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Abstract 

We establish a quantitative analogy between polymer grafted nanoparticles (PGNPs) 

and patchy nanoparticles (NPs). Over much of the experimentally relevant parameter 

space, we show that PGNPs behave quantitatively like Janus NPs, with the patch size 

having a universal dependence on the number of grafts and the ratio of the size of the 

NPs to the grafted chain size. The widely observed anisotropic self-assembly of PGNP 

into superstructures can thus be understood through simple geometric considerations of 

single patch models, in the same spirit as the geometry-based surfactant models of 

Israelachvili. 
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The anisotropic self-assembly of spherical nanoparticles (NPs) uniformly grafted with 

polymer chains (PGNPs) 1-6 into a variety of anisotropic morphologies is attributed to 

the energetic dislike between the NP core and the polymeric tethers. Thus, by analogy of 

PGNPs to block copolymers and other surfactants 7-20, it follows that various assemblies 

formed by these PGNPs, such as three-dimensional spherical aggregates, 

two-dimensional sheets, one-dimensional strings, and well-dispersed morphologies are 

sensitively controlled by grafting density and the size of grafted polymers (or their chain 

length) relative to the NP size. While the resulting morphologies are thus thought to be a 

consequence of the microphase separation between the (hydrophilic) NP cores and 

(hydrophobic) grafted polymers, a central question is why these NPs form anisotropic 

assemblies even though the spherical building block NPs are isotropically grafted with 

polymer chains. Thus, an overarching question is what breaks the inherent spherical 

symmetry of the building block shapes and interactions and leads to the formation of 

anisotropic morphologies. Inspired by the experimental finding that NPs only form 

anisotropic assemblies when they are sparsely tethered with macromolecules,21 Bozorgui 

et al.,22 showed that this result did not arise as a result of competing interactions (i.e., 

short ranged inter NP attractions balanced against brush induced longer ranged 

repulsion) or from emergent many-body effects. Rather, this anisotropy was found to be 

inherently encoded at the single PGNP level, as a consequence of large fluctuations of 

polymer grafting density on surface of a NP due to the small number statistics. More 

specifically, computer simulations show that the organization of grafts around an 

individual NP is not spatially isotropic for small numbers of grafts and ligand 

monomers23. This inherent, spatially asymmetric ligand distribution causes the effective, 

two-body inter-NP potential to have a strong orientational dependence, which 

reproduces the anisotropic assembly observed ubiquitously for these systems. 

 

Here, we use this qualitative information to construct a quantitatively accurate 

coarse-grained model for PGNPs in the limit of sparse grafting, i.e., in the regime where 

they self-assemble into a variety of anisotropic structures. Unlike our previous work22, 

where the extraction of the coarse-grained inter-particle interactions required explicit 

numerical simulations of PGNPs for every different set of structural parameters defining 

the nanoparticles, here we develop a procedure to explicitly map PGNPs into an effective 

patchy particle with one attractive patch (corresponding to core-core attractions) and a 

repulsive patch (corresponding to the entropic repulsion between the grafted NPs). The 

result is an analytical and transferable potential that has a universal dependence on the 
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number of grafts and the ratio of the size the nanoparticles to the grafted chains. 

Strikingly, once the mapping of a PGNP into a single-patch particle is performed, we can 

use simple geometric arguments to identify the boundaries between the different 

self-assembled morphologies. 

 

To make progress, we need to model a spherical NP randomly grafted with � freely 
jointed polymer tethers. To simplify these calculations, we represented the NP as a hard 

sphere of radius ��, and replaced each polymeric graft by a grafted sphere (GS) of 
radius, �. This is a reasonable approximation when the surface is not adsorbing to the 
chains, and � is directly related to the radius of gyration, �� of the polymeric grafts. 
Parenthetically, we note that previous work has established that it is reasonable to 

model self-avoiding polymers by spheres, so long as the spheres are treated as soft, 

penetrable entities.24 It also appears that grafting these chains onto a spherical surface 

only weakly changes the chain size, i.e., by a factor �� �⁄ .25 The size ratio of the GS to the 
NP is denoted by 		(≡ 	�/��). The presence of a single graft excludes a certain fraction 
of the NP surface, �∗ (related to the solid angle 2��), to any other NP, Fig. 1(a). From 
simple geometric considerations it follows that ����� = (1 + 	��� , from which 
�∗ = (1 − ������ 2⁄ = 	(1 + 	��� 2⁄ . When the distance between two GSs is nearer than 

the situation shown in Fig. 1(b), then the “covered” areas of two GSs overlap, and these 

two grafts are part of the same cluster of “covered” areas.  

 

To quantify the fraction of the surface that is occluded by the GS, as well as to obtain the 

distribution of clusters of covered areas as a function of 	 and	�, we considered a single 
NP, and randomly placed a number of GSs on its surface. Previous work has shown that 

the soft sphere potential between two GS has an overlap energy of only ~ 2kT, implying 

that they are really quite penetrable.24 We therefore allow the overlap of the GSs in our 

model. We performed 1000 different realizations for each state point. Fig. 2 plots the 

total area � of the NP surface that is inaccessible to a second NP core due to the 
presence of the GS driven excluded area clusters, normalized by the total NP surface 

area, �∗ ≡ � 4π�� ⁄ , as a function of �∗�. (In independent work we have shown that �∗� 
is proportional to the maximum number of chains that can be grafted to the NP surface.) 

To quantify �∗ we place the desired number of grafts on the NP surface. We first 

tessellate the surface of the NP into 12002 points placed at the vertices of a spherical 

crystal following the symmetry of a (20, 20) icosadeltahedron. Then, we choose one of 

these points and place a second bare NP so that its center is exactly one diameter from 
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the center of the first NP and the line joining the centers of the two NPs passes through 

this surface point. If the second NP interacts with a GS, then the position is regarded as 

“covered”. We repeat this procedure over the whole surface. It is immediately evident 

that the �∗  from all 	  values collapse onto the same universal plot (Fig. 2). To 
understand this apparently universal behavior, we consider the quantity 

!�∗ !(��∗�⁄ 	which expresses the change in �∗ with the addition of grafts. We adopt 

ideas analogous to random sequential adsorption 26 and write:  

 
"#∗

"($%∗� = (1 − �∗� (1) 

 

That is, we postulate that the “covered” surface area can only increase if the newly added 

GS falls on the previously uncovered part of the surface. This yields: �∗ = 1 −
&�$%∗which is in excellent agreement with our simulation results, indicating that we 
have a means of quantitatively describing the surface coverage of the grafts on the NP 

surface with variations in �  and 	 . While this result is encouraging it is unclear 

whether these grafts form a single cluster (“single patch”) or there are multiple clusters 

of excluded area on the NP surface. We probe this critical question next. 

 

We enumerated the average number of clusters, '�(, over a broad range of �	and 	 
[Fig. 3(a)]. For each 	, with increasing �, the number of clusters grows from unity, goes 
through a maximum and eventually returns to unity. Fig. 3(b) then plots the maximum 

number of clusters, ')*+, as a function of 	. We find that ')*+ decreases rapidly with 

increasing 	 , and for the practically relevant cases where 	 >  0.3 the maximum 
number of clusters is always less than 2. This indicates that there is practically only a 

single cluster in most cases, a point we shall elaborate on below. For smaller 	, a 
situation that has not been vigorously explored experimentally, the surface typically has 

multiple clusters. 

 

We now examine the cluster size distributions for different 	 at ')*+ in Fig. 3(c). First, 

let us consider the practically significant cases with 	= 0.4 and 0.6. We find very 

narrow distributions, with predominantly single clusters being the norm. For 

comparison, when 	 < 0.3, we find that the distributions are broader, indicating the 
presence of several clusters. Our results strongly support the idea that low density 

PGNPs with 	 ≥ 0.3 behave akin to Janus particles 27, with one attractive and one 
repulsive patch on the NP surface. Such an analogy is powerful since there are now 
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many works in the literature that have examined the physical properties and the 

self-assembly of patchy colloids 28-31. Indeed, Chen et al., have shown that patchy 

particles could form novel crystalline structures, which were totally different from 

conventional morphologies formed by isotropic colloids 32.  

 

The most important test of this coarse-graining methodology is to check whether we can 

predict the self-assembled structures formed by PGNPs. For simplicity, we assume that 

the PGNP repulsive region can be represented by a single “spherical cap” patch, which 

covers a fractional area �∗ of the surface. As noted above, we assume that there is a 
strong attraction between the NP cores, but a brush-induced entropic repulsion for any 

interaction involving a patch created by surface areas that are excluded by the presence 

of the grafts. Thus, the interaction between two patches or between a patch and a core is 

assumed to be repulsive. With these assumptions, it is apparent that two NPs cannot 

approach each other when �∗ → 1. The result is a solution with well-dispersed NP. 
Upon decreasing �∗, when a sufficiently large attractive area is exposed so that at least 
two NP can come together, clumps begin to form. 

 

To derive this boundary we use simple geometric arguments. The angle, 2��(�" in Fig. 
4(a) is defined as	20 − ∠BOD, and can be expressed as 2��(�" = 20 − 2∠AOC + 2∠AOB. 
Here, ∠AOB corresponds to what we defined as ��, i.e. the angle spanning the fraction of 
particle surface excluded to other NPs by a single GS. As illustrated in Fig. 1(a), 2�� is 
obtained by tracing two lines tangent to a NP surface that simultaneously pass through 

the center of the GS. The smallest angle defining the arc connecting the two tangent 

points is 2��. To obtain ∠AOC, denoted by �7, we use the similar triangles ∆OHF and 

∆GHI. This results in �7 = ����� 8��9�:9;, and finally ��(�"
∗ = ���<=>?@AB

 = �
 C1 − cos(0 −

�7 + ���G = �
 H1 − cos I0 − ����� 8��9�:9; + �����(1 − 2�∗�JK . A further decrease in �∗ , 

takes us to a region where NPs are able to connect side by side with their repulsive 

regions oriented opposite to each other. Here, linear aggregates (strings) will form. The 

string-clump boundary can be identified by imposing the condition represented in Fig. 

4(b). Using analogous geometrical arguments as the ones discussed above, one obtains 

	�=L��(∗ = ���<=>MNA?@
 = �

 . For even smaller values of �
∗, NPs are able to locally arrange 

into two dimensional structures (sheets) by connecting laterally and from below to form 
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bilayer sheets that maximize their polymer-free surface contacts. This condition is met 

when �∗	 is smaller than �=P�=L∗ = ���<=>MQAMN
 = �

 H1 − ��� IR − ����� 8��9�:9;+���
��(1 −

2�∗�JK (see Fig. 4(c)), and establishes the sheet-string boundary. The last dividing-line 

is between three dimensional aggregates and sheets (aggregate-sheet). This occurs when 

the repulsive regions can be buried in the interstitial spaces between the NPs in their 

close-packed configuration as shown in Fig. 4(d). This condition is met as soon as 

�*��=S∗ = ���<=>TUAMQ
 = �

 H1 − ��� IRV − ����� 8��9�:9;+���
��(1 − 2�∗�JK . Since we have a 

universal dependence for �∗ as a function of �, we can convert these boundaries into a 
plot of �	vs. 	. 
 

To confirm the underlying assumptions in our coarse-graining procedure, especially the 

one that we can model PGNPs as single patch colloids, we compared these geometrically 

derived boundaries between different morphologies with the recent results of Akcora et 

al. 1. Akcora et al. used a model that explicitly accounted for the grafted chains, and used 

computer simulations to derive a “morphology diagram”, Fig. 5, that is in good 

agreement with experimental results. Before we can place our boundaries over this 

diagram, we need to relate the size of the GSs to the length of the grafted chains. 

However, the strong finite size effects inherent in our physical system make this 

mapping not so straightforward. Indeed, the measured radius of gyration �� of a single 
tethered chain (modeled as a sequence of '  hard spheres linearly connected by 
harmonic springs) grafted to the NP results in �� ≈ X'Y  with Z ≈ 0.73 and X ≈	0.32 
for ' ≤15 (data not shown). The deviation from the known Flory exponent (0.588) is 
clearly the combined effect of grafting and short chain sizes, and indeed we find that 

Flory scaling is obtained asymptotically for chains ' ≥ 20. We therefore do not expect 

a one-to-one relation between � and ��, and we postulate that � = \�� and treat \ 
as an adjustable parameter. Fig 5 shows that \ = 0.46 allows us to quantitatively 
describe all of the data from Akcora et al., except for small deviations in the boundary 

between sheets and spherical clusters. We believe that this minor disagreement reflects 

the fact that this boundary is in the limit where the PGNP do not behave akin to a single 

patch colloid, but rather a colloid with multiple patches.  

 

Importantly, our results provide a powerful tool for the quantitative description of 
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PGNPs. Not only do we show how PGNP can be mapped into a single patch colloid, and 

how the size of the patch, �∗, can be derived in a universal manner (Fig. 2), but we also 
provide simple geometric ideas to derive the boundaries between the different 

self-assembled morphologies assumed by PGNPs. These results suggest that the physics 

of these PGNPs are completely analogous to Janus colloids. 

 

The authors thank the National Science Foundation for financial support of this work. 

AC acknowledges financial supported from the National Science Foundation under 
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Fig. 1:  Geometric representation of our PGNP model. (a) Geometric definition of �∗, 

highlighted in red as defined in the text.  (b) Geometric definition of a cluster having an 

angular span of 2�� .	 In both figures, �� is the radius of the nanoparticle and � is the 

radius the grafted sphere, here represented with a dashed red circle.  
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Fig. 2: �∗ obtained over a range of � and 	 values plotted in a form that reduces the 

data to a universal curve. The solid line represents the theoretical prediction: �∗ = 1 −

&�$%∗. 
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Fig. 3:  Cluster analysis. (a) �-dependence of the average number of clusters, '�(, for 
different values of 	. (b) 	-dependence of ')*+, the maximum number of clusters, at 

each 	. Insets show representative snapshots of PGNPs for 	 = 0.05 and 0.4. NP are 
colored in purple, GSs and their corresponding covered areas in green (c). Size sorted 

distribution of the number of grafted polymers in each cluster for different values of 	. 
These distributions are taken for the specific case in which the number of clusters is at 

its maximum value, '�( = ')*+ for every selected 	. 
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Fig. 4:  Relative configurations of the NPs near the boundaries between the different 

assemblies. (a) clump-dispersed boundary. (b) string-clump boundary. (c) sheet-string 

boundary. (d) aggregate-sheet boundary. ��(�", �=L��(, �=P�=L and �*��=P are the onset 

angles for each boundary. The grey regions show where the clusters are. The red regions 

highlight the inaccessible areas �. Finally, we use green to indicate the angle �� as 

defined in Fig. 1(a). 
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Fig. 5:  Our theoretical phase boundaries (solid lines) plotted over the numerical 

phase diagram (symbols) obtained by Akcora et al.1. Note that in ref [1], a distinction 

between clumps and dispersed NPs was not indicated. We therefore categorized these 

two types of structures together as “clump & dispersed”. 
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