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Increasing effect of solid surface tension
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Eshelby’s theory of inclusions has wide-reaching implications across the mechanics of materials
and structures including the theories of composites, fracture, and plasticity. However, it does not
include the effects of surface stress, which has recently been shown to control many processes in soft
materials such as gels, elastomers and biological tissue. To extend Eshelby’s theory of inclusions to
soft materials, we consider liquid inclusions within an isotropic, compressible, linear-elastic solid. We
solve for the displacement and stress fields around individual stretched inclusions, accounting for the
bulk elasticity of the solid and the surface tension (i.e. isotropic strain-independent surface stress)
of the solid-liquid interface. Surface tension significantly alters the inclusion’s shape and stiffness
as well as its near- and far-field stress fields. These phenomena depend strongly on the ratio of
the inclusion radius, R, to an elastocapillary length, L. Surface tension is significant whenever
inclusions are smaller than 100L. While Eshelby theory predicts that liquid inclusions generically
reduce the stiffness of an elastic solid, our results show that liquid inclusions can actually stiffen a
solid when R < 3L/2. Intriguingly, surface tension cloaks the far-field signature of liquid inclusions
when R = 3L/2. These results are have far-reaching applications from measuring local stresses in
biological tissue, to determining the failure strength of soft composites.

I. INTRODUCTION

Eshelby’s theory of inclusions [1] provides a fundamen-
tal result underpinning a wide swath of phenomena in
composite mechanics [2–5], fracture mechanics [6, 7], dis-
location theory [8], plasticity [9, 10] and even seismology
[11]. The theory describes how an inclusion of one elastic
material deforms when it is embedded in an elastic host
matrix. At an individual inclusion level, it predicts how
the inclusion will deform in response to far-field stresses
applied to the matrix. It also allows the prediction of
the macroscopic material properties of a composite from
a knowledge of its microstructure.
Eshelby’s theory does not include the effects of sur-

face stresses at the inclusion/matrix boundary. How-
ever, recent work has suggested that surface stresses need
to be accounted for in soft materials. This has been
suggested both by theoretical models of nanoscale in-
clusions [12–14], and by recent experiments which have
shown that surface tension (isotropic, strain-independent
surface stress) can also significantly affect soft solids at
micron and even millimetric scales. For example, solid
capillarity limits the resolution of lithographic features
[15–18], drives pearling and creasing instabilities [19–22],
causes the Young-Dupré relation to break down for sessile
droplets [23–28], and leads to a failure of the Johnson-
Kendall-Roberts theory of adhesion [29–33]. Of par-
ticular relevance are our recent experiments embedding
droplets in soft solids, where we found that Eshelby’s
predictions could not describe the response of inclusions
below a critical, micron-scale elastocapillary length [34].

∗ eric.dufresne@yale.edu

A similar break down was also seen in recent experiments
that embedded bubbles in soft, elastic foams [35].
To apply Eshelby’s theory to a broad-class of mechan-

ical phenomena in soft materials, we need to reformulate
it to account for surface tension. Here, we derive ana-
lytic expressions for the deformation of individual inclu-
sions, the deformation and stress fields around the inclu-
sions, and the elastic moduli of soft composites. Our ap-
proach builds upon previous theoretical works that have:
focused on strain-dependent surface stresses [14, 36–39]
(which are relevant to nanoinclusions in stiffer materi-
als, but not for softer materials such as gels [40]), only
considered isotropic loadings [12], used incorrect bound-
ary conditions [13] (cf [41]), or only considered incom-
pressible solids and employed a dipole approximation to
calculate composite properties [42].

II. STRETCHING INDIVIDUAL INCLUSIONS

We begin by considering how surface tension affects
Eshelby’s solution for the deformation of individual in-
clusions embedded in elastic solids subjected to far-field
stresses [1]. We consider an isolated, incompressible,
spherical droplet of radius R embedded in a linear-elastic
solid that is deformed by a constant uniaxial far-field
stress, as shown in Figure 1. The displacement field in
the solid satisfies

(1− 2ν)∇2
u+∇(∇ · u) = 0, (1)

where ν is Poisson’s ratio of the solid.
For far-field boundary conditions, the stress in the solid

σ is given by the applied uniaxial stress σzz = σ∞, σxx =
σyy = 0 in cartesian coordinates. Stress and strain are
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5

that the dispersion of small liquid droplets within a solid
can increase its apparent macroscopic stiffness. We cal-
culate the effective Young’s modulus Ec of a composite
containing a dilute quantity of monodisperse droplets by
following Eshelby’s original approach [1, 13]. First, we
calculate the excess energy W due to the presence of
a single inclusion when a solid is uniaxially stretched.
Then, we consider uniaxial stretching of a dilute com-
posite of noninteracting inclusions. If the applied stress
is σzz = σ∞, the strain energy density of the composite
is

E = (σ∞)2/(2E)+WΦ/(4πR3/3) = (σ∞)2/(2Ec), (15)

where Φ is the volume fraction of inclusions. The second
equality comes from the relationship between the strain
energy density and the effective modulus of the material,
allowing calculation of Ec from W .

The excess energy due to the presence of a single elastic
inclusion in a uniaxially-stressed solid is

W =
1

2

∫

Vi

(σijǫij − σ∞

ij ǫ
∞

ij )dV

+
1

2

∫

Vm

(σijǫij − σ∞

ij ǫ
∞

ij )dV +Υ∆S. (16)

Here we assume that the inclusion is an elastic solid for
generality – the droplet is the limiting case of zero shear
modulus.

The volumes of the elastic matrix outside of the inclu-
sion and the inclusion Vm and Vi, respectively, the far-
field stresses/strains are σ∞

ij and ǫ∞ij respectively, and the
change in surface area of the droplet upon stretching is
∆S. Using the divergence theorem, the stress boundary
condition (3), and the fact that in the far-field, σ∞

ij = σij ,

W = 1
2

∫

Vm

(σ∞

ij ǫij − σijǫ
∞

ij )dV

+ 1
2

∫

S+

(niσ
∞

ij uj − niσiju
∞

j )dS

−Υ
2

∫

S

KuinidS +Υ∆S. (17)

Integration on the matrix side of the droplet surface S is
denoted by S+. From Equation (2), the first term is zero,
so W depends only upon displacements and stresses at
the droplet surface. Using our earlier results (e.g. Equa-
tions 4), along with second-order (in the displacement)
versions of the expressions for n, K, dS and ∆S shown
in Appendix A, we obtain W for the case of a uniaxial
far-field stress σ∞:

W = 2πR3σ∞2(1− ν)

×
[R
L
(1 + 13ν)− (9− 2ν + 5ν2 + 16ν3)]

E(1 + ν)[R
L
(7− 5ν) + (17− 2ν − 19ν2)]

. (18)
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FIG. 4. The stiffness of soft composites. Young’s modulus of
composites of droplets embedded in linear-elastic solids, Ec

as a function of liquid content. The dotted curve shows Es-
helby’s prediction without surface tension. The dash-dotted
curve shows the surface-tension dominated limit, R/L ≪ 1.
The dashed curve show Eshelby’s prediction for rigid spheres
embedded in an elastic solid.

Finally, from Equation (15),

Ec

E
=

[

1 +
3(1− ν)

[

R
L
(1 + 13ν)− (9− 2ν + 5ν2 + 16ν3)

]

(1 + ν)
[

R
L
(7− 5ν) + (17− 2ν − 19ν2)

] Φ

]−1

(19)

For an incompressible solid ν = 1/2 and we have

Ec

E
=

1 + 5
2
L
R

5
2
L
R
(1− Φ) + (1 + 5

3
Φ)

. (20)

Figure 4 plots the results of Equation (20) and shows
the dramatic influence of capillarity on soft composite
stiffness. When surface tension is negligible (R ≫ L),
the composite becomes more compliant as the density of
droplets increases – in exact agreement with Eshelby’s
prediction of Ec/E = (1 + 5Φ/3)−1 (dotted curve), and
qualitatively agreeing with other classical composite laws
(e.g. [2, 3]). However Eshelby’s predictions break down
when R . 100L. In fact, when R < 1.5L, increasing
the density of droplets causes the solid to stiffen, consis-
tent with the dipole sign-switching seen earlier. In the
surface-tension dominated limit, R ≪ L, the droplets
stay spherical, and we find the maximum achievable com-
posite stiffness Ec = E/(1−Φ) (dash-dotted curve). Note
that the droplets do not behave like rigid particles in this
limit, for which Ec = E/(1 − 5Φ/2) [1] (dashed curve).
Although the droplets remain spherical due to capillar-
ity, there are non-zero tangential displacements, unlike
the case of rigid particles.
These results agree with experiments. Recently, we

made soft composites of glycerol droplets embedded in
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6

soft silicone solids. In quantitative agreement with the
theory, we saw stiffening of solids by droplets in compli-
ant solids, and softening in stiffer solids [34]. In the dilute
limit (Φ → 0), Equation (20) matches with recent theo-
retical predictions (derived using the dipole approxima-
tion for inclusions in incompressible solids) that describe
experimental measurements of shear moduli of emulsions
containing monodisperse bubbles [35, 42].

IV. CONCLUSIONS

We have modified Eshelby’s inclusion theory to include
surface tension for liquid inclusions in a linear-elastic
solid, giving both the microscopic behaviour and the
macroscopic effects of inclusions in composites. We have
shown that surface tension stiffens small inclusions, and
focusses shear stresses at the inclusion tips. Thus com-
posites with small, capillary-dominated inclusions will be
stiffer but may be weaker. This stress-concentration il-
lustrates the potentially strong role of surface tension in
the failure of soft-solids, highlighting the relevance of this
work to emerging fields like fracture mechanics and plas-
ticity in soft materials (e.g. [46, 50, 51]).

Inclusions with surface tension can be viewed, at lead-
ing order, as elastic dipoles in a solid. The sign of the
dipole captures the stiffening behaviour due to capillar-
ity. Treating inclusions as dipoles also offers a simplified
picture of inclusions that give the interactions between
features in elastic bodies, and can streamline calcula-
tions of bulk composite properties via standard theories.
The analytic theory presented for bulk composite stiff-
ness, which incorporates the entire elastic field around
inclusions, validates the dipole approach by recovering
previous results for incompressible materials in the limit
of dilute composites [35, 42].

Our work is applicable to a wide variety of soft mate-
rial problems. Most obviously it can be directly applied
to composites comprising soft materials such as gels and
elastomers. As a specific example, we have shown how
surface tension effects allow elastic cloaking, with inclu-
sions of size R = 1.5L being mechanically invisible. Our
work also has interesting uses in mechanobiology, as bi-
ological tissue is predominantly soft. For example, a re-
cent study embedded droplets in biological tissue and
observed their deformations to extract local anisotropic
stresses [52]. The coupling between microscopic and
macroscopic stress also plays an important role in the
tensional homeostasis of soft tissues [53, 54]. Although
we have only considered liquid inclusions here our analy-
sis can be repeated for more general soft composites with
elastic inclusions in place of liquid droplets. In that case,
we expect that similar capillary effects to those presented
here will be seen whenever R . 100Υ/Ei, 100Υ/Em

with Ei/Em being the inclusion/matrix stiffnesses re-
spectively.
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VI. APPENDIX A - DIFFERENTIAL

GEOMETRY

To calculate the effect of surface tension on the shape
of a droplet embedded in a soft solid, we need expres-
sions for the normal to the droplet surface, its curvature,
and surface area in terms of the surface displacements.
We consider an initially spherical droplet with the po-
sition of its surface given by x = (R, 0, 0), and apply a
uniaxial stretch so that x → x

′ = (R + ur, uθ, 0). From
axisymmetry, the ur, uθ are independent of the angle φ.
We calculate the normal to the droplet surface, n, by

taking the cross-product of the surface tangent vectors,
∂x′/∂θ and ∂x′/∂φ [55],

n =

∂x′

∂θ
∧ ∂x′

∂φ
∣

∣

∣

∂x′

∂θ
∧ ∂x′

∂φ

∣

∣

∣

, (21)

with

∂x′/∂θ =

(

∂ur

∂θ
− uθ, R+ ur +

∂uθ

∂θ
, 0

)

, (22)

and

∂x′/∂φ = (0, 0, (R+ ur) sin θ + uθ cos θ) . (23)

At leading order in u we find

n =

(

1,
uθ

R
−

1

R

∂ur

∂θ
, 0

)

. (24)

The droplet surface curvature, K, can be calculated
from differential geometry using the first and second fun-
damental forms [55]:

K =
efGf − 2ffFf + gfEf

EfGf − F 2
f

(25)

where

Ef =
∂x′

∂θ
·
∂x′

∂θ
, Ff =

∂x′

∂θ
·
∂x′

∂φ
, Gf =

∂x′

∂φ
·
∂x′

∂φ
,

(26)
and

ef = n ·
∂2

x
′

∂θ2
, ff = n ·

∂2
x
′

∂θ∂φ
, gf = n ·

∂2
x
′

∂φ2
. (27)
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Thus, at leading order in u,

K =
2

R
−

1

R2

(

2ur + cot θ
∂ur

∂θ
+

∂2ur

∂θ2

)

. (28)

Using the results above, we also obtain the area ele-

ment dS =
√

EfGf − F 2
f dθdφ [55]. At leading order in

u,

dS =
[

R2 sin θ

+ R

(

uθ cos θ + 2ur sin θ +
∂uθ

∂θ
sin θ

)]

dθdΦ, (29)

and after integration we obtain the droplet surface area

S = 4πR2

+

∫ 2π

0

∫ π

0

[

R

(

uθ cos θ + 2ur sin θ +
∂uθ

∂θ
sin θ

)]

dθdΦ

= 4πR2 +

∫ 2π

0

∫ π

0

2ur sin θ dθdΦ. (30)

VII. APPENDIX B - THE SHAPE OF A

UNIAXIALLY STRETCHED DROPLET

We determine the shape of a uniaxially-stretched
droplet by using the calculated expressions for A− G in
equation (4) to obtain the surface displacements:

ur(R, θ)

R
=

5ǫ∞zz
2

[

(1− ν2)[1 + 3 cos(2θ)]

(7− 5ν) + L
R
(17− 2ν − 19ν2)

]

(31)

and

uθ(R, θ)

R
= −

15ǫ∞zz
2

[

[1 + L
R
(1 + ν)](1− ν2) sin(2θ)

(7− 5ν) + L
R
(17− 2ν − 19ν2)

]

.

(32)
When L ≫ R, we see that radial displacements van-
ish, and the inclusions remain spherical. In the opposite
limit, R ≫ L, the inclusion shape becomes independent
of its size, as predicted by Eshelby’s results.
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