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A statistical model describing a fine structure of the intra-chromosome maps obtained by a genome-wide chromosome con-
formation capture method (Hi-C) is proposed. The model combines hierarchical chain folding with quenched heteropolymer
structure of primary chromatin sequences. It is conjectured that observed Hi-C maps are statistical averages over many different
ways of hierarchical genome folding. It is shown that the existence of quenched primary structure coupled with hierarchical
folding induces full range of features observed in experimental Hi-C maps: hierarchical elements, chess-board intermittency and
large-scale compartmentalization.

1 Introduction

Analysis of chromatin folding in human genome based on a
genome-wide chromosome conformation capture method1,2

provides a comprehensive information on spatial contacts be-
tween genomic parts and imposes essential restrictions on
available 3D genome structures. The experimental Hi-C maps
obtained for various organisms and tissues2–8 (some examples
are shown in the figures 1A-C) display very rich structure in a
broad interval of scales. The researchers usually pay attention
to the average contact probability, P(s), between two units
of genome separated by a genomic distance, s, which decays
in typical Hi-C maps approximately as P(s)∼ 1/s (see2 and
Fig.1D.

Apart from the averaged contact probability decay, the Hi-
C maps show very rich fine structure behavior. The important
features of the maps include (see, e.g. the inset in the Fig.1C):
i) elements of a hierarchical structure on small scales8, ii)
chromosome compartmentalization on large scales, and iii) the
chess-board intermittency in the color intensity25.

Theoretical models of chromatin packing in the nucleus,
which can possibly explain the observed behavior of intra-
chromosome Hi-C contact maps, split roughly split into two
groups. The first group of works relies on specific interac-
tions within the chromatin, like loop or bridge formation,9–15,
while the second group aims to explain the chromatin structure
in terms of large-scale topological interactions2,16–23 based
on so-called ”fractal” (or ”crumpled”) model of the polymer
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globule24.
In view of presence of these competing theories, it seems

very important to understand which experimentally observed
phenomena can possibly be understood within each of them.
In this paper we assume the crumpled globule approach and
study how much the observed fine structure of Hi-C maps can
be reproduced within this formalism. In particular, for the
first time, to the best of our knowledge, we show that all the
main features of the fine structure of Hi-C contact maps can be
naturally obtained within the heteropolymer crumpled globule
framework, where one can avoid specific biological details,
and stick mainly to basic principles of statistical physics of
disordered systems. Although the results presented below are
mainly qualitative rather than quantitative, we believe that the
presented approach can be refined to make our theory more
system-specific. Our goal is to develop a ”bottom-up” theory:
starting from the very basic physical principles, we construct a
simplest possible model, study its behavior, and by comparing
with real systems, get some insight into how the real biologi-
cal system might work.

The crumpled globule is a state of a polymer chain which
in a wide range of scales is self-similar and almost unknot-
ted, forming a fractal space-filling-like structure. Both these
properties, self-similarity and absence of knots, are essen-
tial for genome folding: fractal organization makes genome
tightly packed in a broad range of scales, while the lack of
knots ensures easy and independent opening and closing of
genomic domains, necessary for transcription16,18. In a three-
dimensional space such a tight packing results in a space-
filling with the fractal dimension D f = D = 3. The Hi-C con-
tact probability, Pi, j, between two genomic units, i and j in
a N-unit chain, depends on a combination of structural and
energetic factors. Simple mean-field arguments (see, for ex-
ample,2) demonstrate that in a fractal globule with D f = 3 the
average contact probability, P(s) = (N−s)−1 ∑N−s

i=0 Pi,i+s, be-
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Fig. 1 (Color online) A-C: Samples of Hi-C maps (chromosomes 3
(A), 7 (B), and 13 (C), data provided by M. Imakaev), the color
encodes the contact probability between genome fragments, each
pixel corresponds to 40kb genome length; D: Contact probability
decay in doubly-logarithmic coordinates for the same Hi-C maps (s
is the genomic distance form the main diagonal of a map) compared
with 1/s power law.

tween two units separated by the genomic distance s = |i− j|,
decays as P(s)∼ s−1. It should be noted that recent numeric
simulations22,27, and more sophisticated arguments beyond
the mean-field approximation19,20, point out that the contact
probability decays as P(s)∼ s−γ with γ ≃ 1.05−1.09. This
refinement can be easily taken into account in our approach,
however in this paper we neglect it, since the slight deviation
of γ from 1 goes beyond the accuracy of the simplest model
considered in the present work.

Combining the assumption that chromatin can be consid-
ered as a heteropolymer chain with a quenched primary se-
quence28, with the general hierarchical fractal globule folding
mechanism, we are able to reproduce the large-scale chromo-
some compartmentalization, not assumed explicitly from the
very beginning. To show the compatibility of the hierarchical
folding of a crumpled globule with the fine structure of exper-
imentally observed Hi-C maps we suggest a simple toy model
based on the crumpled globule folding principles.

The paper is organized as follows. In the Section 2, to
make a content of this paper as self-contained as possible, we
highlight the basic concepts of the crumpled (fractal) globule
formation and propose the new model of heterogenous Hi-C
maps, which is analyzed in the Section 3. In the Section 4
we discuss the obtained results and speculate about possible
developments of the proposed approach.

2 Heteropolymer crumpled globule

2.1 Basic principles of a crumpled globule formation

At high temperatures, i.e. in a good solvent, a polymer of
N segments, each of length a, is a strongly fluctuating coil
without a well-defined thermodynamic state. At temperatures
below the θ -point (i.e. in a poor solvent), a polymer chain
collapses into a weakly fluctuating, drop-like globule of size
R ∼ aN1/3. In an ordinary globule, where the topological
constraints are not taken into account, all subchains of length
l = as, for s ≥ N2/3, appear as mutually entangled Gaussian
coils, since volume interactions are screened in the melt, ac-
cording to the Flory theorem29. However, in presence of topo-
logical constraints (especially for unknotted ring polymers),
the globular state is essentially different. Forbidding knotting,
one creates favorable conditions for the fractal globule forma-
tion with self-similar hierarchically folded crumples (folds),
almost unknotted on all scales (see24 for an original idea,30

for a mathematical background, and21,22 for recent extensive
numeric investigations).

The collapse of a polymer into a crumpled globule state may
be elucidated by the following imaginative hierarchical pro-
cess. At the initial stage, there exists a certain length, g∗ =
Ne/(a6ρ2) (Ne is the so-called the ”entanglement length”, and
ρ is the globule density), such that the chain parts of the
order of g∗ collapse, constituting the ground-level (0-level)
folds, which we denote as ”units”. Then, the chain segments,
containing several consecutive units, collapse again, form-
ing space-filling 1st-level folds; they in turn form 2nd-level
folds, etc. The described process produces a hierarchy of folds
(crumples), and ends when all g∗-link units are collected in a
single (largest) fold – see the Fig.2a.

A B
λ=3

2 3 7 81 4 65

=2

=1
g*

=3

λ

λ

λ=1λ =2λ
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00 01 10 11

011

Fig. 2 (a) Schematic representation of few sequential stages of a
hierarchical polymer folding and topological organization of
hierarchically embedded crumples (folds); (b) Encoding of a
position of a particular chain unit (the point A) in a set of folds by a
descending path on a Cayley tree from a root (the point O) to the
point A.

Recent extensive numeric simulations of collapsed unknot-
ted polymer ring in a confining box22, have demonstrated
some differences between a non-equilibrium structure ob-
tained immediately after a polymer collapse (called in2 a
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”fractal” globule) and equilibrium topologically constrained
globular polymer ring (called in24 a ”crumpled” globule). To
make the content of the paper consistent with other works, we
use below the name ”crumpled globule”.

2.2 Model of a heteropolymer crumpling

In a hierarchically folded macromolecule position of each unit
is characterized by a set of indices specifying to which partic-
ular 1st-level fold (embedded into particular 2nd-level fold,
etc) this unit belongs. In a simplest case when each new fold
on hierarchical level λ consists of p = 2 folds of preceding
level λ −1, the hierarchy of folds can be visualized by a Cay-
ley tree, where the indexing is encoded by a path on the tree.
Namely, associating binary numbers 0 and 1 to the left and to
the right descending branches of a Cayley tree, respectively,
as shown in Fig.2b, one can encode the ”coordinate” of some
point A located in a terminal leaf in a binary sequence (011 in
this particular case). This encoding provides a complete infor-
mation how one can reach this point A from the root O of the
tree and completely characterizes the position of a chain unit
A in a set of crumples depicted in the Fig.2a.

Thus, the boundary nodes (leaves) of the Cayley tree con-
stitute a ”space of states” for the chain units, and each subtree
corresponds to a particular fold. The number, p, of downward
Cayley tree branches (p = 2 in the Fig.2b), defines the number
of λ -level folds embedded into one fold of the next hierarchi-
cal level, λ +1 (we assume here that p is level-independent).
It is convenient to choose the length of an elementary unit l
such that l p = g∗, so the smallest fold consists of p elemen-
tary units. Then each λ -level crumple contains pλ units.

The regularity of the hierarchy assumed above (one and the
same value of p for all folds) is, of course, a rough oversimpli-
fication which we use here to construct the simplest possible
toy model of hierarchical crumpling. Anyway, we believe that
a regular tree model is still more realistic approximation to
the description of a DNA hierarchical folding, than a random
compactification without any reference to the hierarchy. Let
us emphasize that the representation of the crumpled globule
in terms of hierarchy of folds a priori does not capture the
information about the volume interactions. However the ex-
cluded volume effect can be easily taken into account via the
scaling dependence between the size of the crumple and the
number of chain units in this crumple (see Eqs.(3) and (7) for
details).

Now, after defining the set of folds as the hierarchically or-
dered tree, we need to specify how exactly, in which order, the
chain itself fills these folds. By specifying this, we are able to
combine the hierarchical geometry of folding with the linear
geometry of the underlying chain. We assume that the chain
fills the folds consequentially, but it has a freedom to choose
the specific unit at which the folding begins. We can eluci-

date this by the following example shown in the Fig.3 for a
periodic structure. Starting, for instance, with the fragment
1, we can unite fragments 1 and 2 in one fold of the level
λ = 1, and do the same for the pairs [3,4], [5,6], [7,8],... On
the level λ = 2 we thus have

[
[1,2], [3,4]

]
,
[
[5,6], [7,8]

]
, ...

etc. However, when starting, say, from the fragment 4, we get
hierarchical crumples [4,5], [6,7], [8,1], [2,3],... on the level
λ = 1,

[
[4,5], [6,7]

]
,
[
[8,1], [2,3]

]
,... on the level λ = 2, etc.

If all chain fragments are identical, all different possibilities of
folding are equiprobable and this ambiguity leads to smearing
of the hierarchical structure in the ensemble averages since
there is no any preferred secondary structure. However, for
a heteropolymer chain, the energies of direct contact inter-
actions are fragment-dependent, and different foldings attain
statistical weights depending on which specific units are in di-
rect contact. This could remove the statistical degeneration
of folding configurations in the ensemble averaging making
some structure significantly preferred to others.
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Fig. 3 A: Tree-like organization of crumples in a hierarchical
folding; B: Hierarchical Parisi matrix of contact probabilities
corresponding to space of states in A; C: Sample of quenched
heteropolymer sequence with different types of units; D: The same
as in C, but with the contacts between chain units and the ”outer
space”, designated by open circles; F: Different translations are
enumerated by the parameter m f ; G: Matrix of contact energies for a
given primary structure; G: Composite weights of states obtained by
superposition of matrices B and E – see (2).
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Chromatin fiber (i.e., the complex of DNA and histone pro-
teins) is a rather rigid object and can be presented as a se-
quence of renormalized monomers with an effective size of
order of kilobases. Naı̈ve guess would be to assume that the
interaction constants between these renormalized monomers
are quenched random variables with, say, a Gaussian distri-
bution (compare31). However, the observed chessboard in-
termittency in the contact probabilities typical for Hi-C maps
(see Fig.1) dictates a different point of view: it seems that
the quenched interactions are clearly bimodal (multimodal in
general), and it is more natural to model the heteropolymer by
a quenched sequence of monomers of several distinct types.
This assumption is supported by recent data on the variations
in behavior of different chromatin types28 and has been used
lately in description of structure formation in bridge-stabilized
models of chromatin14,26. In what follows we use the simplest
option and model the chromatin by a sequence of two different
units which we denote A and B. The chessboard intermittency
of darker and lighter regions in contact maps is modelled by an
Ising-type energy cost, Ei, j, associated with the spatial contact
between two units i and j:

Ei, j =

{
−1, if i and j are of same type (A-A or B-B)

−u, otherwise (A-B)
(1)

where 0 ≤ u ≤ 1 is the ratio of the energies of favorable and
unfavorable contacts (henceforth we use the energy of a favor-
able contact as the energy unit).

The probability Pi, j of a contact between ith and jth units
of a hierarchically folded heteropolymer chain depends on the
generation, λi, j, of the minimal common fold both these units
belong to, and on the units types. We define the corresponding
statistical weight of the i j contact as

wi, j(λ ) = e−βEi, j Pstr
i, j +(1−Pstr

i, j ), (2)

where Ei, j is the contact energy (1) between the units i and
j, Pstr

i, j is an a priori (structural) contact probability between
two units imposed by the hierarchy of folds, β is the inverse
temperature, and the non-contact energy is assumed to be 0 by
definition. The structural probability is a function of λi, j, and
if folding is space-filling, then the mean-field expectation is

Pstr
i, j ∼V−1(λi, j)∼ p−λi, j , (3)

where V (λi, j) is the volume of the fold, which, for the space-
filling folding, is proportional to the number of units in it. The
proportionality coefficient in the r.h.s. of (3) can be absorbed
into the definition of Ei, j. Thus, without the loss of general-
ity, Pstr

i, j = p−λi, j . Note that this result relies on the confor-
mation being space-filling: generally speaking, one expects
Pstr

i, j = p−αλi, j with α < 1 for significantly overlapping folds
(this case is unphysical in the N → ∞ limit as it does not re-
spect the excluded volume constraint), and α > 1 for a spongy

globule with voids. In the Fig.3B,E we depict a Parisi-type hi-
erarchical matrix P with elements Pstr

i, j and a matrix E with ele-
ments Ei, j for some particular chain with a quenched monomer
sequence.

To introduce averaging over realizations we proceed as fol-
lows. Take a polymer chain with a given quenched sequence
of units and consider all possible ways to fold it into hierarchi-
cal structures. Since in our model the geometry of the tree of
folds is fixed, and the chain fills all folds sequentially, there is
only one possible way to alter the folding structure from one
realization to the other, that is to change the position of the first
elementary unit at the tree boundary, see Fig.3F. This change
of the starting position induces a cyclic shift of monomers
along the boundary: i → i + m (mod pλmax), i = 1,2, ...,N,
where N is the chain length. The parameter defining a par-
ticular folding configuration, is the shift m. In the Fig.2F the
samples corresponding to m = 0 and m = 3 are shown.

Now, one can self-consistently define the weights of partic-
ular hierarchical foldings. Assume that all contacts within a
given folding are formed independently (i.e. all correlations
in contact formations are already encoded in the underlying
tree structure). The total folding weight can be written as a

product of individual weights, W (m) = ∏pλmax

i, j=1 wi, j(λ |m). The
weights wi, j (i, j = 1..N < pλmax ) are given by (2). One should
make an additional assumption about the weights of the con-
tacts between chain folds and the ”outer space”, i.e. of the
chain parts surrounded by other molecules designated by open
circles in the Fig.3D. Since the chain folding happens in a nu-
cleus within a crowded environment, one assumes that these
open circles are effectively filled by the units of other chromo-
somes. To account for that, we introduce a mean-field inter-
action between units of the chain under consideration and the
”average” units of outer chains similar to (2), but here j > N:

Ei, j =

{
−q−u(1−q), if i is of type A

−(1−q)−qu, if i is of type B
(4)

and q is an average fraction of monomers of type A. The total
partition function accounting for all folds, reads now

Z =
pλmax−1

∑
m=0

W (m) (5)

The probability for each pair of units, i and j is, as usual in
equilibrium statistical mechanics,32

Pi, j =
N−1

∑
m=0

W (m)

Z
×

e−βEi, j Pstr
i, j (m)

e−βEi, j Pstr
i, j (m)+(1−Pstr

i, j (m))
, (6)

where the first term defines the thermodynamic probability of
a particular hierarchical folding realization, and the second
term explicitly encounters for the contact probability of this

4 | 1–8

Page 4 of 8Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



particular folding. The values of Pi, j given by (6) are the con-
tact probabilities that should be compared with the results of
Hi-C measurements for intra-chromosome contact maps.

In the high-temperature limit, i.e. for β → 0, one has wi j =
1 as it follows from (2), and all Pi, j are just the averages of
Pstr

i, j over cyclic permutations of indices along the Cayley tree
boundary. Being averaged, all Pi, j depend only on s = |i− j|,
and in the limit N ≫ 1 they are P(s = |i − j|) ∼ s−1. To
get this scaling, consider the values of P(s) for s = pm, m =
0,1,2.... Let also N be the power of p, i.e. assume that N =
pM . Then

P(pm) =
N

N −1

M−m

∑
i=1

(1− p)
pi

1
p(i+m)

≃C p−m (7)

where C = [p2(1 + p)]−1. The last equation is valid for
(M−m)≫ 1. Since pm = s, we get P(s)∼ s−1, which is the
consequence of the ”space filling” supposition. Namely, any
crumple contains only nearest-neighboring monomers along
the chain. This guarantees that in the volume occupied by the
crumple there is no space to place monomers from other parts
of the chain. This is the consequence of the space-filling sup-
position: the crumple of hierarchical level m has the volume,
which is pm times the volume of initial unit, and simultane-
ously, the crumple contains exactly s = pm neighboring along
the chain initial units. This assumption reproduces (at least
for β → 0) average the dependence of the contact probability,
P(s) ∼ s−1. Note, that to reproduce the scaling P(s) ∼ s−γ

with γ ≃ 1.05−1.09 for the averaged contact probability, mea-
sured in real Hi-C contact maps and numerical simulations
for fractal globules (see the Introduction for the references)
one should tweak with (3) by substituting λi, j → γλi, j, which
would suggest that the fold of hierarchical level λ contains
more than pλ elementary units.

Summing up, the input of our model consists of a het-
eropolymer primary monomer sequence, and three numerical
parameters: (i) the number of subfolds, p, embedded in each
fold of the hierarchy (this parameter, though being quantita-
tively important, does not influence the qualitative appearance
of the resulting structure of Hi-C maps), (ii) the ratio, u, of
contact energies AB to that of AA/BB, and (iii) the inverse
temperature, β , which essentially regulates the uniqueness of
folding: for β → 0 all foldings are equivalent and equally con-
tribute to the resulting probability, while for β → ∞ the fold-
ing with the lowest energy give the dominant contribution to
contact probabilities.

3 The results

In the Fig.3 and Fig.4 examples of contact maps generated
by our model are shown. To demonstrate the influence of
a monomer composition on the contact probability, we have

generated random Markovian heteropolymer sequences of
N = 150 monomers with varying average block lengths (av-
erage lengths of blocks A and B are equal, thus the average
fraction of units ”A” is q = 0.5). The parameters u = 0.25,
β = 0.25, and p = 2 are the same for all three sequences. One
sees that the resulting contact maps are essentially sequence-
dependent, while the averaged contact probability decay plot-
ted in the Fig.3D as a function of the genomic distance, s, still
approximately follows the 1/s power law for all selected se-
quences.
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Fig. 4 (Color online) A-C: Dependencies of contact probability of
the hierarchical fractal globule on the primary sequence (N = 150)
for different realizations of primary sequences and fixed u = 0.25,
β = 0.25 and p = 2; the average length of blocks is 10 for (A), 3.33
for (B) and 12.5 for (C); D: Averaged contact probability for
sequences in A-C compared to the 1/s plot.

In the Fig.4A,B and C we demonstrate the influence of
β on the contact probability maps for a fixed heteropoly-
mer chain of length N = 150 with average block length 12.5
and u = 0.25. One sees the sequential degradation of the
block-hierarchical structure with increasing temperature. The
Fig.4D shows that the averaged contact probability is almost
temperature-independent.

It should be emphasized that the experimental Hi-C contact
map for a particular chromosome (as shown in the Fig.1) rep-
resents the averaged contact map over the ensemble of differ-
ent (about millions) chain foldings. By inspecting experimen-
tal Hi-C maps, corresponding to different chromosomes, one
can note that the hierarchical structure is not always promi-
nent: for some chromosomes it is clearly seen, while it is
smeared for others. We suggest that the manifestation of hier-
archical structure is deeply connected (within the framework
of the fractal globule concept) with the uniqueness of chro-
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Fig. 5 (Color online) A-C: Dependencies of contact probability of
the hierarchical fractal globule on the inverse temperature β for fixed
initial sequence of N = 150 monomers, with u = 0.25 and p = 2, A:
β = 1, B: β = 0.25, C: β = 0.1; D: Comparison with 1/s plot.

matin folding: if for a given quenched primary sequence, the
hierarchies of folds are arranged similarly in different folding
realizations in ensemble, then the block-hierarchical structure
(typical for each realization), is clearly seen, while if the folds
are arranged differently from one realization to the other, the
hierarchical structure is smeared out due to the degeneration of
corresponding Boltzman weights of particular foldings), how-
ever the 1/s-decay of an average contact probability holds. In
particular, we have demonstrated that combination of the hier-
archical heteropolymer structure of a single folding with aver-
aging over different foldings reproduces the typical behavior
of experimentally observed Hi-C maps.

We conjecture that smearing of contact maps of individ-
ual chain foldings plays the same role as an overlap of
replicas in statistical theory of random heteropolymers with
quenched primary sequences33. To make this connection
more profound, recall34 that in a spin glass the overlap of
two pure states α and β is characterized by the matrix qαβ =

N−1 ∑N
i=1 mα

i mβ
i , where mα

i (or mβ
i ) is the magnetization of

the state α (or β ) at a point i. The probability, Q(q), to
have an overlap q for any pair of states α and β in the sys-
tem, is Q(q) = ∑α,β Qα Qβ δ

(
q−qαβ ), where Qα is the prob-

ability of the state α . Along the same lines, it is natural
to introduce an ”overlap”, q, of two different adjacency ma-
trices (individual contact maps), Pα (consisting of elements
Pα

i, j) and Pβ (consisting of elements Pβ
i, j) for hierarchically

folded chain with fixed primary sequence in the ensemble of

M such matrices∗. The overlap q can be defined as a ”scalar
product” of a pair of matrices, averaged over the ensemble,
namely, q = M−1 ∑α ̸=β

⟨
PαPβ

⟩
. The ”scalar matrix prod-

uct”,
⟨
PαPβ

⟩
, can be constructed using the so-called ”singular

value decomposition”35, meaning that the matrix Pβ is eval-
uated in the basis of the matrix Pα . Certainly, constructing
of such an overlap, q is accessible still only in the numerical
simulations on model systems. The corresponding work is in
progress.

4 Discussion and perspectives

Fine structure of contact probabilities observed in the model
is reminiscent of that obtained in the experimental Hi-C maps
– compare Figs. 3 and 4 with Fig.1. Note that the com-
partmentalization in our maps (i.e., large-scale block struc-
ture) is induced by the quenched primary sequence on a much
smaller length scale (contrary, e.g. to14 where compartmental-
ization is dictated by the heteropolymer structure of the chain
on the very same lengthscale). Indeed, the configuration of
large-scale blocks is highly disorder-dependent. In absence of
any disorder all folding configurations have equal Boltzmann
weights (i.e. are degenerated), so the average contact proba-
bility decays gradually as 1/s with genomic distance s. Cer-
tainly, the model proposed here is a mere caricature of a real
situation: the number of possible ways of folding in our model
grows linearly with the chain length, while it is bound to be
exponential in real life, where the hierarchical folding mecha-
nism accounts for intrinsic randomness. However, we believe
that the main result, i.e. the emergence of fine structure due to
the interference of many folding configurations with different
statistical weights, will persist.

To summarize, in this paper we have proposed a statisti-
cal model which reproduces principal features of experimen-
tally observed Hi-C maps. We took into consideration the het-
eropolymer structure and combined it with the hypothesis of
hierarchical chromatin folding. We tried to avoid the specific
biological details, sticking mainly to basic principles of sta-
tistical physics of disordered systems. Such a description, be-
ing less informative for concrete biological systems, allows us
to conjecture the generic mechanism behind the fine structure
of Hi-C maps and could be considered as a complimentary
to the probabilistic refinement of Hi-C experiments developed
recently in36.

We have assumed that each single chromosome conforma-
tion is hierarchically folded with its own contact map. Con-
sidering the ensemble of different chain foldings for a given
quenched primary sequence, and putting all particular contact

∗Let us emphasize that the contact maps obtained in Hi-C experiments are
the averages over ensemble of ∼ 107 different folding realizations for fixed
primary sequence.
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maps on top of each other, we predict two typical scenario:
(i) if the primary heteropolymer sequence dictates the typical
(unique) folding, then the hierarchical structure is clearly seen
in experimental Hi-C contact maps, however (ii) if the pri-
mary sequence does not dictate the typical folding, the block-
hierarchical structure of experimental Hi-C contact maps is
smeared out. We should emphasize the crucial importance of
quenched disorder in primary sequence: just due to the pres-
ence of disorder, different ways of chromatin folding in our
model have different energies and different statistical weights.
In absence of disorder (i.e. for a homopolymer chain) or at
high temperatures all possible folded structures would have
the same energy, and after averaging over all states the contact
maps will be plain gradient maps with contact probability de-
pending only on the genomic distance between the chromatin
fragments.

Besides, we see that in our model the largest compartments
get smeared the least, because the shift in the position of
largest fold corresponds to the largest energy barrier. We be-
lieve that the hierarchical compartmentalization of chromo-
somes into large domains, widely observed in experiments
is facilitated by a collective effect of many similar micro-
scopic monomer-monomer interactions of heteropolymer pri-
mary structure folded as a fractal globule. In connection with
that, it would be very interesting to check if there is a corre-
lation between the chromosome function and the manifesta-
tion of block-hierarchical structure of Hi-C intra-chromosome
contact maps.
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