ξT!

ξ

w!

ξ ||	



λ!

(a)!

(b)!

(c)!

D > ξT!

ℓp < D < ξT!

D < ℓp!

w
 (c

ha
in

 w
id

th
)

D (cylinder diameter)

 (i) de Gennes

 (ii) extended 
     de Gennes

 transition (iii) Odijk w
 =

 b 2
/D

(d)!

non-blob scaling for !
chain elasticity!

?!

elongated blob!

Fig. 4 Organization of polymers with weak self-avoidance in a cylindrical space characterized by a few regimes [adapted (with modifications)
with permission from Ref.16 Copyright (2014) American Chemical Society]. Weak self-avoidance can result from a temperature decrease or
chain stiffening, often measured by the persistence length `p. In this case, a new length scale, ı.e., the thermal blob size ξT , enters into the
picture. Inside each blob or within ξT , self-avoidance is not felt. (a) de Gennes regime: for D� ξT , our blob-scaling picture remains relevant:
L0 ∼ ND1−1/ν and Fconf ∼ ND−1/ν . (b) Extended de Gennes regime: for `p� D� ξT , L0 ∼ ND1−1/ν as in (a) and Fconf ∼ ND−2 as for
an ideal chain. In this case, the chain can be viewed as a linear succession of elongated blobs of size ξ‖ each, beyond which the chain is
linearly organized. Also shown are red circles of size D each as free-energy units: within each circle, cylindrical confinement is not felt. Each
time the self-avoiding chain travels a distance D, there is an associated free energy cost for confinement. For D� ξ‖, Fconf should resemble
the one for the corresponding ideal chain. (In the transition regime, the confined chain contains isolated ‘hairpin backbends.’ 13) (c) Odijk
regime: when D� `p, the confined chain enters the Odijk regime, in which the reflection length λdef describes the degree of confinement;
within this length, the confined chain does not feel the effect of confinement. This regime is realized for a locally stiff chain for which `p� a.
The diagram in (d) depicts the regimes in (a)-(c) and their boundary.
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chain (Ltotal > `p) is expressed as Fconf/kBT ≈ Ltotal/λdef, if
`p � λdef or `p � D,53–55 where Ltotal is the total contour
length (also see Ref.56 for the numerical prefactor of Fconf).

How does the non-blob scaling regime in Fig. 3(c) fit into
the diagram in Fig. 4(d)? For a flexible chain in an ather-
mal solvent, this regime will fall somewhere in the transi-
tion regime. For a more complete picture, it will be use-
ful to extend earlier studies of chain elasticity under con-
finement30,37,46,47 to the extended de Gennes regime. As
noted earlier,37,46 the scaling regimes describing chain sizes
are not necessarily identical to those describing chain elas-
ticity/relaxation. One possibility is to manipulate a confined
chain with an external force, as shown in Fig. 2(b) with vary-
ing `p and D.

2.3 Flory theory

Flory theory is a brilliant scheme for calculating the size of
a self-avoiding chain. Despite its potential limitations as a
meanfield model, because of its simplicity, the Flory approach
has been widely employed in the literature and extended to
confined polymers.13,16,21,30,37,47,57 Here we briefly recapture
earlier discussions on the Flory approach and highlight how
this approach has evolved and been reconciled with other ap-
proaches.

2.3.1 Linear chains–Consider a flexible polymer carry-
ing N monomers in an athermal solvent, with R being its end-
to-end distance. The Flory free energy in d-spatial dimensions
is then expressed as

FFlory(R)
kBT

≈ R2

Na2 +
adN2

Rd , (14)

If the first term describes chain elasticity, the second term rep-
resents the two-body interaction between monomers along the
chain.1,58 The free energy FFlory is minimized at R = RF : for
d ≤ 4, RF ≈ aNν , where ν is the Flory exponent, given by
ν = 3/(2+d) (e.g., ν = 3/5 for d = 3).

Flory theory produces a correct RF , but as noted in Ref.,1

this success benefits from a ‘remarkable cancellation’ of er-
rors. Indeed, FFlory in Eq. 14 implies that the chain spring
constant for d = 3 is given by

kchain ≈
(

∂ 2FFlory

∂R2

)
R=RF

≈ kBT
Na2 . (15)

This is an overestimate in view of the correct one discussed
earlier in subsec. 2.1 and in the literature1

kchain ≈
kBT
R2

F
≈ kBT

N6/5a2 . (16)

See Refs.59,60 for a rigorous treatment of the limitation of
Flory theory.

For a polymer under cylindrical confinement, however, it
was shown that a “correct” (renormalized) Flory approach ‖

can be constructed.30,47 Let X be the chain size in the longi-
tudinal direction, then the Flory free energy can be expressed
as

Fcyl(X ,D)

kBT
≈ X2

(N/g)D2 +
D(N/g)2

X
, (17)

where g is the number of monomers inside a blob of diameter
D introduced earlier, ı.e., g ≈ (D/a)5/3. This free energy de-
scribes an imaginary chain consisting of N/g subunits (blobs)
of size D in an one-dimensional space. In other words, blobs
are considered as the subunits of the chain. Note that this ap-
proach remains valid unless the chain is much compressed lon-
gitudinally (assuming D > 10a).47

Indeed, the free energy in Eq. 17 produces not only the
expected equilibrium chain size L0 ≡ 〈X〉 ≈ Na(a/D)2/3, at
which Fcyl(X ,D) is minimized, but also the correct confine-
ment free energy1,6:

Fconf

kBT
=

Fcyl(X = L0)

kBT
≈ N

g
≈ N

( a
D

)5/3
. (18)

It also leads to the correct effective spring constant of the
chain6,61:

kchain =

(
∂ 2Fcyl

∂X2

)
X=L0

≈ 1
Na2

( a
D

)1/3
kBT. (19)

A natural extension of Eq. 17 is the free energy of a chain
confined in a slit geometry2, ı.e., two parallel plates separated
by a distance D. If R‖ is the chain size in the direction parallel
with the slit, the slit free energy is given by

Fslit(R‖,D)

kBT
≈

R2
‖

(N/g)D2 +
D2(N/g)2

R2
‖

, (20)

where g ≈ (D/a)5/3 is the same as in a cylindrical space.2

Indeed, this free energy reproduces the correct equilibrium
size of the chain in a slit, L0 ≈ N3/4a(a/D)1/4.2,57 How-
ever, its equilibrium free energy, Fslit(X = L0,D)/kBT , scales
as N1/2(a/D)5/3. Note that this is different from the ex-
pected free energy of slit confinement Fconf/kBT ≈ N/g ≈
N(a/D)5/3, which is identical to that of a cylindrically con-
fined polymer (see Refs.1,2 and references therein). At best,
the slit free energy in Eq. 20 describes the interaction of blobs
in a slit at the meanfield level (possibly overestimated), not
confinement.

In summary, the cylindrical case is a special one in that
the excluded-volume interactions between blobs separated by
a long-contour distance are not allowed. The conforma-
tional deformation of the confined chain resembles that of a

‖ It is correct in the sense that it remains valid in the Hookean limit or when
X ≈ L0. 47
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(quasi one-dimensional) Rouse chain formed by renormalized
monomers of size ξ ≈D each.6 The corresponding renormal-
ized Flory approach does not suffer from overestimate errors.

2.3.2 Ring polymers–Earlier studies suggest that a ring
chain maps onto a parallel connection of two linear chains,
each consisting of N/2 monomers trapped in an imaginary
tube of a reduced diameter Deff ≈D/

√
2.21 Note that this was

originally established for rather small D values but is expected
to remain relevant for larger D on physics grounds. This map-
ping allows one to extend the renormalized Flory approach in
Eq. 17 to ring polymers. To this end, let us rewrite Eq. 17 as

Flinear(X)

kBT
= A

X2

(N/g)D2 +B
D(N/g)2

X
, (21)

where A and B are (non-universal) constants of order 1. We
then adjust N and D so that they represent one of the two linear
chains. This line of reasoning leads to

Fring(X)

kBT
≈ Â

X2

(N/g)D2 + B̂
D(N/g)2

X
, (22)

where Â = 213/6A and B̂ = 21/6B. Note here that the parame-
ters g,N, and D on the right hand side are for the correspond-
ing linear chain case. The effect of ring topology is absorbed
into Â and B̂.

The equilibrium size is then given by Lring ≈ 0.630×Llinear,
where Llinear = (B/2A)1/3D(N/g) is the equilibrium chain
size for the corresponding linear case. The confinement free
energy then reads Fring(Lring) ≈ 25/6×Flinear(Llinear). Fur-
thermore, kring ≈ 213/6klinear or kring/klinear ≈ 4.5. Ring topol-
ogy stiffens a confined chain about 4.5 fold. See Ref.21 for a
more accurate mapping.

This analysis implies that chain back-folding (over length
scales > D) is costly, as demonstrated in a recent experiment
on DNA.62 The entropic penalty for back-folding is similar to
what we would expect from a polymer ring. Accordingly, it
supports the blob picture in which a linear chain under cylin-
drical confinement can be viewed as a linear string of blobs.1,6

This picture also applies to each subchain of a ring. Linear or-
dering of these blobs is a natural consequence of a high free-
energy penalty for back-folding. It also has physical conse-
quences on chain miscibility or the way two confined chains
interact, as detailed below.

2.3.3 Flory approach to the extended de Gennes
regime–It proves useful to extend the Flory approach to the
case where Kuhn segments are asymmetrical or self-avoidance
is weak. A salient feature of such a chain under cylindri-
cal confinement is the emergence of the extended de Gennes
regime,15–17 as briefly discussed in subsect. 2.2.2. In this sub-
section, we present a Flory approach to this case.
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Fig. 5 Simulation results for a freely-jointed chain of 104 rods, ı.e.,
N = 104, confined inside a narrow pore with a square cross-section
[adapted from Ref.16 Copyright (2014) American Chemical
Society]. (a), (b), & (c) show the normalized extension, (b)
normalized confinement free energy, and (c) the difference in
confinement free energy between a real chain and an ideal chain, as
a function of normalized pore width. Here the free energy is given in
units of kBT . The crossover between the extended and classic de
Gennes regimes occurs at Dd = 0.56b2/w, marked by the vertical
straight line.
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Let w be the thickness and b the Kuhn length. (For a spher-
ical monomer, w = b = a.) Then p = b/w is the aspect ratio
of Kuhn segments and υ ≈ b2w is the excluded volume pa-
rameter.2,63 For a semiflexible chain of persistence length `p,
b = 2`p is the effective Kuhn length.3 If Ltotal is the total con-
tour length of the chain, the chain can be considered as being
made of N = Ltotal/b rods of length b and thickness w each.

The Flory free energy of an unconfined chain reads

FFlory

kBT
≈ R2

Nb2 +υ
N2

R3 . (23)

Recall that ξT is the length of a thermal blob within which self-
avoidance is irrelevant and gT is the corresponding N value:
ξT = b√gT . If we use this in the second term of F in Eq. 23
and set it to unity, we arrive at

ξT ≈ p2w =
b2

w
, (24)

which is consistent with the known result.1,2

A related point is that the interaction energy (the second
term in Eq. 23) evaluated at R0 =

√
Nb is proportional to

the interaction parameter z in Eq. 2: z ∝ Fint(R0)/kBT ≈
υN2/R3

0 =
√

Nυ/b3 (=
√

Nυ/a3 for spherical monomers).
Setting z to unity (with N = gT ) amounts to setting Fint(R0) =
kBT . Our analysis above is equivalent to the one carried out to
obtain ξT below Eq. 2.

Now imagine squeezing the chain in a cylindrical pore of
diameter D. As long as D � ξT , the general picture pre-
sented in subsec. 2.2.1 or 2.3.1 remains applicable. For in-
stance, the confined chain is a linear array of blobs of size
D each and Fcyl in Eq. 17 remains valid – the only dif-
ference between the athermal and weak-self-avoidance cases
is through g: in the latter case g ≈ (D/b)5/3 (b3/υ

)1/3 ≈
(D/b)5/3 (b/w)1/3, as can be readily obtained from Eq. 3.
As a result, L0 ≈ (N/g)D ≈ Nb(D/b)−2/3 (w/b)1/3 and
kchain/kBT ≈ N−1b−2 (D/b)−1/3 (b/w)1/3.13,15–17

If D is smaller than ξT , within a length scale D, the ef-
fect of self-avoidance is not significant. If we still insist on
picturing the chain as a succession of possibly-overlapping
spherical blobs of size D each, a few adjacent blobs can pen-
etrate each other with no appreciable energy cost, as illus-
trated by the overlapping red dashed circles in Fig. 4(b). As
a result, the chain becomes linearly arranged beyond ξ‖ be-
yond which self-avoidance becomes appreciable. Let N‖ be
the corresponding number of Kuhn segments. Obviously, one
can set ξ‖ ≈

√
N‖b, since a chain with N < N‖ behaves as

an ideal chain confined in the pore, ı.e., the longitudinal size
〈X〉 ≈

√
Nb for N < N‖.

Similar to the one used for ξT , one can set up an entropy-
energy balance relation using Eq. 23 with R3 (in bulk) replaced

by D2R (in a pore):

υ
N2
‖

D2ξ‖
≈ b2w

(
ξ‖/b

)4

D2ξ‖
≈ 1. (25)

This leads to

ξ‖ ≈
(

D2

bw

)1/3

b. (26)

It is straightforward to see that ξT > ξ‖ > D. The first inequal-
ity is a natural consequence of confinement. First recall that
both are defined as length scales beyond which self-avoidance
becomes significant; if ξT is defined for an unconfined chain,
ξ‖ is for a cylindrically-confined chain. This inequality means
that self-avoidance becomes relevant at shorter (longitudinal)
length scales for smaller D. On the other hand, the second
inequality is consistent with the notion of anisometric or elon-
gated blobs55 (see also Refs.13,15,16).

Beyond ξ‖, self-avoidance tends to stretch out the chain
along the pore. The equilibrium (longitudinal) size of the
chain is then given by

L0 ≈ ξ‖×
N
N‖
≈ Nb

(
υ

D2b

)1/3

≈ ND−2/3b4/3w1/3. (27)

Except for a numerical prefactor, this is identical to L0 for the
case D > ξT .

The boundary between the classic de Gennes and the extend
de Gennes regimes can be obtained by setting ξ‖ = D (see
Ref.55)

D≈ 0.56
b2

w
, (28)

where the numerical prefactor was employed from Ref.16 In
a D-w plane, this relation separates between the two regimes,
as shown in Fig. 4(d). This relation has been confirmed in a
recent numerical study,16 as summarized in Fig. 5 (see below
for details).

To proceed further, let us calculate the free energy of chain
confinement Fconf. To this end, we adopt two different pic-
tures. First, we consider the chain as a linear array of many
subsystems of size ξ‖ each and treat each subsystem as ideal.
We then find Fconf/blob ∼ N‖(b/D)2 (ideal inside ξ‖). The
total free energy is then obtained as

F
(1)
conf

kBT
≈ N‖

(
b
D

)2

×
(

N
N‖

)
≈ N

(
b
D

)2

. (29)

This is the same as that of an ideal chain; chain elongation be-
yond ξ‖ will not change the scaling behavior of Fconf. This is
consistent with the earlier picture in subsubsec. 2.2.2 that the
weak self-avoiding walker experiences a free energy cost of
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kBT each time it travels a distance D (in the transverse direc-
tion).

In the second picture, we use Flory theory to calculate
Fconf. The self-avoidance contribution (thus Fconf) scales as

F
(2)
conf

kBT
≈ υ

N2

D2L0
≈ Nb2/3w2/3

D4/3 ≈ N
N‖

. (30)

The last relation tell us that the Flory approach is equivalent to
assigning kBT to each elongated blob of longitudinal size ξ‖.

Recently, a Flory free energy for the cylindrically-confined
case has been constructed and tested numerically,16 which is
in our notation given by

Fextended(X)

kBT
≈ Nb2

D2 +
X2

Nb2 +υ
N2

D2X
. (31)

The first term describes the free energy cost for squeezing a
spherical thermal blobs into a narrow cylinder. The second
and third terms are analogous to the two terms in Eq. 23: if
the second term represents a free energy cost for stretching
the chain in the longitudinal direction, the third term describes
excluded-volume interactions.

Minimization of this free energy leads to the expected L0.
But the confinement free energy, Fconf = Fextended(L0), is
given by

Fconf

kBT
≈ Nb2

D2 +
Nb2/3w2/3

D4/3 . (32)

Note that this is a linear combination of the two free energy
expressions in Eqs. 29 and 30. While it can be considered as
a more complete form of confinement free energy for the ex-
tended de Gennes regime, in the limit ξT ≈ b2/w� D, this
free energy is dominated by the first term.16 For this, refer
to Fig. 5 reproduced from Ref.,16 which displays the simu-
lated confinement-free energy against D. While the sum of
F (1) and F (2) are shown in (b), the latter is displayed in (c).
Clearly F (1) is an order of magnitude larger than F (2).

In summary, the confinement free energy of a self-avoiding
chain shows two scaling regimes:

Fconf

kBT
≈

{
N
( b

D

)5/3 (w
b

)1/3 for ξT < D < RF

N
( b

D

)2
for D < ξT < RF

. (33)

The confinement free energy for the extended de Gennes
regime (the second line in Eq. 33) is approximately correct.

3 Confinement and molecular crowding

Large particles in a solution of small ones can attract each
other, even if by themselves they would repel. The surround-
ing small particles induce entropic (depletion) forces between
the large ones. The entropic origin of these forces can readily

a	
  ac	
  

depletion layers	
  

(a)! (b)!

Fig. 6 Depletion forces induced by crowding particles (in grey). (a)
Each monomer (in dark blue) is surrounded with a depletion layer
(dashed circles), in which the crowders are excluded. Overlapping
of depletion layers (shaded region) creates an extra space for
crowders. This induces entropic (depletion) forces between two
monomers (or two large particles). (b) At a sufficiently large φc, a
chain molecule can be entropically phase-separated into a
condensed state. Across the phase boundary (dotted line), crowders
are in chemical and mechanical equilibrium. As a result, φ out

c > φ in
c ,

where ‘in’ and ‘out’ refer to the inside and outside of the boundary.

be understood in terms of overlapping of ‘depletion layers,’ as
illustrated for monomers in Fig. 6(a). A large particle is sur-
rounded by a depletion layer inside which the center of small
ones are excluded. As described in Fig. 6(a), association of
two such particles leads to (partial) overlapping of their deple-
tion layer, thus increasing the translational entropy of small
ones.

A chain molecule can thus be compacted in a crowded
medium, since its monomers will experience depletion forces,
which compete with their excluded-volume interaction. Be-
yond a certain volume fraction of crowders, the depletion
force becomes dominant and collapses the chain, as illus-
trated in Fig. 6(b).27,64–75 (See Refs.76–78 for depletion forces
in more general contexts). This phenomenon is somewhat
analogous to chain collapse in a poor solvent52,79 and is rele-
vant to chromosome organization in cells, especially in bacte-
rial cells. The bacterial chromosome is macroscopically long
(about 2mm for E. coli) along its backbone but is confined
to an intracellular space of micron size, known as the nu-
cleoid.27,66 While the complete picture of chromosome com-
paction is still elusive, recent single-chromosome experiments
suggest that depletion forces alone can condense the E. coli
chromosomes to its in vivo size.14 Indeed, cells are crowded
with biomolecules such as proteins and RNA.27,66,80–84 For
instance, a typical E. coli cell contains∼ 106 cytoplasmic pro-
teins, occupying a large (about 20%) fraction of the cell vol-
ume.66,81,83

Molecular crowding is relevant in a variety of contexts.
For instance, it influences molecular diffusion, biochemi-
cal equilibria, bimolecular aggregation, translation, and cell
growth.81,82,85,86 In particular, this effect enhances DNA loop-
ing and thus plays a favorable role in organizing chromosomes
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Depletion (Entropic) Forces by Molecular Crowding Alone Can Com-
press Chromosomes to in Vivo Size. The findings presented above
raised the question of why a nucleoid occupies only a subvolume

of the cell but expands to several times the size of the cell upon
lysis (Fig. 1). Three possibilities have been discussed in the litera-
ture (31): nucleoid-associated proteins such as HU and H-NS
that can hold DNA together, DNA supercoiling, and the entropic
effect of molecular crowding. However, most HU remained on
the chromosome during the fast initial expansion of the chromo-
some after lysis (Figs. 1D and 2). Further, recent experiments
demonstrated that supercoiling has only a minor effect on the size
of in vitro chromosome (38).

Are depletion forces by molecular crowding sufficient to cause
compaction of the chromosome in vivo? A typical E. coli cell
contains on the order of one million proteins in the cytoplasm
(ref. 2, chap. 3). Because each depletant has an effect of order
kBT (39), the change in free energy due to molecular crowding
available for chromosome compaction may be approximately
106 kBT. This is about one order of magnitude more significant
than the estimated approximately 105 kBT free energy stored
mechanically in the in vivo chromosomes.

We tested this idea by using high molecular weight polyethy-
lene glycol (PEG 20000) to simulate the crowded cytoplasmic
environment in our device (Fig. 4A). Here, the response of the
chromosomes to molecular crowding can be monitored in real
time by controlling the ambient buffer. The results were striking.

Fig. 4B and Movie S5 show that the addition of high-concen-
tration PEG caused sudden collapse of the chromosomes in mi-
crochannels. Conversely, removal of the PEG rapidly restored the
chromosomes to their expanded conformations. This compac-
tion–decompaction by PEG was completely reversible and repea-
table for many cycles, over the course of more than 1 h, similar to
the compression-decompression by mechanical force observed in
the micropiston experiments.

We repeated the experiments with a wide range of PEG con-
centrations. Only at or above the PEG volume fraction compar-
able to that of cytoplasmic proteins (about 12% to 17%) (40) did
we observe compaction of the chromosomes back to their in vivo

A

B

Fig. 3. Mechanical compression of equilibrated chromosomes. (A) A poly-
styrene microbead held by optical tweezers was used to compress the
chromosome against the closed channel end. The residual membrane of the
cell after lysis was used as a gasket to prevent leakage of the chromosome. (B)
(Inset) Raw force-compression data shows two groups of curves that represent
one and two nucleoids. The error bars denote the standard deviation (SD) of
multiple measurements. When rescaled by the fitted “spring constant” A
and the equilibrium length R0 (mean A ¼ −2.04 pN with SD ¼ 1.24 pN, mean
R0 ¼ 10.1 μm with SD ¼ 2.2 μm) all data collapsed onto a single master curve.
By integrating to the equivalent in vivo size (R∕R0 ¼ 0.1, about half the
smallest measurement R∕R0 ≈ 0.2), we estimated the micromechanical energy
stored in the in vivo chromosome to be on the order of 105 kBT .

A B C

Fig. 4. Depletion (entropic) forces bymolecular crowding induce chromosome compaction. (A) Illustration of depletion interactions. (Upper) When twomacro
objects (red squares) are in each other’s proximity such that the volume ΔV between them is inaccessible to the depletants (white), there is effective attraction
between the macro objects due to random collisions with the depletants. By integrating the ideal gas law over the volume ΔV in the illustration, we obtain the
free-energy reduction ΔF ≈ ΔV · c · kBT , where c is the concentration of the depletants, (Lower) Essentially the same physics applies to long chains; ı.e., deple-
tion interactions can cause collapse of the chains (see SI Appendix, Section II.C). (B) Addition of PEG at a volume fraction comparable to that of cytoplasmic
proteins caused full compaction of the equilibrated chromosomes (multiple traces in grey) back to their in vivo volume. Removal of PEG caused the chromo-
somes to spring back to their equilibrium in vitro volume in about 10 s, comparable to the expansion timescale after initial lysis. The experiment was repeatable
for at least 11 successive cycles of PEG addition and removal. (C) Effective size of the chromosomes at different PEG concentrations. (Experiment) Just below the
transition point (PEG volume fraction 11–13%), we observed interesting coexistence of compacted and decompacted regions within individual chromosomes
(arrows in the snapshots). The areas of the purple and yellow circles represent the relative fraction of the decompacted and compacted regions within the
chromosomes, respectively. The fraction of the decompacted chromosomes (purple) drops sharply before transition. (Theory) The solid line shows the mean
chromosome length as a function of PEG concentration calculated using Eq. 1 and amodified Odijk theory (23). (The dashed line shows the result of the original
Odijk theory.) Our theory predicts collapse of the chromosome at ½PEG# ¼ 18% volume fraction, in a reasonable agreement with the data (11–19%). In both our
theory and the Odjik theory, the volume of completely collapsed DNA is zero.
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smaller dextran. The degree of swelling for the largest dextran is
on the same order of magnitude as our experimental results and
the swelling apex is found at a similar volume fraction. Impres-
sively, the simulations were able to reproduce not only the second
order trend seen in the nanoslit experiments, but we are also able
to reproduce the trends with dextran size. We demonstrate how
this swelling becomes more pronounced with larger dextran beads
in the Supporting Information.
Since we are able to successfully replicate experimental obser-

vations in nanoslits using our simulation algorithm, we now turn
our attention to nanotubes. It is desirable to compare nanoslit
results with an analogous model for tubes. Hence, we simulate
λ-DNA in a square cross section conduit with tube side length,
H = 250 nm (Figure 2C). These results are compared with the
Zhang et al.26 experimental results for T4 DNA in 300 nm wide
nanotubes (Figure 2D). Unlike the nanoslits, we characterize the
DNA size by the mean axial extension of the DNA, ÆR )æ which
was the measurable in the experiments of Zhang et al. Both
simulations and experiments in nanotubes show an initial swel-
ling of the DNA coil with increasing dextran concentration fol-
lowed by an abrupt transition into a globular state. We see that
the transition point occurs at similar volume fractions for the
simulations and experiments. The simulations also capture the
collapse of ÆR )æ for different dextran onto a master curve when
plotted against volume fraction. The ability to capture the trends
in both channel geometries without adjusting parameters is a
testament to the essential physics we postulated were necessary
to include in themodel. Not surprisingly, there are however some
differences between nanotube simulations and experiments.
Simulations show less elongation than experiments, and the
globular form does not compress to the same degree. We attri-
bute these to the simplicity of the coarse grained system. For
example, by modeling DNA sections by hard spheres we inhe-
rently limit the extent of compaction allowed.
Swelling is only observed in confinement and as such we

attribute this effect to the coupling of confinement and crowding.

Zhang et al.26 originally proposed that the channel wall could
lend to an anisotropic osmotic pressure that explains this
behavior. It is well-known that the polymer segment density is
smaller near a surface because there is a configurational entropic
penalty for bringing the center of mass near a surface. In experi-
ments, we expect the DNA to be depleted near the wall in a
region on the order of its persistence length, lp≈ 50 nm, which is
larger than our largest dextran. Therefore, the dextran is able to
access this DNA depleted region near the channel wall resulting
in a noncompensating pressure transverse to the wall. This osmo-
tic pressure drives DNA segments away from the channel wall
and further concentrates it near the channel center. However,
this increased segment density results in an unfavorable increase
in the free energy due to intramolecular excluded volume interac-
tions and so the chain will instead swell in the directions parallel
to the channel surfaces as a result. We show in Figure 3 the
simulation DNA probability distributions, P, and normalized
dextran density distributions, F/F0, transverse to the slit wall.
Without dextran in the system, the DNA tends to be slightly
depleted from the channel wall resulting in a larger DNA den-
sity near the channel center. When dextran concentration is
increased the DNA beads tend to focus more toward the center
of the channel and repulsive excluded volume interactions be-
tween chain segments cause in-plane swelling of the coil. When
comparing Figure 3 panels A and C we see that the larger dextran
induces a more profound compression transverse to the channel
wall. It is clear from Figure 3B that there is a depletion of the
largest dextran from the center of the DNA coil relative to the
channel wall. The gradient in dextran density results in an
osmotic pressure which must be compensated by extension in
the planar direction. The smaller dextran (Figure 3D) can more
easily occupy the interior of the DNA coil and results in a less
significant extension.
The arguments above suggest that the observed in-plane swel-

ling should be directly correlated to a decrease in the transverse
DNA size R^. To explore this idea in more detail, we first recall

Figure 2. Upper graphs show (A) in plane squared radius of gyration from Brownian dynamic simulations and (B) experimental measurements of
effective mean squared coil size for λ-DNA in bulk and slit channel confinement. Lower plots include (C) normalize mean extension for simulations of
λ-DNA in tube (width 250 nm) compared to (D) Zhang et al.26 experimental measurements of T4-DNA mean extension (tube width 300 nm). Solid
lines and symbols indicate bulk and the dotted lines with open symbols correspond to channels. Ææ represents an ensemble average quantity.
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smaller dextran. The degree of swelling for the largest dextran is
on the same order of magnitude as our experimental results and
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sively, the simulations were able to reproduce not only the second
order trend seen in the nanoslit experiments, but we are also able
to reproduce the trends with dextran size. We demonstrate how
this swelling becomes more pronounced with larger dextran beads
in the Supporting Information.
Since we are able to successfully replicate experimental obser-

vations in nanoslits using our simulation algorithm, we now turn
our attention to nanotubes. It is desirable to compare nanoslit
results with an analogous model for tubes. Hence, we simulate
λ-DNA in a square cross section conduit with tube side length,
H = 250 nm (Figure 2C). These results are compared with the
Zhang et al.26 experimental results for T4 DNA in 300 nm wide
nanotubes (Figure 2D). Unlike the nanoslits, we characterize the
DNA size by the mean axial extension of the DNA, ÆR )æ which
was the measurable in the experiments of Zhang et al. Both
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ling of the DNA coil with increasing dextran concentration fol-
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the transition point occurs at similar volume fractions for the
simulations and experiments. The simulations also capture the
collapse of ÆR )æ for different dextran onto a master curve when
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differences between nanotube simulations and experiments.
Simulations show less elongation than experiments, and the
globular form does not compress to the same degree. We attri-
bute these to the simplicity of the coarse grained system. For
example, by modeling DNA sections by hard spheres we inhe-
rently limit the extent of compaction allowed.
Swelling is only observed in confinement and as such we

attribute this effect to the coupling of confinement and crowding.

Zhang et al.26 originally proposed that the channel wall could
lend to an anisotropic osmotic pressure that explains this
behavior. It is well-known that the polymer segment density is
smaller near a surface because there is a configurational entropic
penalty for bringing the center of mass near a surface. In experi-
ments, we expect the DNA to be depleted near the wall in a
region on the order of its persistence length, lp≈ 50 nm, which is
larger than our largest dextran. Therefore, the dextran is able to
access this DNA depleted region near the channel wall resulting
in a noncompensating pressure transverse to the wall. This osmo-
tic pressure drives DNA segments away from the channel wall
and further concentrates it near the channel center. However,
this increased segment density results in an unfavorable increase
in the free energy due to intramolecular excluded volume interac-
tions and so the chain will instead swell in the directions parallel
to the channel surfaces as a result. We show in Figure 3 the
simulation DNA probability distributions, P, and normalized
dextran density distributions, F/F0, transverse to the slit wall.
Without dextran in the system, the DNA tends to be slightly
depleted from the channel wall resulting in a larger DNA den-
sity near the channel center. When dextran concentration is
increased the DNA beads tend to focus more toward the center
of the channel and repulsive excluded volume interactions be-
tween chain segments cause in-plane swelling of the coil. When
comparing Figure 3 panels A and C we see that the larger dextran
induces a more profound compression transverse to the channel
wall. It is clear from Figure 3B that there is a depletion of the
largest dextran from the center of the DNA coil relative to the
channel wall. The gradient in dextran density results in an
osmotic pressure which must be compensated by extension in
the planar direction. The smaller dextran (Figure 3D) can more
easily occupy the interior of the DNA coil and results in a less
significant extension.
The arguments above suggest that the observed in-plane swel-

ling should be directly correlated to a decrease in the transverse
DNA size R^. To explore this idea in more detail, we first recall

Figure 2. Upper graphs show (A) in plane squared radius of gyration from Brownian dynamic simulations and (B) experimental measurements of
effective mean squared coil size for λ-DNA in bulk and slit channel confinement. Lower plots include (C) normalize mean extension for simulations of
λ-DNA in tube (width 250 nm) compared to (D) Zhang et al.26 experimental measurements of T4-DNA mean extension (tube width 300 nm). Solid
lines and symbols indicate bulk and the dotted lines with open symbols correspond to channels. Ææ represents an ensemble average quantity.
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Fig. 7 Results from Refs.14,72 show how molecular crowding can condense chain molecules in a slit (a)(b) and a tube (c)(d)(e): λ -DNA in
(a)-(c), T4-DNA in (d), and E. coli chromosomes in (e). In (a)-(d), the crowder used was dextran with variable molecular weights of 5, 50, and
410 kg/mol corresponding to the radius of gyration (Rg) of 2.6, 6.9, and 17.1 nm, respectively. In (e), polyethylene glycol (PEG 2000) was
used as crowding agents. The graph in (a) shows the mean squared radius of gyration from Brownian dynamic simulations (R‖ was the
component of Rg in the direction parallel with the slit) and the graph in (b) displays the effective mean squared coil size for λ -DNA in bulk
and slit channels of height 250nm from experimental measurements; here D is the diffusion constant of DNA, not to be confused with
diameter, τ is the rotational relaxation time, and the subscript refers to the case without crowders. Fig. (c) displays simulations of λ -DNA
extension in tube (width 250nm) and Fig. (d) represents experimental measurements of T4-DNA extension (tube width 300nm)73. The graph
in (e) shows the measured normalized extension of E. coli chromosomes in a pore with a cross-sectional area 1.5 µm×1.7 µm; the upper
panel indicates a phase-coexistence at the volume fraction of crowders comparable to that of the cytoplasmic counterpart. In all these, 〈...〉
represents an ensemble average quantity. [(a)-(d) adapted with permission from Ref.72 Copyright (2011) American Chemical Society; (e)
adapted from Ref.14]
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in both eukaryotic and prokaryotic cells.85 A seemingly ad-
verse effect of molecular crowding is to limit translation and
cell growth by hindering the diffusion of tRNA complexes.86

Nevertheless, in this section, we mainly focus on clari-
fying the role of molecular crowding in condensing chain
molecules in a confined space. This effort will be benefi-
cial for understanding the large-scale organization of bacte-
rial chromosomes. More general discussions on crowding can
be found elsewhere.65,78,79 Furthermore, we do not attempt
to resolve any discrepancy between competing views of chain
compaction (e.g., continuous vs. abrupt). Indeed, the nature
of chain compaction depends on various parameters including
ion valence and chain stiffness. An abrupt transition of DNA
was seen in a crowded medium containing negatively-charged
proteins74 as well as in polyethylene glycol (PEG) solution75

(both in an unconfined space.) A more recent study, however,
indicates a continuous DNA compaction by dextran (poly-
meric crowder) in an unconfined space or in a slit-like space
but an abrupt transition in a tube-like space72,73; an abrupt
transition was observed with E. coli chromosomes trapped in
narrow pores.14

Fig. 7 summarizes recent results from Refs.14,72,73 for chain
compaction by molecular crowding in a confined space (slit-
or tube-like). Fig. 7(a)-(d) describes the condensation of λ -
DNA (48.5kbp) by dextran ∗∗ in a slit-like (upper) or tube-like
(lower) geometry; if the slit height is 250nm, the tube width is
300nm. (For other details, refer to the original papers.14,72,73)
Also what is shown in (b) is the effective mean squared coil
size, where D is the diffusion constant of DNA, not to be con-
fused with diameter, τ is the rotational relaxation time, and the
subscript refers to the case without crowders. Fig. 7(e) repre-
sents E. coli-chromosome compaction in a cylindrical chan-
nel.

In all cases, the chain molecules undergo a coil-to-collapse
transition as the volume fraction of crowders φc increases.
DNA compaction in a slit-like space is continuous as in bulk
(bulk data represeted by filled triangles in (a)(b)), but it is
abrupt in a tube-like space. Intriguingly, the dependence of
chain sizes on φc is non-monotonic for some curves in (a) and
(b), and for all curves in (c) and (d). The initial elongation of
DNA molecules can be understood in terms of the following
physical picture: DNA segments are depleted in a (depletion)
layer of some thickness on the order of `p from the confining
wall,72,73 where `p ≈ 500Å is the persistence length of DNA.
This allows for an easy access of crowders in this depletion
layer, effectively increasing the degree of confinement – more
so for a larger `p.

Indeed, this non-monotonic behaviour was considered to be
implicated in the abrupt transition seen in (c) (simulations) and
(d) (experiments). Under cylindrical confinement, the effect

∗∗Dextran is a neutral branched polymer formed by glucose monomers. The
size of dextran molecules used in Ref. 73 is in the range 2.6-17nm.

of crowders is anisotropic: it initially compresses the DNA
molecules radially but eventually acts to collapse them in the
longitudinal direction. This explains why the compaction tran-
sition of DNA molecules is more cooperative and abrupt in
tube-like confinement.72,73

Similarly, the compaction of E. coli chromosomes in a tube-
like space appears to be abrupt, as it suggests coexistence of
compacted and extended phases (see Fig. 7(e)). However, this
does not appear to be correlated with chain-segment depletion
from the wall seen in (a)-(d), since the chain length shrinks
monotonically, as the volume fraction of crowders increases.
Along this line, it is worth noting that the “effective” Kuhn
segments of chromosomes are not as anisotropic as those of
DNA. As detailed later (as also illustrated in Fig. 1(b)), the
bacterial chromosome is organized by various proteins into
topologically-independent domains or structural units,26–28

which can be approximated as effective monomers.14,21,22 It
can behave differently from what we would naively expect
from the physical picture of DNA molecules. This may be
responsible for the difference between the DNA and chromo-
some experiments in Fig. 7. Also the chromosome is struc-
turally (more) heterogeneous along its backbone (than DNA).
This is also expected to be implicated in the observed phase
coexistence in Fig. 7(e).

Also superimposed are theoretical results based on
polymer-chromosome models: if the blue curve corresponds
to a bead-spring model, the red dashed line represents a cross-
linked polymer (see Ref.14 and references therein). While
both curves indicate a continuous transition, the blue curve
compares more favorably with the experimental data. Fur-
thermore, recent numerical and theoretical studies suggest
that flexible-chain compaction is continuous in a cylindrical
space35 as well as in an unconfined space.87

There is now a considerable appreciation for crowding ef-
fects in organizing chain molecules, especially in a confined
space. What remains to be further clarified is the nature of
chromosome compaction. For a more complete understand-
ing, it will be useful to examine how the compaction is influ-
enced by chain stiffness and heterogeneity as well as by the
size and poly-dispersity of crowders. Indeed, the cytoplasmic
space presents a poly-disperse space, containing a mixture of
various types of crowders.81,83 Finally, crowders can also in-
duce depletion forces between monomers and the confining
cylindrical wall, possibly leading to chain adsorption onto the
wall. It will be useful to discuss the effect of crower’s poly-
dispersity as well as the interplay between chain adsorption
and compaction: the emerging physics and biological impli-
cations (see Ref.35 for recent efforts along these lines).
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Fig. 8 (a) Blob picture of two hypothetical self-avoiding chains, each having taken N steps on a lattice in a confined space: (a) mixed and (b)
segregated. For simplicity, assume that L = L0 in the mixed case in (i), where L is the length of the confined space and L0 is the equilibrium
chain length. The confined chain in (i) is a linear array of blobs, described by filled circles. The degree of linear ordering is diminished in (ii).
It can be shown that entropy favors the segregated case in (ii). To see this, consider an imaginary chain formed by blobs, ı.e., a string of blobs
in (a). The conformational entropy of this blob-chain is minimal in (i) but is more appreciable in (ii). Note that the conformation shown in (ii)
is one of several realizations; for instance, the two blob-chains on the left and right are different. As L decreases, however, the difference in
blob-chain entropy between (i) and (ii) becomes less significant. As a result, they mix better. In principle, this line of reasoning leads to a
diagram shown in (b), 19 which is based on the diagram for a similar problem: polymers trapped in pores in chemical equilibrium with those in
a reservoir.7,8 [The illustration in (b) is adapted by permission from Macmillan Publishers Ltd: Nat. Rev. Microbiol.,19 copyright (2010).]

4 Two-chain case

Much attention has also been placed on chain segregation or
mixing in a confined space (e.g., slit-like, cylindrical, and
spherical).7,8,19,21,22,44,88–90 Cylindrical (anisotropic) confine-
ment is of particular interest; it is not only a classic problem
in polymer physics pioneered by de Gennes and his collab-
orators7,8 but a problem of renewed interest because of its
relevance to chromosome segregation in elongated bacterial
cells.19,21,22,44 Indeed, closed cylindrical confinement with a
varying aspect ratio includes spherical confinement as a spe-
cial case.

In this section, we discuss some of recent progress with
(two) interacting chains in a confined space. Our considera-
tion in this section is, however, limited to the case of strong-
self-avoidance (see Ref.91 for stiff-chain segregation). Chain
segregation in an open cylindrical space is obvious to under-
stand, as discussed above (recall Fmix = 21/2νFseg > Fseg
in Eq. 10). In contrast, chains tend to mix under spherical
confinement, as long as they are in equilibrium and are not
kinetically trapped in a local free-energy minimum.

Closed cylindrical confinement combines both cases (open
cylinder and sphere) and thus offers a richer set of segregation
behavior. As an instructive model, consider the hypothetical
polymer system shown in Fig. 8(a): two self-avoiding chains

on a lattice in a confined space. If the chains in the upper panel
(i) are mixed, they are segregated in the lower panel (ii). For
simplicity, assume that the cylinder length L = L0 = 〈X〉 in
the mixed case in (i). As shown in the figure, the chains in (ii)
are more randomly organized. It can be shown that entropy
favors the segregated case in (ii). To see this in a more trans-
parent way, consider an imaginary chain formed by blobs, ı.e.,
a string of blobs. The conformational entropy of this “blob-
chain” is minimal in (i) but is larger in (ii). The conformation
shown in (ii) is one of several realizations; indeed, the two
blob-chains on the left and right are different. This explains
segregation is entropically favored, under the right conditions.

As L decreases, however, the difference in blob-chain en-
tropy between (i) and (ii) in Fig. 8(a) becomes less signifi-
cant. As a result, they will mix better, as L→ D. In princi-
ple, this line of reasoning leads to a diagram in which the de-
gree of chain overlapping is depicted, as shown in Fig. 8(b),19

which is based on an earlier study of a similar problem: poly-
mers trapped in pores in chemical equilibrium with those in a
reservoir.7,8 (See the Supplementary Information of Ref.19 for
the details.) In this diagram, the boundary between different
regimes is represented by a simple scaling relation between
x = RF/D and y = RF/ξ , where RF is the Flory radius (e.g.,
Eq. 3) and ξ is the blob size (Eq. 11). Since the scaling pic-
ture leading to chain segregability is discussed in detail else-
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Fig. 9 (a) Internal distance of a confined chain Ri j =
√〈

R2(|i− j|)
〉

(solid lines with symbols) and its relationship with λ/L, the fractional

overlap distance between two chains (specified in the legend) for D = 20a [adapted with permission from Ref.22 Copyright (2012) American
Chemical Society]. Here D is defined as the inner cylinder diameter and L is the cylinder length per chain. The color scheme is the same for
all these graphs in (a)(b)(c). (a) The dashed lines, with the slopes 3/5,1/2, and 1, depict the self-avoiding walk (SAW) within ξ , random walk
(RW) at intermediate lengths, and linear regimes, respectively. If the confined chain is weakly compressed longitudinally, it is linearly ordered
beyond the blob size ξ ≈ D, as in an open cylinder, and the RW regime is missing. For moderate compression, blobs are randomly packed
within some length scale ζ‖; linear ordering emerges beyond this. For strong compression, the linear regime disappears (ı.e., ζ‖ ≈ L). For the

entire range shown, the RW regime is not clearly seen in the transverse component R⊥i j =
√〈

R2
⊥(|i− j|)

〉
(the bottom lines without symbols).

In all cases that display the linear regime in (solid lines unfilled symbols), the chains are (almost) completely segregated. Even when linear
ordering is completely lost, they segregate up to 70-80%, more so in a more asymmetrical space. Under anisotropic confinement, chain
segregation in the RW regime is sensitive to the aspect ratio r = D/L. (b) For the well-segregated cases (solid lines without symbols), the
probability distribution of the center-to-center distance between the two chains P(Lcc) has a narrow peak at Lcc/2L≈ 0.5. On the other hand,
P(Lcc) for the much mixed cases (lines with filled diamonds) is broader. In the most miscible case D/2L = 1 (the dashed line in purple),
P(Lcc) is a Gaussian distribution centered at Lcc = 0. (c) In the diagram, Deff = D for linear chains (solid lines), while for ring polymers,
Deff = D/

√
2 (dashed lines).21 The dotted line with open squares describes the symmetrical case of D/2L = 1 for which y = 1.40× x9/4.

Beyond this, the confined space resembles a closed “slit.” Also included is the boundary curve y = 1.50× x12/7 between the segregated and
mixed regimes7,8,19 (see open “diamonds”), on which λ/L = 0.5. Finally, λ/L = 0 line is best fit by y = 1.15× x (open inverted triangles).
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where,7,8,19 we do not repeat it here. Instead, we will include
below the numerical support for the diagram (see Fig. 9(c)).

Furthermore, an earlier study shows how intra-chain
and inter-chain ordering are interrelated.21 Chains remain
segregated effectively if linearly-ordered, as illustrated in
Fig. 8(a)(b). They can resist mixing even outside the linear
regime. This deviates somewhat from an earlier scaling pre-
diction that segregation requires linear ordering7,8 but is con-
sistent with what was observed in a polymer melt.88

As a confined chain is compressed longitudinally, the blobs
break into smaller ones and the degree of linear ordering de-
creases. Intrachain ordering can be quantified in terms of the
internal distance between two monomers at i and j, given by

Ri j =
√
〈R2(|i− j|)〉, (34)

as introduced in subsec. 2.2. Related quantities are the in-
ternal distances measured in the longitudinal and transverse
direction, respectively,

R‖i j =
√

R2
‖(|i− j|) and R⊥i j =

√
R2
⊥(|i− j|). (35)

Fig. 9(a) shows R‖i j (curves with symbols) and R⊥i j (curves
without symbols).22 It should be noted that the color scheme
for R⊥i j curves is in error in the original work22; it should be re-
versed as in Fig. 9(a) in this work. Also in Fig. 9, D is defined
somewhat differently from the one in Fig. 2(a). In Fig. 9, it is
the inner diameter of the cylinder as shown in the illustration
on the top. We have checked that the miscibility in Fig. 9(c),
for instance, is largely insensitive to the way D is defined.

A few distinct regimes are marked in Fig. 9(a) (see the
dashed lines with slopes in a log-log plot): self-avoiding
(within ξ ), random-walk (at intermediate length scales), and
linear regimes (outside the random-walk regime). Note that
not all these regimes are always realized. Also L here is the
length of the cylinder per chain. For large L, the chain is lin-
early organized beyond ξ ≈D, as in an open cylinder. As L de-
creases, a new regime between the self-avoiding and linearly-
organized regimes emerges. In the log-log plot, this regime is
described by a linear line with a slope 1/2. A natural conse-
quence of chain compression is the emergence of a new length
scale denoted as ζ‖. This is a length scale within which the
confined chain (L < L0) is a random packing of compression
blobs of size ξ each (ξ < D). Beyond ζ‖, the chain is linearly
organized, as long as ζ‖ < L (see Fig. 9(a)). As L decreases,
ζ‖→ L. In this case, linear ordering is completely lost as in a
spherically-confined case.

The results in Fig. 9(b)(c) relate intrachain ordering to the
degree of chain overlapping or penetration, which is measured
by the probability distribution of the center-to-center distance
between the two chains P(Lcc) in Fig. 9(b) and the partial

overlap distance λ/L in Fig. 9(c); here λ is the overlap dis-
tance or penetration depth, not to be confused with the deflec-
tion length λdef introduced in subsubsec. 2.2.2. In Fig. 9(c),
RF = cont.× 1.1N3/5, where const. = 1 or 0.79 for a linear
or ring chain, and ξ = φ−3/4 =

[
N/π(D/2)2L

]−3/4 (Eq. 11)
with the prefactor set to unity was used.21 (The prefactor 0.79
for RF coincides with the ratio of the radii of gyration of the
ring and linear chains.21) For linear chains, Deff = D by con-
vention. The color scheme used for various curves is the same
for all the graphs in Fig. 9(a)(b)(c). When the chain is linearly
organized in the sense that ζ‖ < L, the two chains remain seg-
regated. It is worth noting that for λ ≈ 0.5, P(Lcc) has a peak
around Lcc = L (see the green curve in (b)). While on aver-
age the chains penetrate each other halfway through, the most
probable conformation represents segregation. In this case,
linear ordering is completely lost as indicated in Fig. 9(a). But
the chains still resist mixing (they are half-segregated). Only
when the chains mix almost completely, the peak moves to
Lcc ' 0. (The three dashed lines in (b) show how the chains
mix as the aspect ratio 2L/D tends to unity.)

Also shown in Fig. 9(c) is the boundary curve between the
two neighbouring regimes. For instance, the dotted line with
open squares describes the symmetrical case of 2L/D = 1 for
which y = 1.40× x9/4. Beyond this, the confined space re-
sembles a closed “slit.” On the other hand, the boundary curve
y = 1.50× x12/7 distinguishes between the segregated and
mixed regimes7,8,19 (see open “diamonds”); on this boundary
curve, λ/L = 0.5. Finally, the λ/L = 0 line corresponds to
y = 1.15×x (open inverted triangles). These boundary curves
are consistent with and offer numerical support for those based
on the scaling picture.7,8,19

Intriguingly, it was shown that a ring polymer behaves as a
series connection of two sub-linear chains, each trapped in an
imaginary narrower cylinder of diameter Deff = D/

√
2, as il-

lustrated in Fig 9(c).22 In the figure, the dashed lines describe
two ring polymers. The collapse between the linear and ring
cases means that the effect of ring topology is correctly mim-
icked this way and that ring polymers segregate better than
the corresponding linear chains. For practical purposes, one
can use the same ξ value for the linear and ring cases, as
done in Fig. 9. This is obvious for Llinear > Lring ≥ L, where
Llinear or Lring is the equilibrium chain size for the linear or
ring case, respectively, introduced in subsec. 2.3.2. If so, the
monomer volume fraction is the same in both cases; so is ξ . If
Llinear > L ≥ Lring, however, the ring polymers can fall below
the λ/L = 0 boundary, even though the linear chains remain
touched. The use of the same ξ can be justified if the linear
chains remain segregated. Indeed, this is the case, since there
is a good agreement between the solid (linear) and correspond-
ing dashed (ring) lines even for λ/L' 0. For the comparison
purpose, one can use the same ξ for both cases.

This physical picture is consistent with the observation that
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Fig. 10 Linear ordering of a polymer (N = 200) in a closed
cylindrical space of length L = 28 and diameter D = 4.8 for
N = 200, adapted from Ref.21 by permission of the Royal Society
of Chemistry. A typical chain conformation is shown. The beads are
colored in the same sequence as in the color bar in the middle. For a
ring polymer (the upper figure), only one subchain shows up in
color. The lower panel displays a linear subchain (consisting of N/2
monomers) trapped in a narrow cylinder with a rescaled diameter as
D→ D/

√
2. The cylinder diameter was exaggerated so that it

matches with that in the ring case. Because of the D rescaling, the
chains in the two cases are similarly organized. The degree of linear
ordering shown here is comparable to the following scaled-down
case: N = 100, D = 4.8, and L = 14 (more suitable for the E. coli
nucleoid (see Sec. 5)).

ring- or loop-like structures of individual chains induce a re-
pulsion between them, similarly to what is seen in interphase
chromosomes in a eukaryotic cell, forming discrete territo-
ries.41,89,90

Along this line, it is worth noting that overlapping two
chains in a free or spherical space is not completely free but
can be a few kBT .41 As the degree of topological complex-
ity increases, the overlapping free energy will also increase
and the chain segregate better.19,44 In this regard, the results
in Fig. 9 can be considered as a lower bound for the segrega-
bility of chains with nontrivial topology (e.g., chromosomes).

5 Polymer physics approach to bacterial chro-
mosomes

The physical picture of linear ordering and chain segregation
induced by cylindrical confinement has been used as a physi-
cal basis of chromosome organization and segregation in elon-
gated bacteria.19,21,22,44 Varying views have also emerged,
in which (possible) limitations of polymer approaches are
pointed out or the roles of chromosome-associated proteins
are emphasized.92–95 This is not surprising, considering the
complexity of chromosomes in comparison with polymers.
For the same reason, simplification is an inevitable step to-
ward gaining quantitative insight. The degree of simplifica-
tion should reflect the desired level of abstraction. Polymer

models have emerged as a minimalist but nontrivial physical
model of chromosomes, since they still retain such essential
features as chain connectivity and excluded volume interac-
tions between chain segments (chain topology as well in some
case)19,21,22,44 (also see Refs.89,90). Importantly, a polymer
model offers a conceptual framework for making quantitative
sense of chromosome experiments (see Ref.14 for a recent at-
tempt).

Here, we briefly review some of the discussions along this
line in the literature. However, we do not attempt to resolve
any “essential” discrepancy between the varying views, e.g.,
active or protein-assisted vs. passive or entropically-driven
segregation of chromosomes (see Refs.19,20,92,93 and refer-
ences therein for relevant discussions). However, we believe
that some of them are only deceptively contradictory. Where
applicable, we clarify the nature of discrepancies.

5.1 The bacterial chromosome and a polymer model

The bacterium E. coli has a circular chromosome, carrying
about 4.6×106 base pairs. It is about 1.6mm along its contour
and experiences about 1000-fold compaction inside the cell,
occupying an intracellular space known as the nucleoid.27,96

However, even with this spatial constraint, the bacterial DNA
is highly active in gene expression, replication, and segrega-
tion.29,93,97

The bacterial chromosome is compacted in part by the nega-
tive supercoling of DNA into many topologically-independent
domains or structural units;26–28,98–100 these domains and their
boundaries are highly dynamic.28 Beyond this generally ac-
cepted picture, their details vary from reference to reference.
For instance, it was shown in Ref.28 that each domain is about
10-kb (kilo-base-pair) long, implying that the chromosome
contains about 400 structural units. In Ref.,101 each struc-
tural unit was estimated to be 70± 20nm in diameter and
50kb in length; the number of structural units falls around
100. More recent single-molecule experiments led to some-
what larger structural units ranging from 130nm to 440nm,
together with the number of structural units in the range 15-65
per chromosome (63-284 per cell)14. ††

The organization of bacterial chromosomes102–105 as well
as the cell/nucleoid sizes depend on growth conditions and cell
ages or vary from reference to reference.27,93,94,96,106 The E.
coli chromosome resembles a donut (or a branched donut105),
under fast-growth rates, but it is asymmetrically organized, re-
sembling a ‘sausage’ with a stretch connecting its ends, under
slow-growth rates.102–104 The donut-like chromosome bears a
resemblance to the ring polymer in the upper panel of Fig. 10.
Imagine shrinking the size of monomers shown in a varying

†† As noted below, an E. coli cell contains more than one chromosomes, depend-
ing on cell growth conditions.

18 | 1–25

Page 19 of 26 Soft Matter



 
 

29 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S12. Schematic polymer model of the chromosome. (A) Each plectoneme is 
composed of two DNA duplexes running in opposite directions. (B) Each monomer in the 
model comprises 217 bp from each duplex, representing ~5-fold compaction compared to 
the uncompacted DNA contour length. (C) Plectonemes are packed into fibers, and are 
separated by plectoneme-IUHH� UHJLRQV� �3)5��� $Q� DYHUDJH� SOHFWRQHPH� OHQJWK� LV� ���
monomers. (D) Fibers of plectonemes and plectoneme-free regions are packed inside a 
cylinder the same approximate volume as a Caulobacter cell. One actual equilibrium 
realization of chromosome model is shown here. The chromosome backbone is shown in 
EODFN� DQG� LV� SRODUO\� DQFKRUHG� �PDJHQWD� GRW� with a handful of plectonemes (various 
FRORUV��HPHUJLQJ�IURP�WKH�EDFNERQH�ZLWK�WKH�UHVW�RI�WKH�SOHFWRQHPHV�LQ�OLJKW�JUH\��(E) A 
schematic polymer model of the chromosome indicating polarly anchored origin 
�PDJHQWD�GRW���FKURPRVRPH�EDFNERQH��EODFN���DQG�SOHFWRQHPHV��FRORUHG�DQG�JUH\�ORRSV�� 
 
 

gyration Rg ¼ 2:95! of the side loops of length ls ¼ 40!.
However, due to the repulsive interactions with the back-
bone monomers, the center of mass of the loops is offset
from the backbone. We, therefore, extracted the distribu-
tion of the center of mass of the side loops with respect to
their attachment point on the backbone in the plane per-
pendicular to the local tangent direction along the chain
(see Fig. S1 in the Supplemental Material [22]). This
distribution has a sharp maximum at a distance of approxi-
mately 4! from the backbone chain. This result also shows
that indeed the density distribution of the side-loop mono-
mers is structured in a manner consistent with the thick-
ened tube picture alluded to above. We, therefore, took the
size parameter characterizing the range of the interaction
between the side loops in the effective potential centered
on the backbone monomers Vgc to be w ’ Rg þ 4! ¼6:95!. This effective interaction between the monomers
was then added to the WCA potential, governing the non-
bonded repulsive interactions, for a linear chain of length
lb ¼ 200! confined within a cylinder of diameter D ¼29:5! and length L ¼ 50:75!. As Fig. 4(b) shows, this
effective potential reproduces the helical equilibrium struc-
tures of the polymer remarkably well. The structure factor
displays a maximum at the same helical pitch value lb=4 ¼50! as the original simulations and reproduces the oscil-
lations of the tangent-tangent correlation function (Fig. 2)
with only a slight global phase shift. The amplitude of the
oscillations (and, hence, that of the structure factor) is
somewhat larger for the effective potential, but this is proba-
bly due to an overestimate of the interaction strength a.
Finally, we enquire into what happens if the backbone is

a ringlike polymer, inspired by the fact that the chromo-
some of E. coli is circular. To that end, we simulated a

polymer with a circular backbone with lb ¼ 400! and side
loops of length ls ¼ 20!, trapped within a cylinder of
length L ¼ 50:4! and diameter D ¼ 33:5!. The packing
fraction of the monomers is " ¼ 18:9%, comparable to the
one in the simulation of the linear backbone polymer.
Figure 5 shows that in this case the backbone loop is
now organized into two parallel helices running along the
long axis of the cylinder. As is evident from the snapshot,
and corroborated by the analysis of the tangent-tangent
correlations (Fig. S3 in Supplemental Material [22]), the
degree of helicity is reduced as compared to the linear
backbone case, due to the smaller side-loop length, but
nevertheless remains significant.In conclusion, we have shown that the interplay between
the effective stiffness and intrachain packing effects caused
by side loops in polymers leads to novel helical equilib-
rium configurations of confined polymers. These structures
are strikingly similar to ones recently observed in bacterial
nucleoids. To what extent the physical effects discussed
here are indeed able to explain the phenomenology of the
large-scale chromosome organization in real bacteria is a
question that clearly requires further research. At the very
least, however, our results once again indicate that the
ubiquitous aspecific interactions between the segments of
long biopolymers like DNA can by themselves lead to
significant spatial structuring, as has previously also been
observed in the context of chromosome organization in the
nuclei of plants [27] and humans [28]. This argues for a
more prominent place for polymer physics in the research
into the structure and function of chromosomes. From a
purely physical point of view, our work points to novel
possibilities for ‘‘sculpting’’ the configurations of confined
polymers by judicial choices of polymer topologies.We gratefully acknowledge discussions with Nancy
Kleckner and Mara Prentiss (Molecular and Cellular
Biology, Harvard) in the initial stages of this project. This
work is part of the research program of the ‘‘Stichting voor
Fundamenteel Onderzoek der Materie (FOM),’’ which is
financially supported by the ‘‘Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO).’’ The work of D. C.
was supported by FOM-ProgramNo. 103 ‘‘DNA in Action:
Physics of the Genome.’’
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FIG. 5 (color). Equilibrium structure for a circular backbone
chain of length lb ¼ 400!, with side loops of length ls ¼ 20!
attached to each backbone monomer. The polymer is confined
within a cylinder of length L ¼ 50:4! and diameter D ¼ 33:5!.
The splitting of the backbone into two parallel linearized
branches is highlighted by using two color codes, orange and
blue, for the branches. The side-loop monomers are shown as
transparent green beads.
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repulsion between the side chains [17]. This effective

stiffening, combined with intrac
hain packing effe

cts within

the cylindrical confin
ement, leads, as we

will show in the

following, to the
spontaneous form

ation of helical c
onfigu-

rations, which, h
owever, do not ap

pear to be optimal in the

sense of Ref. [11
].

Our model polymers are of the bead-spring type, with

consecutive beads attached to each other by a harmonic

spring Vb ¼ ðA=2Þðdi $ !uiÞ2, where di ¼ riþ1 $ ri, ri is

the position of ith
bead,! the equilibrium bond length, and

ui ¼ di=jdij is the local tangent vector to the chain.

Nonbonded beads repel each other through the Weeks-

Chandler-Anders
en (WCA) potential [18] VWCA ¼

4"½ð!=rijÞ12 $ ð!=rijÞ6 þ 1=4' if the intermonomer sepa-

ration rij < 21=6! else VWCA ¼ 0, where " and ! set the

energy and lengt
h scale of the sys

tem, respectively. We use

A ¼ 100". The interaction of all beads, irrespecti
ve of

whether they belong to the main chain or side loops, wi
th

the confining wa
lls (the top and b

ottom surfaces, as well
as

the cylindrical side surface) are modeled through Vwall ¼

2#"½ð2=5Þð!=riwÞ
10 $ ð!=riwÞ4 þ 3=5' if the distance of

the ith monomer from a wall riw < ! and Vwall ¼ 0 other-

wise. We simulate this system
employing a velocit

y-Verlet

molecular dynamics scheme in the presence
of a Langevin

thermostat fixing the temperature at kBT ¼ 1 as imple-

mented by the ESPResSo package [19].

We first consider a
polymer composed of a linear back-

bone chain of length lb ¼ 200! to which side loops of

length ls ¼ 40! are attached at every backbone monomer

of the main chain. This po
lymer is confined to a

cylinder of

length L ¼ 50:75! and diameter D ¼ 29:5!, yielding a

monomer packing fraction of $ ¼ 23:8%. In Fig. 1, we

show a typical equilibriu
m configuration of this polymer,

which evidently displays a marked helical ordering
of the

backbone chain. The degree of helical ordering
can be

quantified by considering the tangent-tangent
correlation

function huðsÞ ( uð0Þi, between two arbitrary tangent vec-

tors separated by a distance s ¼ i! with i ¼ 0; 1; . . . ; 200.

The Fourier transform
of this quantity yields a structure

function SðqÞ with a peak
at a dimensionless wave

number

qmax ¼ lb=%max, where
%max is the p

itch of the helix mea-

sured along the b
ackbone chain. T

he height of the s
tructure

function at its maximum is a relative measure of the deg
ree

of helicity, while
the width of the peak is indicative of th

e

statistical dispers
ion of the structure.

Figure 2 shows the correlation function and the corre-

sponding structure function for this polymer, as we vary

the diameter of the confin
ing cylinder. This sh

ows that the

helical pitch is relatively robust against c
hanges in the

diameter, although a slight decrease in the amplitude is

apparent as we i
ncrease the diam

eter. Only for the largest

diameter, when both the degree of con
finement as well as

the overall packi
ng fraction are si

gnificantly decre
ased, do

we see a preferen
ce for a more longitudinal

packing of the

main chain. The helical pitch is equally robust against

reduction of the cylinder length, keeping the diameter

constant. Howev
er, at very high c

ompression the struc
tural

relaxation becomes extremely slow, and the polymer con-

figuration gets kinematically trapped into random close

packed structures (data n
ot shown).

Maritan et al. [11] have suggested that the optimally

packed helical str
ing is uniquely ch

aracterized by the
critical

pitch-to-radius ratio of c ) p=r ¼ 2:512. Calculatin
g the

mean radius rm of the helices cor
responding to Fig

. 2 yields

values of this ratio of c ¼ %max=rm ¼ 3:27; 2:5; 1:8 for

D=! ¼ 14:68; 19:85; 29:5
, respectively. T

his shows that,

while the pitch-to-radius
ratio of these equilibrium

polymers is of the same order as the ideal geometrical

ones, in this case both the details of the
polymer structure

FIG. 1 (color). Helical equilibri
um structure for a backbone

chain of length lb ¼ 200! [blue thick line] to which side-loops

of length ls ¼ 40! are attached at ea
ch backbone monomer. The

polymer is confined within a cylinder of leng
th L ¼ 50:75! and

diameter D ¼ 29:5!. The side-loop monomers are shown as

transparent green
beads.
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FIG. 2 (color online).
The tangent-tangent

correlation (inset)

and its Fourier transf
orm for the polymer shown in Fig. 1. The

correlation function is oscillatory, wi
th the periodicity captured

by the peak in the structure factor at qp ¼ 4 for D=! ¼ 14:68,

19.85, 29.5, and
qp ¼ 2 for D=! ¼ 58:93. Also shown are the

corresponding re
sults for a main-chain polymer with an effecti

ve

Gaussian-core m
imicking the effect

of inter-side-chai
n repulsion

[cf. Fig. 4(b)].
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that bacterial cytoskeletal proteins such as 
plasmid partition protein M (ParM) and 
ParA are the machinery for active transport 
of low-copy-number plasmids and ori loci, 
respectively. The system consisting of ParA, 
ParB and parS (the binding site for ParB) is 
widely conserved in many bacteria and con-
tributes to ori segregation in C. crescentus 
and oriII segregation in V. cholerae.

However, although ParA plays an impor-
tant part in chromosome segregation, its role 
is likely to be limited, for the following rea-
sons. In C. crescentus, ParA is not required 
once ori loci are separated at the beginning 
of the cell cycle27. The absence of ParA alone 
has little effect on chromosome segregation 
in B. subtilis4, and there is no ParA homo-
logue in E. coli. Also, as we discuss below, 
eukaryotic sister chromatids demix and 
move ~0.5 μm apart before their separation 
by spindles, without any active pushing or 
pulling of the replicated DNA28. A potential 
problem with active transport of chromo-
somal ori loci for organisms that undergo 
multifork replication is that simple transport 
of multiple copies of ori may be harmful to 
the cell unless it also solves the ‘hierarchy 
dilemma’ of positioning an ori depending on 
its identity. An obvious experimental test of 
this idea would be to insert an active plasmid 
segregation system, such as ParM or the 
ParAB–parS system, into the E. coli chromo-
some. We predict that chromosome segrega-
tion during multifork replication in such  
an organism will be defective. We propose 
that organisms encoding ParA have adopted 
this protein from plasmids for a more effi-
cient segregation of the ori domain, which is 
comparable in size to plasmids, rather than 
for segregation of the bulk chromosomes.

C. crescentus is smaller than E. coli and 
has a smaller cytoplasmic space surround-
ing its nucleoid, so the outer concentric shell 
of this species may not be large enough for 
fast diffusion of newly replicated DNA. In 
this case, ParA might be needed to ensure 
rapid segregation of the duplicated ori loci 
in the early stage of the replication cycle, 
when newly synthesized DNA would oth-
erwise be kinetically trapped in the cell (see 
Supplementary information S4 (box)). The 
advantage of having an outer shell leads us to 
predict that, even in C. crescentus, duplicated 
ori loci will move in the periphery of the 
nucleoid. Finally, as the cell grows and rep-
lication continues, reducing the volume of 
the dense, unreplicated-DNA core, an outer 
shell is not needed for entropy-driven segre-
gation15. The C. crescentus cell cycle is longer 
than those of E. coli and B. subtilis, which 
will further help segregation by entropy.

Several proteins are involved in active 
transport of DNA inside a bacterium. 
Examples include SpoIIIE, which moves 
DNA into the forespore during sporulation 
of B. subtilis, and FtsK, which resolves dim-
ers and carries out other ‘rescue’ tasks in 
E. coli29. However, it is important to realize 
that these proteins translocate DNA at the 
last step of segregation by taking advantage 
of the directionality that is provided by 
the septum, which is an entirely different 
process from segregation of replicating 
chromosomes.

Segregation models based on replication, 
transcription, translation and tethering. 
In addition to the active DNA transport 
models, both the force of DNA ejection 
by DNA polymerase and the tethering of 
DNA polymerase have been proposed to 

move DNA in the cell. The finding of a 
fixed replication factory in B. subtilis led 
to the proposal of an ‘extrusion–capture’ 
model30, which assumed that the energy 
released during replication could contrib-
ute to chromosome partitioning. Recent 
work, however, has shown that replication 
forks and their associated replisomes are 
both independent and highly dynamic 
in the cell, making their role in segrega-
tion unlikely31–33. It was suggested that 
the negative effects of streptolydigin on 
chromosome segregation implicate RNA 
polymerases in chromosome segregation34. 
In addition, it has been proposed that tran-
sertion (the insertion of polypeptides into 
membranes during translation), instead of 
polymerases themselves, could segregate 
the replicating chromosomes35. Definitive 
experimental support for these proposals is 

Figure 2 | Physical model of a bacterial chromosome and its segregation. a | A reductionist model 
of the Escherichia coli chromosome. First, we stretch a bacterial-genome-sized naked double-stranded 
DNA (dsDNA). This breaks the DNA into a series of blobs, the total volume of which gradually decreases 
as pulling continues. In parallel, we also twist the DNA to match the supercoil density of a bacterial 
chromosome. As a result, the DNA blobs will consist of supercoiled plectonemes (a shape of the DNA 
in which the two strands are intertwined). We stop the simultaneous pulling and twisting processes 
when the total volume of the blobs equals the target volume of the nucleoid inside the cell. Next, we 
‘sprinkle’ the chromosome with nucleoid-associated proteins. These stabilize the supercoiled DNA 
blobs as topologically independent structural units of the chromosome. Finally, we connect the two 
ends of the chromosome to make it circular, and then pack it tightly in the cell. For the simpler case of 
chains without supercoiling, the phase diagram in FIG. 1 provides a model for the close-packed organi-
zation and segregatability of the chains inside the cell. In general, supercoiling will only increase the 
tendency for chromosome demixing because of the branched structure that it induces. b | The con-
centric shell model predicts extrusion of the newly synthesized DNA (blue and red) to the periphery 
of the nucleoid15. The newly replicated DNA is extruded to the periphery of the unreplicated nucleoid 
(grey) and forms a string of DNA blobs in the order of replication, promoted by SMC (structural main-
tenance of chromosomes) proteins and other nucleoid-associated proteins. In our model, the  
two strings of blobs repel each other and drift apart owing to the excluded-volume interaction and 
conformational entropy.
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(a)! (b)! (c)!

origin of replication      !

Fig. 11 Organization of the bacterial chromosome into the nucleoid and coarse-grained polymer models of the chromosome: a simple
polymer (a) and bottle brush-like fiber (b)(c), modified from Ref.19 and Refs.,108,109 respectively. (a) The linear or ring polymer model of the
E. coli chromosome. Note that the mapping is not necessarily unique: the structural unit is interpreted as a blob in Ref.19 but as a monomer in
Refs.21,22 Also the size and number of units vary appreciably from reference to reference (see the text for details); so do the size and number
of monomers in the polymer model. (b) The bottle brush108 that models the Caulobacter chromosome consists of a backbone chain and side
loops (supercoiled plectonemes) emanating from the backbone; each plectoneme is formed by 35 monomers on average, with each monomer
13.7 nm in diameter and containing 434 bp of DNA. The resulting bottle brush consists of 9,274 monomeric units and is confined inside a
cell-mimicking, cylindrical space (which is 450 nm in diameter and 2500 nm in length). (c) Organization of a bottle-brush polymer in a
confined space. The backbone is helically organized for both linear (upper) and ring (lower) backbones. [(a) is adapted by permission from
Macmillan Publishers Ltd: Nat. Rev. Microbiol.,19 copyright (2010); (b) from Ref.108 Reprinted with permission from AAAS. (c) Copyright
(2012) by The American Physical Society.]
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grey scale in the panel. The resulting asymmetrical ring is
analogous to the sausage-like chromosome.

For new born-cells under slow-growth rates, containing sin-
gle sausage-like chromosomes, the measured nucleoid dimen-
sions range from 1.64µm× 0.48µm93 to 1.8µm× 0.8µm.94

These are somewhat different from the earlier measurement
of 1.39µm× 0.24µm ‡‡.27 Fast-growing cells are somewhat
larger and contain constantly-replicating chromosomes.105

In polymer chromosome models,19,21,22,44,92,94 such molec-
ular details as supercoiling and other activity of DNA-bound
proteins are often coarse-grained into monomers. The local
structure of a chromosome can be effectively influenced by
these molecular details, but its global property is expected to
be much less sensitive to the details. This is a distinguish-
ing feature of chain molecules1,3 and may justify the use of
a coarse-grained chromosome model (e.g., a polymer model).
Below we collect a few polymer models.

Perhaps, the simplest model amounts to coarse-graining the
structural unit as a monomer. The structural units are topolog-
ically constrained and can be approximated as impenetrable
spheres, as illustrated in Fig. 1(b), where the genomic length
DNA is organized into a string of many structural units or
monomers.21,22,30 (More realistically, one can use a circular
string of monomers. Also see Fig. 11(a) for an alternative
view of the structural unit.19) In this case, the size and number
of monomers will be set by the size and number of structural
units, as discussed above. The bending stiffness of double
stranded (ds) DNA is not a crucial parameter, since each struc-
tural unit contains many persistence lengths, each `p about 150
bp long.107 While the local stiffness of the DNA influences
how it interacts with proteins, its effect will not persist much
beyond `p. The resulting polymer model, ı.e., beads (struc-
tural units) on a string, with linear or ring topology, has been
used in a number of recent studies.21,22,44 It is unlikely that
the extended de Gennes regime will be realized for this, con-
sidering the overall spherical shape of each monomeric unit.

An obvious variation of the simple bead-string model is to
include explicitly cross-links between chain segments or non-
trivial chain topology induced by supercoling, as shown in
Fig. 1 (lower panel) and Fig. 11(b)(c) (see below for more
details). Indeed, the choice of a polymer chromosome model
should depend on the nature of questions one wishes to ad-
dress (e.g., “What is the role of cross-linking proteins in the
large-scale organization of chromosomes?”).

5.2 Spatial organization of bacterial chromosomes vs.
polymers

5.2.1 Single chromosomes–Fluorescence imaging tech-
niques showed that a single chromosome before the onset of

‡‡ As pointed out in Ref. 19, the nucleoid length 1.39 µm is somewhat smaller
than the population average 1.9 µm

DNA replication in a slowly growing E. coli cell is linearly
organized along the long cell length110–113 (with a stretch of
segments connecting the two poles of the packed chromo-
some). On the other hand, linear ordering of a chain molecule
in a cylindrical space is now obvious.19,21,22,44,114 In an ear-
lier study,21 linear ordering was observed for a ring polymer,
consisting of 200 monomers, trapped in a cylinder of diam-
eter D = 4.8 and length L = 28 (in units of monomer size),
as shown in Fig. 10; for these choices, L0 ≈ 41. As a result,
the aspect ratio L/D is about two times as big as expected for
the E. coli nucleoid. However, the degree of linear ordering
in this case should be comparable to what we would expect
from the following scaled-down case: a chain consisting of
100 monomers, trapped in a cylinder of diameter D = 4.8 and
length L = 14. Note that these choices fall in the acceptable
parameter ranges for the E. coli chromosome, if viewed as
beads (structural units) on a string. This analysis appears to
be consistent with the observation of linearly ordered E. coli
chromosomes.113

However, the onset of linear ordering will depend on sev-
eral molecular details including cross-linking (see the rele-
vant illustration in Fig. 1(a)) and tethering of the chromosome
to the cell membrane.19,23 As for a simple polymer inside
a closed cylinder, it is set by the single-length scale ζ‖, as
shown in Fig. 9. In our polymer picture, cross-linking between
proximate segments along the contour can be considered as
shortening ζ‖, diminishing the local positional fluctuation of
monomers. As a result, monomers will be more precisely po-
sitioned. Indeed, a recent computational study shows that the
introduction of cross-links at appropriate genomic positions
in an otherwise simple polymer improves the precision with
which loci are spatially distributed, similarly to what was ob-
served with the E. coli nucleoid.23

Along the line of discussions above, it is worth repeating
the intrachain organization analysis in Fig. 9(a) for a wider
range of polymer-cylinder parameters. What is clear is that
ζ‖ is smaller for smaller N (assuming L < L0, where L0 is ei-
ther Llinear or Lring). As a result, enhanced linear ordering by
cross-linking is analogous to reducing N in a linear or ring
polymer, in the sense that the onset of linear ordering starts
at a shorter length scale; in this case, a may have to be in-
creased, since each monomer now includes more molecular
details (more DNA segments and associated proteins).

In a recent work,92 a lengthwise (orderly) folding of adja-
cent DNA segments (clustering of proximate segments along
the contour more closely) is attributed to the linear ordering of
chromosomes and their segregation. (This is also reflected in
the illustration in Fig. 11(a).) In light of our discussion on ζ‖
above, we believe that this picture does not necessarily con-
tradict confinement-induced linear ordering. The lengthwise
folding can be considered as shorting ζ‖, which can also be
achieved by reducing N.
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Table 1 Miscibility vs. the aspect ratio r = L/D for N = 100 and D = 5. The data with r = 3 represent the E. coli chromosome better than
others. Confined chains segregate better with ring topology or for larger r.

chain topology aspect ratio r x = RF/D blob size ξ y = RF/ξ degree of overlap λ/L

linear

6

4.40

4.97 5.32 complete segregation
5 4.34 6.10 complete segregation
4 3.67 7.21 5% overlap
3 2.96 8.94 10% overlap
2 2.18 12.1 25% overlap

ring

6

4.11

4.97 3.51 complete segregation
5 4.34 4.02 complete segregation
4 3.67 4.75 complete segregation
3 2.96 5.90 3% overlap
2 2.18 7.99 10% overlap

Furthermore, a number of recent studies have revealed the
helical organization of bacterial chromosomes.93,95,115 A re-
cent computational study shows that a bottle-brush polymer,
as shown in Fig. 11(b), is helically organized in a confined,
cell-like space109; some of the main results are displayed in
Fig. 11(c). The observed helical organization is attributed to
the interplay between chain stiffening and intrachain packing
effects, both induced by side loops. Later, this model has been
used as a polymer model of the Caulobacter crescentus chro-
mosome.108

Each polymer model serves its purpose to some extent.
How these models are related with each other is, however, less
clear. Also, the applicability of each model remains to be clari-
fied. Further quantitative modelling of bacterial chromosomes
will be useful.

5.2.2 How they interact–One can use the diagram in
Fig. 9(c) to examine the miscibility of two chains (or chromo-
somes modelled as beads on a string) with varying cylinder-
polymer parameters, including those relevant for the E. coli
chromosome. First, recall RF = const.× 1.1N3/5 (const. = 1
for a linear chain and 0.79 for a ring) and ξ = φ−3/4 =[
N/π(D/2)2L

]−3/4.21 For N = 200, RF = 26.4. If we choose
D = 5, x = RF/D = 4.4. The blob size ξ and the fractional
overlap distance λ/L depend on the aspect ratio r. We find
that (i) for r = 5.6, ξ = 2.8, and λ/L = 15% (5%), (ii) for
r = 4, ξ = 2.2, and λ/L = 20% (10%), and (iii) for r = 3,
ξ = 1.8, and λ/L = 30% (20%), where (...) is the fractional
overlap distance for the corresponding ring polymer case.

To make this analysis more parallel with our earlier dis-
cussion on linear ordering (N = 100), in Table 1, we dis-
play the fractional overlap distance λ/L for various choices
of cylinder-polymer parameters. Compared to the N = 200
case, chain segregation is much enhanced in this case. In
other words, chromosomes segregate better if each of them is
packed into smaller N. For r = 3, the miscibility diagram sug-

gests 10% overlap for linear chains but 3% for ring polymers,
rather than 30% and 20%, respectively, for the correspond-
ing N = 200 case. Note that these parameters (both N = 100
and N = 200 with r = 3) fall in the acceptable range for the
E. coli chromosome, as discussed in subsec. 5.1. Also, it has
been shown that the presence of crowding agents can facil-
itate the spatial separation of (ring) polymers in a cylindri-
cal space.116 In an intuitive picture, the crowding effect can
be considered as either bringing the chains closer (enhancing
mixing) or compressing each chain into a more tightly packed
one (enhancing segregation).20 In a cylindrical space, the en-
tropy of crowders was shown to favor chain segregation.116

It appears that the E. coli chromosome is in the spontaneous
separation regime, more so for smaller N. Indeed, the de-
gree of segregation depends on the cylinder-polymer param-
eters (e.g., L/D, D/a, and N). For fixed L/a and D/a, a
smaller N value leads to a smaller λ/L value (better segre-
gation). This may explain much mixing (∼ 50%) in a re-
cent polymer-model analysis with longer chains, each con-
sisting of N = 1392 cylindrical monomers.94 In a recent re-
view,92 the aforementioned orderly folding of DNA segments
by various proteins is considered to be favorably implicated
in chromosome segregation. This assertion appears to be well
aligned with the observation that supercoiling or packing de-
fects lead to segregation defects (see Ref.92 and references
therein). However, the picture of orderly-folding as the driver
of chromosome segregation and the entropic picture are not
mutually exclusive. Along this line, we favor the argument
that the entropic segregation force offers a sense of direction-
ality for segregation,19 which we believe compliments and
even strengthens the other picture. Also, as noted earlier, for
larger N, chains mix better. Improper packing can be consid-
ered as enlarging N (weaker segregation). The main difference
is through ζ‖. Similarly to what we expect from cross-linking,
orderly-folding can be viewed as shortening ζ‖, thus enhanc-
ing both linear ordering and segregation (see Fig. 9).
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To further unravel chain segregation, a quantitative com-
parison between different polymer models and in vitro exper-
iments will be desirable. As a natural extension of the earlier
single-chromosome experiment,14 two chromosomes trapped
in a narrow pore can be compressed against each other or
manipulated osmotically, in the absence or presence of en-
zymes that act on the topology of DNA such as type II topoi-
somerase,117 which allows DNA strands to cross each other.
This will enable one to estimate entropic segregation forces,
similar to what was done with simple polymers,118 to under-
stand better the favorable roles of molecular crowding, or to
clarify to what extent chromosome segregation is kinetically
limited.

6 Conclusions and discussions

Thanks to much effort, a coherent picture of how polymer
chains behave under confinement has recently emerged from
a few approaches: the blob-scaling approach, Flory theory,
simulations, and experiments (see Sec. 2); if constructed with
caution, a Flory approach becomes consistent with other ap-
proaches. In particular, our review highlights polymer chains
as entropic objects. Confinement or a physical constraint can
modify polymer chains qualitatively, both single-chain statis-
tics and their segregation properties. It is our view that con-
finement primarily modifies single-chain properties by reduc-
ing their conformational space, which in turn influences the
way they interact and segregate (Sec. 4).

Closed cylindrical confinement is particularly intriguing,
since it combines both features of open-cylindrical and spher-
ical confinement. This is also relevant to modelling of the
bacterial nucleoid. In this case, the notion of blob-chain en-
tropy turns out to be useful for understanding chain segrega-
tion (Fig. 8(a)). By segregation, the chains can increase the
‘blob-chain’ entropy under the right conditions. This is unique
to chain molecules and is opposite to what we would expect
from a binary mixture of simple molecules. Furthermore, the
interdependence between single-chain statistics and chain seg-
regation has been established (Fig. 9).22 It corrects the ear-
lier scaling picture that linear ordering is required for entropic
chain segregation.7,8 Nevertheless the boundary between var-
ious regimes based on the scaling picture are consistent with
the numerical data.22

Also, there has been a growing interest in understanding the
favorable role of molecular crowding, once thought to be ‘ob-
vious but under-appreciated,’81 in organizing a chain molecule
especially under confinement (Sec. 3). Indeed the depletion
forces induced by molecular crowders are considered to be
the main player in condensing the bacterial chromosome.14,35

Furthermore, the results in Fig. 7 highlight the interplay be-
tween crowding and confinement effects. What remains to be
further explored is the physical origin of phase-coexistence

observed for bacterial chromosomes in a tube-like space.14

In chain segregation and compaction discussed here, en-
tropy is a determining factor (no energy is involved in our
athermal systems). In both cases, macroscopic ordering (e.g.,
segregation and phase separation) emerges from the tendency
to maximize microscopic randomness14 and is favored by the
entropy of blob-chains or crowders. Analogous phenomena
include the entropic ordering of rod-like molecules into a ne-
matic phase (see for instance Ref.3) and the electrostatic at-
traction between oppositely-charged molecules in solution119;
in the latter case, the entropy of the surrounding counterions
often dominates the electrostatic attraction between the oppo-
site charges.

A few polymer models have been employed to understand
quantitatively what was observed with bacterial chromosomes
(Sec. 5). In terms of simplicity, a linear or ring polymer model
is advantageous over others. Their single chain properties and
segregation have been well understood as detailed in this re-
view (see Fig. 9). Beyond the general pictures they offer, how-
ever, they have limitations, as discussed in Sec. 5. It will be
beneficial to explore more realistic polymer models of bac-
terial chromosomes (e.g., variations of cross-linked polymers
and bottle-brush models in the absence or presence of crowd-
ing agents), in concert with our understanding of the physi-
cal properties of chromosomes. Of particular interest is how
chromosome segregation is influenced by the presence of type
II topoisomerase.117 This effort will enable us to clarify to
what extent chromosome segregation is kinetically controlled.
Also beyond its impact on equilibrium chain organization dis-
cussed in Sec. 3, molecular or macromolecular crowding has
profound effects on the dynamics of macromolecules (as in
chromosome segregation). For instance, it is considered to
be implicated in the sub-diffusive motion of chromosome loci
in the (viscoelastic) bacterial cytoplasm.120 Quantitative mod-
elling of chromosomes will continue to find fascinating prob-
lems for polymer/soft matter physics.
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Fig. 12 A confined polymer in a confined and crowded space.
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