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Abstract 

Tap density of a granular powder is often linked to the flowability via Carr Index that measures how tight a powder can be 

packed, under an assumption that more easily packed powders usually flow poorly. Understanding how particles are packed is 

important for revealing why a powder flows better than others. There are two types of empirical equations that were proposed to 

fit the experimental data of packing fractions vs. numbers of taps in literature: The inverse logarithmic and the stretched 

exponential. Using the rate process theory and the free volume concept under the assumption that particles will obey similar 

thermodynamic laws during the tapping process if the “granular temperature” is defined in a different way, we obtain the tap 

density equations and they can be reducible to the two empirical equations currently widely used in literature. Our equations 

could potentially fit experimental data better with an additional adjustable parameter. The tapping amplitude and frequency, the 

weight of the granular materials, and the environment temperature are grouped into this parameter that weighs the pace of 

packing process. The current results, in conjunction with our previous findings, may imply that both “dry” (granular) and “wet” 

(colloidal and polymeric) particle systems are governed by the same physical mechanisms in term of the role of the free volume 

and how particles behave (a rate controlled process).  

 
Keywords: tap density; powder; rate process theory; free volume theory.   

 

1. Introduction 
 

Granular powders have been widely used in many practical areas spanning from pharmaceutical, 

nutritional, food, and engineering industries. Tap density of a granular powder is often linked to 

the flowability via Carr Index that measures how tight a powder can be packed, under an 

assumption that more easily packed powders usually flow poorly. The Carr index is proposed for 

estimating the relative importance of particle interactions and the flowability of powders
1
, with a 

simple calculation of ����	����	 = 100
1 − ��/���, where �� is the freely settled bulk density 

and �� is the tap density of a powder. Apparently, for an easily packed powder, the difference 

between ��  and ��  will be large and the Carr index will be large, too; This type of powders 
usually will have a poor flowability due to strong inter-particle interactions. In contrast, a small 

Carr index typically indicates that powders will likely have a good flowability. Understanding 

how particles are packed is thus important for revealing why a powder flows better than others 

and how we can handle powders properly during powder processing and manufacturing.  

 

Packing problem is a very fundamental and intriguing issue for pure liquids, colloidal 

suspensions, and granular powers.  In 1940, the hole theory of liquids was proposed and a liquid 

was considered as a continuum with a lot of holes and the number of holes was comparable with 

the number of particles in the liquid
2
. This theory is still used nowadays for explaining viscosity, 

compressibility, and thermal conductivity of various liquids
3,4
. In parallel, the lattice theory of 

liquids was also developed under an assumption that a liquid could be considered as quasi-
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2 

 

crystalline and the geometry of each molecules and the formed microstructure with neighboring 

molecules play a critical role in physical properties of liquids
5,6
. Again, the packing structure of 

liquid molecules was assumed to be responsible for viscosity. The rich viscosity phenomena of 

both polymeric solutions and melts could be explained very well with the packing structures of 

polymer chains
7
, much larger molecules than that of liquids. For colloidal suspensions, the 

particles could form all kinds of structures similar to what we observed in crystalline and 

amorphous solids
8-10
, and the viscosities of colloidal suspensions could be well understood with 

the packing structures and the free volume available in the systems
7
. For granular powders, the 

particle packing structures become even more critical in powder flowability, as the powders 

could change from a free flowing state to a totally jammed state
11, 12

. The packing structure of 

particles is well summarized in a monograph by Cumerland and Crawford
13
 and the 

configurations of jammed particle packing are excellent analyzed by Torquato and Stillinger
14
. 

How the particles pack in a system apparently has a big impact on the physical properties of 

liquids, colloidal suspensions, and granular powders.   

 

Besides the packing structure that scales the occupied area in a system, the unoccupied free space 

available in a system would be equally important, too, especially when an external excitation is 

applied to the system like temperature variation or an external field like a mechanical or an 

electric field. The packing structure could easily change from one to another, dependent on how 

much unoccupied space is available when particles need to relax or re-orientate under external 

stimulations. The available unoccupied space in a system is typically called “free volume”, 

which has been widely used to determine the various equilibrium properties of both solids
15
 and 

liquids
6, 16

. For example, the free volume theory has been successfully used to explain the 

location of the melting transition
17
, the glass transition temperature of polymers

18
, determination 

of elastic constants of small molecules like pentamers
19
, the viscosities of colloidal suspensions 

and polymeric solutions and melts without an external electric field
7
, and the yield stress of 

electrorheological fluids with an external electric field
20
.   

 

The bulk density of granular powders has been found to change with the number of taps applied 

to whole powder systems. There are many works addressing granular packing with a variety of 

tapping methods
21-26

, typically employing vertical mechanical vibrations of different types of 

motions like simply pulsed or sinusoidal movements, sometime even under the influence of a 

magnetic field if particles are paramagnetic. A heuristic logarithmic law is proposed by Knight
25
 

based on the tapping experimental data of mono-dispersed 2 mm glass beads and shown below: 

 







 ++

−
−=

τ

φφ
φφ

n
B

m
m

1ln1

0                                                          (1) 

 

Where φ0  is the initial particle volume fraction, φm is the maximum packing fraction, n is the 

number of taps, and  B and τ are two constants dependent on the tapping amplitude, frequency, 
size of tube, particle sizes and shape, etc.. Eq. (1) is frequently called Chicago inverse 

logarithmic law. Using the free volume concept, Boutreux and de Gennes
27
 theoretically 

developed a tap density equation very similar to Eq. (1). They assumed that the particle fills into 

the free volume available for an individual particle during tapping process. The possibility of any 
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free volume per particle larger than the individual particle volume 
3

4 3r
Vip

π
=  may be expressed 

with the Poisson’s distribution and the final equation they obtained is: 

 

 

m

m
m

nn lnln

2

+
−=

φ
φφ                                                           (2)  

 

Where nm is a constant that roughly tells us how many taps needed to reach a steady-state tap 

density. Several researchers indicated that the inverse logarithmic law may fit the data at the 

beginning of tapping process but fail to correctly fit the data at the final tapping process up to the 

steady-state plateau 
26, 28

. A stretched exponential law that is often used as a phenomenological 

description of relaxation in disordered systems is found to better fit the experimental data 
28
 with 

the following form: 

 
 



















−−−=
β

τ
φφφφ

n
mm exp)( 0                                          (3) 

  

Where β is a number of order 1, the stretching of the exponential.  Knight 
25 
found that their data 

can be fitted with Eq. (3), too, though the inverse logarithmic law gives a better fit. However, 

Vandewalle
26 
pointed out that both laws have limitations if they were used to fit their data. 

Therefore, there is a need for new equations that may work better for granular powder tapping 

process. 

 

In this article, we will use the free volume concept and rate process theory with additional 

assumptions to derive tap density equations. We will address the inverse logarithmic law first 

and the stretched exponential law afterwards. The comparisons between newly derived equations 

and the currently widely used empirical equations are provided. The performance of newly 

obtained equations is evaluated in fitting experimental tap density data.   

 

2. Theory 
2.1  Inverse logarithmic law 

 

Let’s consider a simple granular system with initial particle volume fraction φ0, volume Vs, and 

maximum packing fraction φm. After the granular system is tapped for n times, the particle 

volume fraction is changed from φ0 to φ. Since both φ0 to φ are smaller than φm, there is free 

volume existing in the system and unoccupied by particles. The free volume in a system of 

particle volume fraction φ may be expressed as: 
 

)( V s φφ −= mfV                                                    (4) 

 

At the beginning of a tapping process, the initial particle volume fraction is φ0, thus the free 

volume may be expressed as 
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)( V 0s0 φφ −= mfV                                                             (5) 

 

We may consider the tapping process as a rate process
29
 and treat the number of tapping n as a 

continuous variable, if we treat the particles during tapping processes similar to the 

thermodynamic laws controlled entities and the “granular temperature” is related to the external 

mechanical excitations and has nothing to do the regular temperature. The tapping process rate 

constant k may be related to how the free volume of a granular system decreases with the number 

of taps, therefore one may assume: 

 

00

)(

φφ
φφ

−
−

==
m

m

f

f A

V

V
Ak                                                (6) 

 

Where A is a constant, dependent on the tapping amplitude and frequency, the weight of 

powders, particle size distribution and so on. We may further assume that the change of particle 

volume fraction with the tap number n is directly proportional to the available free volume per 

unit volume in the system, as the more free volume the system has, the faster the particle volume 

fraction will increase. In contrast, we know that the particle volume fraction increase will be 

much slower at the end of the tapping process when the tap density approaches to a plateau 

region. Therefore, the change of particle volume fraction with the number of taps should be 

inversely proportional to the number of taps, with a fast pace at low tap numbers but a slow pace 

at high tap numbers. Suppose that for reaching a steady-state tap density, the maximum number 

of taps, nm, is required to make the particle volume fraction very close to φm. Thus )/( mnn may be 

used to scale how close the number of taps is, in comparison with the final tap numbers, nm. So 

the change of particle volume fraction with the number of taps should inversely proportional to 

)/( mnn instead of the number of taps, n. With those assumptions, one may easily write: 

 

m

m

nn
k

dn

d

/

)( φφφ −
=                                                                      (7) 

 

Note that the free volume per unit volume is used in above equation. Since n is treated as a 

continuous number, for avoiding n=0 and Eq. (7) becoming invalid, one may use )1/( +mnn  to 

replace mnn / and re-write Eq. (7) as: 

 

1/

)(

+
−

=
m

m

nn
k

dn

d φφφ
                                                                    (8)  

 

Substituting Eq. (6) into Eq. (8) and re-arranging yields 

 

1/)(

)(
2

0

+
=

−
−

mm

m

nn

dn
d

A
φ

φφ
φφ

                                                        (9) 
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Integrating both sides within the volume fraction range (φ0, φ) and using the boundary condition 
(n=0, the particle volume fraction is φ0, and n=n, the particle volume fraction is φ) yields: 
 









+=−

−
−

1ln1
)(

)( 0

wmm

m

n

n

n

A

φφ
φφ

                                                      (10) 

 

Re-arranging Eq. (10) yields  

 









++

−
−=

mm

m
m

n

n

n

A
1ln1

0φφ
φφ                                                         (11) 

 

Eq. (11) has an exact form as Eq. (1), clearly telling what are the physical meanings of the 

constants, B and τ,  in the empirical logarithm law expressed in Eq. (1).  
 

Hao has developed a precise way for calculating the free volume of particulate systems using the 

inter-particle spacing (IPS) concept
7, 30, 31,

. The inter-particle spacing (IPS) that scales the 

distance between two particle surfaces, which was discussed extensively in literature 
6
,  was used 

for estimating the free volume of whole systems to derive the viscosity of colloidal suspension 

systems
7, 31

. For calculating IPS, Hao 
30
 used Kuwabara’s cell model

32
 that was extended by 

many other researchers 
33-35

 for calculating the electrophoretic and electroacoustic mobility of 

particles.  The cell model assumes that each particle is surrounded by a virtual cell (see Figure 1) 

and the particle/liquid volume ratio in a unit cell is equal to the particle volume fraction 

throughout the entire system. Given that the particle is spherical and mono-dispersed, the IPS 

should be zero when particles reach the maximum particle packing fraction, φm, as particles 

intimately contact each another at the maximum packing fraction. When the particle volume 

fraction, φ, is less than φm, there is a free volume unoccupied by particles. If the volume of a 

system is Vs, then the free volume of the particles should have in this system may be expressed 

as Eq. (4).  The free volume per particle should be:  

 

Vs (φm - φ) /(Vs φ/Vip) = (φm- φ) Vip / φ                                         (12)    
                                                                                                                   

Where Vip is the volume of individual particle, and is equal to (4πr3)/3.  r is the particle radius. 
The total volume that each particle occupies in the system is the volume of each individual 

particle plus the free volume per particle: 

 

Vip +(φm- φ) Vip / φ  = φm Vip / φ                                                    (13)  
  

                            

If the radius of particle plus the virtue cell is d, then the IPS defined in Figure 1 may be 

expressed as: 
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Figure 1. Illustration of Kuwabara’s cell model used for calculating IPS in a particulate system. 

From Hao, 2005, Electrorheological fluids: the non-aqueous suspensions, Amsterdam: Elsevier. 

With permission. 

 

 

 

         

 IPS = 2(d- r)                                                                                      (14) 

 

Since d can be calculated from Eq. (13) using the following equation: 

 

φ

φπ ipmV
d =3

3

4
                                                                               (15) 

 

Eq. (14) is thus rewritten as:   

   

IPS =2 ( rm )1/3 −φφ       (  φ ≤  φm)                                              (16) 

 

 

Eq. (16) indicates that IPS is zero when the particle volume fraction reaches the maximum 

packing fraction, which is consistent with our assumption at the beginning. The parameter, φ,  
should be always less than φm. Once the maximum packing fraction and particle size of a powder 

system is known, the IPS can be easily estimated using Eq. (16). Suppose that the particle can 

freely move either to left side or right side, as shown in Figure 2, with a distance of IPS until it 

touches the nearest neighbors, then the free volume of this particle should be 
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                          r     IPS        2r         IPS     r 

 

                    

           

                                 

 

Figure 2. Determination of the free volume of particles. From Hao, 2005, Electrorheological 

fluids: the non-aqueous suspensions, Amsterdam: Elsevier. With permission 

 

 

 
3333 )1/(64)2( rIPSV mfp −== φφ                                                            (17) 

 

as the particle moves three dimensionally,  where Vfp is the free volume of an individual particle. 

The total free volume may be expressed as the free volume of an individual particle times the 

number of particles in the system, 

 

sm

s
mf

V

r

V
rV

33

3

333

)1/(
48

3

4
)1/(64

−=

×−=

φφ
π

φ

π
φ

φφ

                                                    (18) 

 

Eq. (18) gives the total free volume when the particle volume fraction is φ. Similarly when the 
particle volume fraction is φ0, the total free volume should be  

 

smf VV
33

0
0

0 )1/(
48

−= φφ
π
φ

                                                       (19) 

 

Again, using the similar way to define the rate constant k yields 

 

33
00

3
3

)1/(

)1/(

−

−
=

φφφ

φφφ

m

m
Ak                                                              (20) 

 

Eq. (9) may be analogically written as: 

 

1/)1/(29.15
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33
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Again, integrating both sides within the particle volume fraction range (φ0, φ) and using the 
boundary condition (n=0, the particle volume fraction is φ0, and n=n, the particle volume fraction 

is φ) yields: 
 

( ) ( )








+=















−

+−
−

−

+−−
1ln

29.15

)(
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)(
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10

)(

53
0

3

3/2
0

3/13/1
0

3/2

533

3/23/13/13/233
0

3

mmm

mm

m

mmm

n

n

n

A

φφ

φφφφ

φφ

φφφφφφ
     (22) 

 

 

For comparison, the particle volume fraction increase ( )0φφ− predicted with Eq. (11) and Eq. (22) 

is plotted against (n+1) in Figure 3. It looks like the generalized Chicago logarithmic law 

expressed in Eq. (11) predicts a relatively small increase of particle volume fraction at small 

number of taps and a dramatic increase in the middle area; For reaching equilibrium steady state, 

a lot of taps is predicted to be required. In contrast, Eq. (22) gives a relative slow and gentle 

tapping process that reaches the equilibrium steady state much earlier, though both two equations 

use same parameters (A=2000, nm=1000, φm=0.63) for calculation. The random dense packing 

structure with the maximum packing fraction 0.63 is assumed.  
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Figure 3 Particle volume fraction increase ( )0φφ− predicted with Eq. (11) and Eq. (22) is plotted 

against (n+1) under assumptions A=2000, nm=1000, φm=0.63, the maximum particle packing 

fraction of random dense packing structure. The initial particle volume fraction is 0.2.  
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2.2  Stretched exponential law 
 

Let’s turn attention to the stretched exponential law. Suppose the powder is under a vertical 

tapping process, )exp(0 tiLL ω= , where L0 is the tapping amplitude and ω is the tapping 
frequency. The energy flowing from the shaker to the powder 

36
 is: 

 

π
ω0)(

MgL
tE =                                                                (23) 

 

Where Mg is the weight of powder. The total energy flowing to the powder after a series of 

tapping processes with the tapping number, n, may be expressed as: 

 

π
ω0)(

nMgL
tEnE =•=                                                        (24) 

 

We may consider the tapping process as a rate process again and this rate process obeys the 

stretched Arrenius equation as powder systems may be considered as disordered systems, in 

which many physical properties have the stretched exponential form, such as the conductivity of 

disordered systems that obeys Mott’s variable range hopping model
37
. The stretched exponential 

function was first introduced by Kohlrausch 
38
 in 1854 to describe the discharge phenomenon of 

a capacitor, later extended to describe dielectric spectra of polymers by Williams and Watts 
39
 , 

and now frequently applied to a large range of relaxations in disordered thermal systems such as 

glasses
40
 . The origin of the stretched exponential is physically not clear, and the attempts have 

been made to assume that relaxations are dependent on the random walk of polarized 

molecules
41
, the trapping process at long time range

42
, and the system size

43
. The stretched 

Arrenius equation may be expressed as: 

 

 

 

















−=

β

RT

E
Ak exp                                                            (25) 

 

 

Where k is the rate constant of a tapping process, A is temperature related pre-factor, and β is the 

stretching of the exponential of values between 0 and 1. The microscopic theory proposed by 

Phillips 
40, 44

 suggested that β has the following physical meanings: β=3/5 for intrinsic molecular 

level short range interactions, β=3/7 for intrinsic long range Coulomb interactions, and β=2/3 for 

extrinsic interactions. Substituting Eq. (24) into Eq. (25) yields 
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

















−=



















−=

β

β

τ

π
ω

n
A

RT

nMgL
Ak

exp

exp 0

                                               (26) 

 

Where τ is a constant of )/( 0ωπτ MgLRT= .We may use two approaches to represent the 

tapping rate constant. First, suppose that the tapping process rate constant is related to how the 

free volume of a granular system decreases with the number of taps, as shown in Eq. (6). 

Combining Eq. (6) and (26) together yields: 

 
 


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
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
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                                                  (27) 

 

Re-arranging Eq. (27) yields: 

 

 

( )

















−−−=

β

τ
φφφφ

n
A mm exp0                        (28) 

 

Eq. (28) is identical to Eq. (3) if A is assumed to be 1. Again, τ is a constant, )/( 0ωπτ MgLRT= , 

dependent on the tapping amplitude and frequency, the weight of the granular materials, and the 

temperature. Second, one may use Eq. (20) to express the tapping rate constant. Substituting k in 

Eq. (25) with Eq. (20) yields 
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Re-arrange Eq. (29) yields 
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3/13/13/13/1              (30) 

 
For comparing the difference between Eq. (28) and (30), the predicted packing fraction 

difference vs. the number of taps is plotted in Figure 4. At same relaxation time and  
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Figure 4. The predicted packing fraction less the initial particle volume fraction with Eq. (28) 

and (30) is plotted again (n+1), n is the number of taps, under assumptions that the particles will 

have Rhombohedral pack structure with the maximum packing fraction 0.74, the initial particle 

packing fraction is 0.55, β=0.5, τ=100, and A=0.85.  

 

initial packing fraction, Eq. (30) gives a relatively slower pace of compaction process with lower 

initial tapping impact on the packing fraction. For reaching a steady-state packing structure, Eq. 

(30) requires a large number of taps above 10
5
; while Eq. (28) predicts that the steady-state 

packing may be reached at relatively small number of taps about 10
3
. In both Eq. (28) and (30), 

there is one more parameter that may be used for fitting the data in comparison with the original 

stretched exponential law, Eq. (3), thus a better fit may be obtained with both Eq.(28) and (30) 

than Eq. (3).   

 

3. Experimental 
3.1  Materials and instrument 
 

Fumed silica from Cabot Corp., Cab-O-Sil M5P, is mixed at the concentration of 1.5 wt% with 

microcrystalline cellulose from FMC BioPolymer, Avicel PH 200.  Cab-O-Sil is a very fluffy 

powder of a high surface area 200 m
2
/g and a small particle size between 100 and 200 nm. The 

particle surfaces of Cab-O-Sil M5P are coated with hydroxyl groups and the particles are thus 

hydrophilic. Those small particles can stick on the large particle surfaces of Avicel PH 200 of 

particle size about 180 µm through hydrogen bonds, substantially improving the flow and tap 
characteristics. This mixture is selected for the reason that Cab-O-Sil is a very common flow 

improving and anti-caking agent and microcrystalline cellulose is a very common binder agent 

frequently used in pharmaceutical and nutritional tablet formulations.  

 

The tap density was measured with a tap density tester, model TD-12, from Pharma Alliance 

Group Inc, USA. About 23 g sample was transferred into a 100 ml graduated cylinder and  the 

USP I  test method recommended by The United States Pharmacopeia (USP) Convention was 

used.  The sample was raised up to a height about 14±2 mm and then dropped nominally 300±15 
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taps per minute. The number of taps was counted automatically and the volume of the powder in 

the cylinder was recorded for calculating the tap density or the packing volume fraction.  

 

3.2  Results  
 

The obtained tap density data of 1.5 wt% Cab-O-Sil mixed with Avicel PH 2000 are shown in 

Figure 5, plotted as the packing fraction difference against n+1, where n is the number of taps. 

To fit the experimental data with Eq. (22), both nm and φ0 are taken on the basis of experimental 
results, nm=600, φ0=0.2. Other two parameters with the following values, A=3000, and φm=0.52, 

are found to generate the best fit. To fit the experimental data with Eq. (30), the following 

parameters, β=0.66, τ=10, φ0=0.2, φm=0.36, and A=0.70, are found to give the best fit. As one 

may see, Eq. (22) gives a good fit when the number of taps is below 200, and deviates from the 

experimental data at high tap numbers; while Eq. (30) gives a relative good fit at high tap 

numbers, but deviates at low tap numbers. Note that the maximum packing fraction values used 

in Eq. (22) and Eq. (30) are different, and the value used by Eq. (30) is more close to the reality, 

as it reaches a steady plateau at the end. The parameter A used in both equations is quite different 

too, which is not surprising as the parameter A in those two equations are defined differently.  

One thing worth mentioning is the value of stretched exponential, β=0.66, and only at this value 

Eq. (30) gives the best fit to the experimental data. As mentioned earlier and suggested by 

Macdonald and Phillips
44
, β=0.66 may indicates that the extrinsic interactions between particles 

during tap process play a critical role, which is intuitively true for granular powder systems. 

 

 

100 101 102 103
0.00

0.05

0.10

0.15

0.20
Eq. (22)

Eq. (30)

Exp

n+1

P
a
c
k
in
g
 f
ra
c
ti
o
n
,

φφ φφ
- φφ φφ
0

 
 

Figure 5 The packing fraction less the initial particle volume fraction is plotted against (n+1), n 

is the number of taps, obtained experimentally and predicted with both Eq. (22) and (30). To fit 

the experimental data with Eq. (22), the following parameters, nm=600, A=3000, φm=0.52, and 

φ0=0.2, are assumed, but both nm and φ0 are taken on the basis of experimental results; To fit the 
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experimental data with Eq.(30), the following parameters, β=0.66, τ=10, φ0=0.2, φm=0.36, and 

A=0.70, are assumed.  

 

 

4. Discussion 
 

The current work is actually motivated by the success of my previous attempts in deriving 

viscosity equations of pure liquids, colloidal suspensions, and polymeric systems
7, 31

. As we 

know, each system has its own viscosity dependences, but I personally believe that they should 

share same physical origins, as the viscosity comes from the frictional interactions between 

entities under shear. When I read Eyring’s rate process theory
29
 and the hole theory of liquids

2
, I 

immediately realize that colloidal suspensions indeed share the same physical origins as liquids, 

and I may be able to combine both the rate process theory and the free volume theory together 

for deriving the viscosities of both liquids and colloidal suspensions with same principles. Under 

the assumption that the viscosity should be inversely proportional to the free volume and the 

viscosity increase rate against the particle volume fraction obeys the Einstein’s simple viscosity 

relationship
45
, the obtained viscosity equations are found to be very successful 

7, 31
, covering 

wide particle volume fraction ranges and reducible to well-known Kreiger-Dougherty equation 
46
 

and Frankel-Acrivos equation 
47
. In addition, the introduced particle shape parameter can extend 

the obtained viscosity equations to predict the viscosity of colloidal suspensions containing not 

only the spherical shape particles but also the fiber shape particles, the latter makes me believe 

that the viscosity of polymeric solutions and melts could be derived with the same principles, 

too, as the polymer chains can be analogously considered as fiber shaped particles. Under 

appropriate assumptions, the derived viscosity equations can correctly predict the viscosities of 

both polymer solutions and polymer melts. For example, the viscosity of polymer melts increases 

with the 3.5 power of molecular weight when polymer chains are long enough and the chain 

entanglements happen
 
and the 0.83 power of molecular weight when polymer chains are small 

enough and no chain entanglement happens
7,31

.  For non-aqueous colloidal suspensions like 

electrorheological fluids, the yield stress under an electric field can be derived with the free 

volume theory 
20
, too. All the successes mentioned above drive me believe that the same rate 

process and free volume theories can be employed to treat granular powders, which can be 

analogously considered to obey the same physical principles but have a different definition of 

“granular temperature”  arisen from any excitations rather than thermal energy that can drive 

particles move around. This article is my first attempt and more follow-ups will be presented in 

the near future.  

 

5. Conclusions 
 

In summary, we assume that the particles during tapping processes will behave similarly to the 

thermodynamic laws controlled entities and the “granular temperature” is related to the external 

mechanical excitations and has nothing to do the regular temperature. Under those assumptions, 

the rate process theory is utilized to treat the powder packing process and the free volume in a 

powder system is believed to control how quick particles can be packed. The derived equations 

can be reducible to the two widely used empirical equations under special circumstances, and 

could potentially fit the experimental data better with an additional adjustable parameter. The 
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tapping amplitude and frequency, the weight of the granular materials, and the environment 

temperature are grouped into this parameter that weighs the pace of packing process. An exact 

same treatment method employing the theory of rate process and the free volume concept was 

successfully used to derive the viscosity equations of liquids, colloidal suspensions, and 

polymeric systems 
7,31
, implying that both “dry” and “wet” particle systems are governed by the 

same physical mechanisms in term of the role of the free volume and how particles behave (a 

rate controlled process).  

 

 

Acknowledgments: The author appreciates Michelle Moyer and KaLee Dahlin for their 
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