
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


1 

 

Membrane rigidity induced by grafted polymer brush 

 

Zhen Lei, Shuang Yang,* and Er-Qiang Chen* 

 

Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering 

and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, 

College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China 

 
* Corresponding authors.  E-mail:  shuangyang@pku.edu.cn  and  eqchen@pku.edu.cn 

 

 

Abstract 

The contribution of neutral polymer brush to the curvature elasticity of its 

grafting surface is investigated theoretically. By use of self-consistent field theory, we 

accurately evaluate the dependence of bending modulus on the parameters including 

chain length, Flory-Huggins parameter and grafting density, and reveal the importance 

of solvent. The results show that the brush induced bending modulus follows a 

complex dependence on grafting density and Flory-Huggins parameter, but obeys a 

simple power law with chain length as N
3
. The method is further applied to calculate 

the polymer brush’s contribution to elastic properties of PEG-grafted lipid monolayer. 

 

1. INTRODUCTION 

Polymers grafted on a surface have been studied for a long time both 

experimentally and theoretically owning to its importance in variety of industrial and 

biological applications. For instance, the coated polymers on the surface of colloidal 

particles may keep the particles from aggregation due to the steric repulsion force of 

chains.
1
 It has also been confirmed that the friction between two sliding surfaces can 
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be effectively reduced by the grafted polymers.
2
 More interesting phenomenon occurs 

in biological system, where a lipid vesicle is often decorated with some flexible 

polymers, such as poly(ethylene glycol) (PEG). The polymer-modified vesicles can be 

served as more efficient intravenous liposome drug carriers than bare ones thereby 

preventing the attack from antibodies.
3
 

In solvent, anchored polymers can form mushrooms at low grafting density and a 

brush layer at high grafting density.
4, 5

 In this article we are only concerned with brush 

regime. In the presence of the impenetrable surface, these chains in brush are highly 

overlapped so that the molecular crowding from excluded volume interactions induces 

strong stretching of chains along the direction normal to the surface. At the same time, 

the polymer brush may significantly affect the physical features of the grafting surface, 

such as the interfaces of microphase separated block copolymers and flexible lipid 

bilayer membranes. Several experiments revealed that anchored polymers may lead to 

striking changes in vesicle morphologies.
6-9

 For example, Tsafrir et al. found that 

anchoring of polymers induced local budding and tubulation on highly oblate lipid 

vesicles.
9
 Apparently, grafted polymers can modify the curvature elastic properties of 

membranes, which are described by two rigidity parameters, bending modulus K and 

Gaussian (saddle-splay) modulus K .
10

 K represents the ability of membrane’s 

resistance to bending and plays a key role in membrane biophysics. The value of K  

indicates whether the formation of a saddle points on the membrane is favorable or 

not. Considerable effort has been made both on experiments
11, 12

 and theories
13-20

 to 

investigate the contribution of grafted polymer to membrane elasticity. 
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The first analytical theory about the stiffness effect of membrane induced by a 

neutral polymer brush was presented by Milner and Witten.
13

 They applied strong 

stretched theory (SST) to polymers attached to slight curved surface. The essential 

assumption is that the monomer chemical potential of a bent brush remains parabolic 

but with a curvature-dependent coefficient. By calculating the free energy per chain as 

a power expansion of interface curvature, they derived the analytical expressions for 

bending and Gaussian modulus as a function of chain length N and grafting density 

σ.
13

 For a melt brush they derived the relationship of K, K~N
3
σ

5
, whereas for weakly 

interacting, moderate density brush they found a much weaker power dependence on 

σ. The obtained curvature elasticity, which was generalized by Wang and Safran by 

taking into account excluded volume parameter u0 explicitly, can be expressed as:
13, 21

 

3/23/733/4

0104.0 aNuK σ=                              

3/23/733/4

0063.0 aNuK σ−= .                         (1) 

By using of a scaling approach Hiergeist and Lipowsky
18

 found that the 

contribution from polymer brush scales as N
3
σ

5/2
 in good solvent, which is slightly 

different from eqn (1). They attributed the difference of dependence on σ to the 

correlation effect considered in scaling argument. Zhulina et al.
22

 derived the same 

scaling exponents via applying Daoud-Cotton blob model to a curved brush, but with 

different prefactors. These elegant analytical results have important application on 

variety of systems. Wang and Safran
21

 determined the curvature elastic properties of a 

diblock copolymer monolayer located at the interface between two incompatible 

solvents. Also they investigated
23

 the morphology of various equilibrium emulsion 
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phases, where A and B homopolymer mixture are separated by A-B diblock 

copolymer film. Marsh
24

 applied these formulas to calculate the elastic modulus of 

lipid membranes containing poly(ethylene glycol)-grafted lipids.  

Although the analytical expression of eqn (1) is powerful, the predicted bending 

rigidity may deviates from a real system significantly. Firstly, in above model the 

interaction energy is only represented by the excluded volume parameter u0, which 

solely corresponds to a consideration of second virial interaction. For highly dense 

brush, this second virial model may be failed. The literatures have proved that a more 

detailed treatment involving the solvent explicitly than the second virial must be 

considered in order to correctly predict the properties of brush.
25-27

 Secondly, the 

strong stretching assumption ignores the contribution to the free energy from all 

polymer paths except the most probable one, which is only accurate for long enough 

chain. Last, the entropic repulsion from the impenetrable wall is completely missed. 

As a result, eqn (1) is valid only within a certain range of parameter space. It provides 

only qualitative instead of quantitative predictions, in particular for many 

experimental and practical circumstances. Different methods were developed to get 

more accurate prediction for a real system, including molecular mean-field theory
14, 

28-30
, numerical self-consistent field lattice approach

17, 31
, local density functional 

theory
32

, and computer simulation
33-36

. Especially, Slzeifer and coworkers 

investigated the bending constant of a bilayer membrane formed from binary mixtures 

of lipids and polymer-bearing lipids by use of single chain mean field theory.
28, 29

 

Their calculation predicted the spontaneous formation of liposome due to the 
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decreased bending constant with increasing the polymer-lipid loading. Since they 

considered the coupling between curvature and area expansion, which was 

appropriate for a practical system, their findings provided important guidance to 

understanding the overall influence of grafted polymer on membrane properties. 

Furthermore, Birshtein et al. predicted the curvature free energy of a thin membrane 

decorated by polymer brushes on both sides combining scaling approximation and 

numerical self-consistent field lattice calculation.
17

 They focused on the annealed case 

where polymer chains can translocate from one side of the membrane to the other. But 

they did not calculate the bending rigidities for the case of constant grafting density 

on both sides.  

Some works were carried out to explore the accurate relationship between K and 

the systematic parameters. Szleifer and Carignano studied the elastic properties of a 

diblock copolymer film at liquid-liquid interface by means of single-chain mean-field 

theory.
30

 The film can be considered as two opposite tethered polymer layers. For a 

variety of copolymer chain length, the authors calculated the equilibrium grafting 

density as well as the bending constant of the film as a function of the bare surface 

tension of two immiscible solvents. However, the system they used corresponds to the 

regime where the grafted polymers are in the mushroom-to-brush transition region. 

For the case of densely grafted polymer brushes, the quantitative relationship between 

bending modulus K and N, σ was investigated by Laradji via Monte Carlo 

simulations.
33

 Without considering the solvents explicitly, he studied the elastic 

constants of a polymer-anchored membrane with constant area in the brush regime, 
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and found that the brush-induced bending rigidity scales as ασ3~ NK with 7/3 < α < 

5 at relatively high value of σ. Despite of above progress about the bending modulus 

induced by tethered polymer layers, a complete and systematical calculation including 

solvent effects is absent in brush region. Particularly, some problems, such as how 

solvents interact with polymer chains for moderate or densely grafted brushes upon 

bending, still require more in-depth investigations.     

In this paper, we present a detailed numerical self-consistent field theory (SCFT) 

calculation about the bending rigidity induced by monodispersed polymer brush. 

SCFT provides accurate description about the properties of polymer brush in mean 

field level. We handle the solvents explicitly in our model (Model B in Ref. 37), and 

wish to reveal the effect of solvent quality. In fact the solvents play an important role 

when polymer brush is bent, even for highly dense brush (concentrated solution 

regime) where the universal scaling relationship of eqn (1) is not applicable any more. 

Our main purpose is to provide a systematic and rather accurate description to the 

elastic properties of a surface/interface induced solely by densely grafted polymers, 

i.e., a complete relationship between bending constants and variable parameters. 

Furthermore, it is important to apply this method to a real situation, for example, a 

lipid membrane monolayer grafted PEG polymers on one side. The polymers exert 

lateral pressure and lead to the lateral expansion of lipid molecules. At the same time, 

the change of lipid area exerts significant influence on polymer brush. From the 

practical point of view, it is important to precisely descript the coupling between 

different interactions, in order to explain the brush induced membrane rigidity in 
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experiments quantitatively.  

The rest of the paper is organized as follows. First, we sketch the theoretical 

framework and the calculation details. Then, we present and discuss our numerical 

results, mainly the variation of bending rigidity with grafting density, Flory-Huggins 

parameter and chain length. At last, we apply our method to study on a real lipid 

monolayer grafted with PEG. The conclusions are summarized at the end of the paper. 

 

2. THE THEORY FRAMEWORK 

2.1 SCFT equations of polymer brush 

We consider n polymer chains end-grafted on an area A of the impenetrable 

grafting surface (such as a membrane) on one side. The brush has a uniform grafting 

density An /=σ , which is fixed when bending the surface. Each chain has the same 

end-to-end length 
1/2

0R bN≡ , where N is the number of segments per chain and b is 

the statistical segment length. The polymer brush contacts with a bulk solvent solution.  

Flory-Huggins parameter χ is applied to represent the overall effective interaction 

between solvent and polymer segments. For a good solvent χ = 0 and for a theta 

solvent χ = 0.5. The segment density is defined as 

0
1

ˆ( ) [ ( )]
n N

t dtα
α

ρ δ
=

= −∑∫r r r .                         (2) 

Here the space curve ( )tαr  refers to the configuration of α-th chain. t 

represents the contour length variable along the polymer backbone and varies from 

0 at the grafted end to N at the free end. Taking the segment density in a pure melt 

0ρ  as a reference, one can define the dimensionless polymer concentration 
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(volume fraction) as 

0

( )ˆ ( )p

ρ
φ

ρ
=

r
r .                             (3) 

0ρ  is given by 
0 3

0

1 1

v b
ρ = = . Similarly, the solvent concentration is defined as 

0

( )ˆ ( ) s

s

ρ
φ

ρ
=

r
r , under the assumption that solvent molecule occupies the same volume v0 

as polymer segment does. The incompressibility condition requires 

ˆ ˆ( ) ( ) 1p sφ φ+ =r r .                           (4) 

The standard SCFT for polymer brush with explicit solvents can be found 

elsewhere.
38

 In this framework, the mean field approximation replaces the complex 

molecular interaction by effective fields wp(r) and ws(r) applying on each polymer 

segment and solvent molecule, respectively. The central quantity is the propagator G 

of a polymer chain, which is given by 

{ }2

( )
23

2(0) ' 0
( , ; ') [ ( )]exp ( ) [ ( )]

t N

b
G t D t w t dt

α

α
α α α

=

=
 = ⋅ − + ∫ ∫

r r

r r
r r r r r .       (5) 

It represents the probability of finding a chain of length t with its ends fixed at 

rr ′=)0(α and rr =)(tα under the mean field w(r). One can evaluate the propagator G 

by solving the modified diffusion equation  

);,()(
6

);,( 2
2

rrrrr ′







−∇=′

∂
∂

tGw
b

tG
t

.                   (6) 

For polymer brush problem here, the propagator is subjected to the initial 

condition )();0,( rrrr ′−=′ δG  and boundary condition 0);,( =′rr tG  when r or r’ is 

on the grafting surface. 

For convenience, we introduce the end-integrated propagator q(r, t) as 

( , ) ( , ; )q t d G t′ ′= ∫r r r r .                        (7) 

It satisfies an analogous diffusion equation and boundary condition as G but with the 
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initial condition 1)0,( =rq . Also we introduce the notation 0( , ; ) ( , )eG t G t′ = =r r r r , 

where r0 is the grafting point of a chain on the surface. The ensemble-averaged 

polymer concentration is then given by 

, ),( ),( )(
0

tqtGdt
Q

A
e

N

p

p rrr ∫
⋅

=
σ

φ                      (8) 

where Qp is the partition function of a single chain in its field and given as follows 

( , )p eQ d G N= ∫ r r .                          (9) 

The ensemble-averaged solvent concentration is 

( )
( ) s sw

s e e
µφ −= r

r .                         (10) 

Here µs is the chemical potential of solvent molecules. The partition function of 

single solvent molecule is given by 

( )sw

s
V

Q d e
−= ∫ r

r .                         (11) 

The mean fields are related to the ensemble-average concentrations by the 

consistent conditions: 

 ( ) ( ) ( )
p s

w χφ η= +r r r ,                        (12) 

( ) ( ) ( )s pw χφ η= +r r r .                        (13) 

In above expressions, η(r) is a Lagrange multiplier to guarantee the 

incompressibility condition. The polymer concentration has to satisfy the 

conservation condition 

0( ) /p
V

d A Nφ σ ρ=∫ r r .                       (14) 

The free energy of the brush can be evaluated as  

( l1) ns

p s p p s s p
V

s s ppF e Qw Qd w n
µχφ φ φ φ η φ φ − − + += − −− ∫ r .       (15) 

In the whole paper we set kBT as the unit energy. Eqn (6) - (13) as well as eqn (4) 

constitute the set of self-consistent equations. In order to obtain the free energy and 
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bending rigidity, these equations need to be solved numerically in case of planar, 

cylindrical and spherical coordinates as explained later. Considering the sufficient 

overlap of polymers, we can ignore the lateral variation of density. Then the situation 

is one dimensional issue and all quantities are only dependent of the normal distance 

to the grafting surface. In our calculation the spatial size is 0 ≤ r ≤ L along the 

direction normal to grafting surface, and L is large enough (L > Nb) to eliminate the 

boundary effect. With above argument, the spatial integral is replaced by the 

following formula  

1

0
1

d
L

V

r
d A dr

R

−
 → + 
 ∫ ∫r ,                       (16) 

where d = 1, 2, 3 for planar, cylindrical and spherical coordinates, respectively. 

The modified diffusion eqn (6) can be evaluated by Crank-Nicolson algorithm. 

Non-uniform grid is used to speed up the calculations. The calculation to propagator 

G must be done with the grafting point at a small distance from the surface, i.e., the 

initial condition )()0,( 0rrr −== δtGe
 is reduced to )()0,( ∆−== rtGe δr . Here 

we set b1.0=∆ . For the sake of numerical convenience, the delta function is replaced 

by a Gaussian distribution 






 ∆−
−=∆−

2

2

2

)(
exp

2

1
)(

ααπ
δ

r
r . We choose a suitable but 

large enough value of α  to assure the solution G of eqn (6) is independent of the 

grid size. In order to solve the set of self-consistent equations, we firstly use a simple 

relaxation iteration scheme, [ ]( ) ( ) ( )- ( )
new old old new

r r r rφ φ λ φ φ= + , to get the initial values of 

( )rφ  and )(rw  with a typical convergent parameter 1.0=λ . The Newton-Raphson 

method is then used to achieve the convergence.  
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2.2 The calculation of bending rigidity 

The Helfrich free energy per unit area of a bent surface (for large curvature R) 

can be expanded around its plat surface as
10

 

21

2

0210 )2(
2

ccKccc
K

ff +−++= ,                  (17) 

where f0 is the free energy density of a planar surface. c1 and c2 are principal 

curvatures of the surface orthogonal to each other, while c0 is spontaneous curvature. 

The bending rigidity K and K in principle include all contributions both from the 

intrinsic value of surface (or membrane) and from polymer brush. 

For a polymer brush, we need to calculate the free energy of a cylindrical or a 

spherical surface to determine the elastic rigidity. For a cylindrical surface the 

curvatures are c1 = 1/R and c2 = 0, then the free energy per unit area is written by  

20
R

B

R

A
ff cc

c ++= .                        (18) 

Similarly, for a spherical surface the curvatures are c1 = c2 = 1/R, the free energy 

per unit area is given by   

20s
R

B

R

A
ff ss ++= .                        (19) 

The bending rigidity induced by a polymer brush can be derived from the 

coefficients of eqn (18) and eqn (19), which gives 

cBK 2= ,                               

cs BBK 4−= .                          (20) 

After calculating the free energy as a function of R numerically, one can extract the 

bending rigidity by fitting f to the second order of 1/R. During the fitting process, we 
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change the radius of interface R from 500b to 5000b. Since in experiments the 

bending modulus is the main concern, in this paper we restrict our calculation only to 

the bending modulus K as an indication about the effect of polymer brush. The 

extended calculation for Gaussian modulus and spontaneous curvature is straight 

forward but involving large amount of calculation, so we do not pursue them here. 

 

3. RESULTS AND DISCUSSIONS 

3.1 Numerical results of the bending modulus induced by polymer brush  

In the following we present complete results about the dependence of bending 

modulus K on polymer brush parameters (N, σ, χ). It is unnecessary to deal with the 

whole parameter space which requires tremendous calculations. Here we choose some 

typical parameters and display the universal dependence of K. It is noted that in this 

section the brush has fixed grafting density (constant grafting surface area) upon 

bending in the calculation. Also we set b as the unit length. The chain length varies 

from 20 to 150. For practical purpose, we mainly vary σ from 0.1 to 0.9 (in unit of b
2
) 

and χ from 0 to 0.5. Those parameters are common values met in experiments. With 

above choices the polymer chains are considerably overlapped and the system is 

guaranteed to be within brush regime. If the chain is long enough, apparently the 

highly dense brush is a rather concentrated solution of polymer segments, and the 

system we considered here is beyond the scope of application of eqn (1).  

Before presenting the bending modulus K, it is meaningful to see how the 

structure of polymer brush varies with parameters. We fix the parameters as N = 100 
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and χ = 0. Figure 1a and 1b show the spatial distributions of chain free ends Ge(r,N)/σ 

and polymer volume fractions φp(r) for a planar brush at different grafting densities, 

respectively. The end-distribution Ge(r,N) is normalized to σ since it gives the number 

of free ends per unit surface area. Apparently, a higher grafting density causes the free 

chain ends leaving away from the grafting surface, which means more strongly 

stretching of the chains. At relatively low grafting density (σ < 0.3) the segment 

density profile is approximately parabolic, in accord with SST’s prediction. However, 

with the increase of grafting density the segment density keeps almost constant near 

the surface and then drops down quickly in the exterior region of the brush. At highest 

grafting density of σ = 0.9, the volume fraction approach to 1 for r < 50b. In this case 

the incompressibility condition plays a key role. It forces the polymer segments far 

away from the surface as much as possible to avoid over-crowded segments near the 

wall. As a result, the solvents are nearly excluded from the central part of brush. 

These results are well consistent with the literatures.
25, 39

 For convex cylindrical brush 

at weak curvature (figure c and d) one can see how the curvature affects the structure 

of a bent brush (see figure caption for details). One more curved surface (smaller R) 

leads to a closer distance of free ends from the surface, resulting from more space 

available for each chain near the surface.
17
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Figure 1. The inner structure of a polymer brush at different parameters. (a) and (b) are the 

normalized distributions Ge(r,N)/σ of chain free ends and polymer volume fraction profiles φp(r), 

respectively, for planar brush at different grafting density σ = 0.1, 0.3, 0.5, 0.7, 0.9. The chain 

length is N = 100 and χ = 0. (c) and (d) are the normalized distributions Ge(r,N)/σ of free ends and 

density profiles φp(r) for cylindrically curved brush, respectively. Different curves correspond to 

different curvature of R = 500, 1000, 2500, 5000, ∞. The infinite radius corresponds to a plate 

surface. The parameters are N = 100, χ = 0 and σ = 0.5. All lengths are expressed in unit of b. 

In the following we present our main results, the dependence of bending 

modulus on the systematic parameters σ, χ, and N. The dependence of K on grafting 

density is shown in figure 2 for two solvent qualities of χ = 0 (a) and χ = 0.5 (b). The 

chain length varies from 20 to 150 as indicated. The bending modulus increases rather 

quickly with increasing grafting density. All lines keep the same tendency for different 
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chain length. For χ = 0.5 the K values become much smaller than that of χ = 0, which 

indicates the importance of solvent quality. Later we will illustrate the dependence of 

K on χ in detail to examine the solvent effect. For all curves, however, no simple 

scaling relationship exists between K and σ as eqn (1), which can be taken as evidence 

of the un-adequacy of the second virial treatment. In fact, if the second virial 

coefficient u0 is considered as the only important interaction, the validation of this 

assumption can be justified only for rather long chain (at least several hundred 

segments) at low grafting density (σ is much smaller than 0.1).
27

 For present case this 

assumption breaks down, undoubtedly the analytical expression of eqn (1) is not 

applicable any more. 

In order to get more insight of the dependence on σ, we choose a specific 

polymer brush with chain length of N = 500 over wide range of grafting density 

(0.001 ≤ σ ≤0.1). The obtained K is plotted in figure 2c on a log-log scale. Although 

there is no power relationship between K and σ within the whole range, two different 

regions can be identified. At low grafting density (σ ~ 0.001) a good linear fitting is 

found with a slope equal to 2.2, namely K ~ σ
2.2

. This value is very close to the 

analytical prediction K ~ σ
7/3

. Thus this case corresponds to a weakly interacting, 

moderate density brush. The valid region of the analytical prediction of eqn (1) is 

roughly 0.001 < σ < 0.006. On the other hand, at high grafting density of σ ~ 0.1, 

although the polymer brush behaves as melt-like next to the surface (data not shown 

here), an exponential relationship of K ~ σ
3
 can be found by fitting. Remembering that 

for a melt brush one have K = π
2
N

3
σ

5
/16 from SST

13
 while Laradji’s simulation gives 
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the prediction of K ~ σ
4.3

 at high grafting density
33

, and these results are based on the 

model without taking into account solvent explicitly. Our numerical result displays a 

weaker dependence of K on the grafting density compared to these previous results. 

The main reason is that the polymer volume fraction is not high enough to reach 

melting condition, especially at the outer edge of brush. The solvents staying within 

the brush provide more space to relieve the strong interactions from crowded polymer 

segments, and thus significantly decrease the resistance of a brush to the bending of 

surface. The moderate grafting density range of σ ~ 0.01 is a crossover region without 

one simple scaling exponent. All above results show the importance of the interaction 

between solvents and polymer chains upon bending. 

 

Figure 2. Polymer brush induced bending modulus as a function grafting density σ on a log-log 

scale for the cases of Flory-Huggins parameter χ = 0 (a) and χ = 0.5 (b). The chain length varies 
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from 20 to 150. (c) Bending modulus vs. grafting density for N = 500 and χ = 0.5 but with a wider 

range (0.001 ≤ σ ≤ 0.1). Good linear fitting is found at different region. It gives K ~ σ
2.2

 within low 

grafting density range (σ ~ 0.001) and K ~ σ
3.0

 within high grafting density region (σ ~ 0.1), 

separately.  

Figure 3 plots the bending modulus vs the chain length N at different grafting 

density for χ = 0 (a) and χ = 0.5 (b) on a log-log scale. A very good linear fitting can 

be found with slope of around 3.0 in all cases, which means K ~ N
3
, in accord with the 

analytical predictions from SST, scaling argument and computer simulations
33

. 

Besides, the value of K induced by brush in good solvent χ = 0 is considerably larger 

than that of theta solvent χ = 0.5. The lower is the grafting density, the larger is the 

difference. For the highest grafting density σ = 0.9, this difference is negligible 

indicating the solvent quality becomes unimportant for the brush with φp(r) ~ 1. 

 

Figure 3. The bending modulus as functions of chain length for solvent quality of χ = 0 (a) and χ 

= 0.5 (b) are plotted on a log-log scale. Different grafting densities are displayed for σ = 0.1, 0.3, 

0.5, 0.7, 0.9. The chain length N varies from 20 to 150. Good linear fittings are obtained in all 

conditions with approximate slope of 2.9 (K ~ N
2.9

).  

The effect of solvent quality can be seen more clearly from figure 4, of which the 
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bending modulus is potted as a function of 1-2χ at different grafting density for N = 

100 on a log-log scale. As one knows that the excluded volume parameter u0 is related 

to the Flory-Huggins parameter at low segment concentration through u0 = (1-2χ)b
3
,
37

 

thus we choose 1-2χ as X-axis variable. At low grafting density σ = 0.1, K is sensitive 

to χ value. At very good solvent K is almost twice as that for χ = 0.4. However, at high 

grafting density σ = 0.9, K increases rather slowly with 1-2χ. Figure 4 clearly shows 

that the solvent quality affect K in a complex way, compared to the simple scaling law 

K ~ u0
4/3

 in SST. Therefore, the model without including solvents, as well as SST 

prediction, is failed for highly dense brush. 

 

Figure 4. The bending modulus as a function of interaction parameter (1-2χ) at low grafting 

density (σ = 0.1) and high grafting density (σ = 0.9). The chain length is N = 100. χ varies from 0 

to 0.4. The case of χ = 0.5 is not shown here since this value can not be plotted in logarithmic 

coordinate. 

The total free energy can be separated into three different parts: (a) the 

conformational entropy of polymer brush, (b) the translational entropy of solvents, (c) 

the interaction between the polymer and solvents, as shown in eqn (21). Accordingly, 

each part causes a contribution to the total bending modulus, and they are defined as 
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Kp, Ks and Kps, respectively. In order to reveal the role of different factors at 

determining K, in figure 5 we present the contributions of separated parts to bending 

modulus as a function of grafting density (figure 5a) and χ parameter (figure 5b).  

1
( ) lnp p p p

V
F dr w Q

A
φ σ= − −∫                      (21a) 

1 1
( ) ( 1)s s s s

V V
F dr w dr

A A
φ φ= − − −∫ ∫                  (21b) 

1
ps p s

V
F dr

A
χφ φ= ∫                              (21c) 

At given χ parameter, from figure 5a one can see that the entropy from polymer 

brush clearly dominates the bending modulus for enough high grafting density. 

However, at low grafting density, the content of solvents within the brush is abundant 

so that the translational entropy of solvents is predominant. It is shown in figure 5b. 

For all χ parameter, Ks is always much larger than others. Furthermore, for χ > 0 the 

interaction energy contribution Kps keeps negative, which means that the interaction 

between polymer brush and solvents makes the membrane more flexible.  

Since the solvents play an important role when a brush is bent, it is instructive to 

find how the solvent content changes during the bending process. One can define the 

height of polymer brush: 

( , )

( , )

e

e

dr G r N r
H

dr G r N

⋅
= ∫

∫
.                              (22) 

The amount of solvent within the brush per unit area, Q, can be calculated by 

2

2

R H

s
R

dr r
Q

R

π φ

π

+
⋅

=
∫

.                           (23) 

Figure 5c and 5d display Q as a function of the curvature at theta solvent (χ = 0.5) 

and good solvent χ = 0 conditions, respectively. Different solvent quality shows the 
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similar behavior to Q. When the surface is outwardly bent to a smaller R, more and 

more solvents tend to be excluded out from the brush. This escaping extent of 

solvents becomes larger if the grafting density is decreased from σ = 0.9 to σ = 0.1. 

The reason is that the change of brush height at low grafting density is significantly 

larger than that of high grafting density. At relative low grafting density the 

considerable variation of solvent content is responsible for the observed dominance of 

Ks shown in figure 5b.  

 

 

Figure 5. (a) The contributions to bending modulus from three different parts: the polymer (Kp), 

the solvent (Ks) and the interaction energy (Kps) at different grafting density with fixed χ = 0.5. (b) 

The contributions to bending modulus from different parts at different Flory-Huggins parameter 

with fixed σ = 0.5. (c) The variation of the amount of solvents within a cylindrical brush Q with 

the cylinder radius R for low (σ = 0.1) and high (σ = 0.9) grafting density. (d) The variation of the 
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amount of solvents within a cylindrical brush Q with the cylinder radius R for good (χ = 0) and 

ideal (χ = 0.5) solvent qualities. The chain length is N = 100 for all cases.  

 

3.2 The application to a real biological system  

Now we apply our method to a real system, i.e., a membrane consisting of the 

mixture of phospholipids and lipids grafted with poly(ethylene glycol) (PEG) chains 

in aqueous solutions. For simplicity, we only consider a monolayer. The molar 

fraction of polymer lipids Xp varies from 0 to 1. The statistic polymer segment length 

is b = 0.39 nm. The Flory-Huggins parameter is chosen as χ = 0. Four cases with 

different molecular weight Mw = 400, 800, 2000, 5000 are considered, which gives the 

numbers of segments per grafted chain as N = 8, 17, 45, 114, respectively. These 

parameters correspond to certain representative PEG-lipid. It is noted that in this 

section the coupling between curvature and area expansion is considered. 

The addition of PEG chains to the membrane undoubtedly changes the elastic 

properties, and many experiments and theories deal with this problem as stated in 

introduction. Marsh derived many valuable results based on eqn (1).
24

 In order to 

determine the bending modulus of membrane with polymer-lipids, we completely 

follow Marsh’s strategy
24

 and use the same parameters as his for comparison. The 

only difference is the free energy calculation for the polymer brush. We adopt 

numerical SCFT method while Marsh employs eqn (1). The following calculation will 

show that numerical SCFT is necessary to give an accurate enough explanation for a 

real experiment.  
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One effect of the addition of polymer-lipid is the expanded equilibrium area per 

lipid molecule due to the lateral pressure from polymer brush. The net tension latτ  of 

a membrane is a combined effect of the cohesive hydrophobic lateral tension phob
γ , 

the opposing lateral pressure brush

lipid∏  and polymer induced pressure brush

p∏ , as 

indicated as follows
24

 

brush brush

lat phob lipid pτ γ= −∏ −∏ .                       (24) 

If the bare membrane is totally composed of simple lipids without polymer-lipid, 

the net tension can be described as 

bare

lat phob lipidτ γ= −∏ .                             (25) 

In equilibrium state, the membrane is tension-free ( 0latτ = ). Since phob
γ  keeps 

constant in all situations, one can have 

brush brush bare

lipid p lipid∏ +∏ = ∏ .                          (26) 

The lateral pressure from polymer brush is given by 

1

1 1

( )
pbrush

p

F f
f A

A A

∂ ∂
∏ = − = − +

∂ ∂
.                    (27) 

Here, Fp is the average free energy of each lipid in the system. A1 is the area per lipid 

occupies at equilibrium. f is the free energy per unit area and satisfies 1pF f A= ⋅ , and 

it is obtained from our numerical results. The lipid area A1 needs to be adjusted to 

satisfy the free-tension requirement.  

The lateral pressure caused by simple lipids without polymer-lipid is expressed 

in a virial expansion form: 

32

2 3

1,0 1,0 1,0

1bare

lipid B

BB
k T

A A A

 
∏ = + + + ⋅⋅⋅  

 
.                 (28) 

The virial coefficients B2 and B3 of lipids equal 2.51 nm
2
 and 0.779 nm

4
, respectively. 
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The equilibrium area per lipid in the absence of polymer-lipids, A1,0, is set as 0.65 

nm
2
.
24

 In the presence of polymer-lipids, the lateral pressure from lipids follows 

32

2 3

1 1 1

1brush

lipid B

BB
k T

A A A

 
∏ = + + + ⋅⋅⋅ 

 
.                  (29) 

Combining with eqn (23) - (26), A1 is determined through 

1 2 32 2 3 3

1 1,0 1 1,0 1,0 1,0 1,0

1 1 1 1 1 1f
f A B B

A A A A A A A

     ∂
− + = − + − + −           ∂       

.       (30) 

Figure 6a displays the fraction increase of each lipid area (A1 - A1,0) / A1,0 as a 

function of Xp. Our calculation gives a larger area expansion ratio than the prediction 

from analytical results. For example, for N = 114 and Xp = 0.2 the area expansion ratio 

is about 22% while Marsh’s mean field argument produces 14%. Martin and Wang’s 

calculation proved
27

 that the scaling prediction based on solely second virial 

interaction is inadequate for the lateral pressure of polymer brush. At high grafting 

density, numerical SCFT predicts a higher lateral pressure of polymer brush than SST.     

To calculate the bending modulus, we consider a slightly bent cylindrical 

membrane. For a bilayer membrane, one only needs to consider one monolayer for the 

symmetry reason. Under bending, the area per lipid molecule at neutral surface 

(middle place of a membrane) remains a constant A1. Then the area per lipid molecule 

A1(R) at the grafting surface of polymer is a function of the curvature R 

1

1 1
( ) (1 )

d

R
A R A= + .                         (31) 

A1 can be obtained from figure 6a. d1 is the thickness of lipid monolayer. The constant 

volume of the monolayer requires 

1 1 1,0 1,0d A d A⋅ = ⋅ .                         (32) 
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d1,0 is the thickness of a bare lipid monolayer and is set as 1.5 nm. The R-dependent 

area per lipid leads to the variation of grafting density of polymer brush with respect 

to the polymer-lipid content and the curvature. The new grafting density applied in the 

calculation of free energy reads: 

2

1( )
eff p

b
X

A R
σ

 
= ⋅ 

 
.                        (33) 

The total bending modulus of a monolayer contains two parts, the lipid 

contribution K0 and the polymer brush Kp, as following 

0total pK K K= + .                         (34) 

K0 is the intrinsic modulus of bare lipid membrane. It is classical and reads:
24 

232
0 12 3

1 1 1

321

2

B
Bk T B

K d
A A A

 
= + + 

 
.                  (35) 

The contribution from polymer brush Kp is calculated by fitting through eqn (18). 

Noted that the free energy density has to be obtained from eqn (15) for a grafting 

density given for every given R.  

The calculated bending modulus of a lipid monolayer Ktotal as a function of 

polymer-lipid content Xp is given in figure 6b. At Xp = 0 the value is the membrane 

elasticity K0 of a bare lipid monolayer. The addition of polymer-lipids increases the 

bending modulus of the membrane gradually. On one hand, the added polymer lipids 

raise the effective grafting density and contribute a positive rigidity to the membrane. 

On the other hand, when adding more polymer-lipid into the membrane, the lateral 

pressure from brush results in the increase of the area per lipid as well as the decrease 

of the membrane thickness, which decreases the intrinsic bending modulus of the 
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membrane K0. Accordingly, this effect tends to decrease the effective grafting density. 

The opposing effects partially compensate each other to some extent, leading to a 

moderate dependence of Kp on the content of added polymer-lipids. The key to this 

coupling between polymer brush and membrane is the lateral pressure from polymer 

brush. Thus a careful theoretical treatment must be considered in order to correctly 

predict the pressure and free energy for an experimental system.  

Compared to Marsh’s analytical mean filed result,
24

 some special characters in 

our calculation can be verified. For very short chain N = 8, the total contribution to 

Ktotal from polymer-lipids is always a positive, however, in Marsh’s results it is 

negative. More interestingly, for longer chains Ktotal increases rapidly with Xp, and 

then it seems to reach a plateau region when Xp is large enough. From figure 6a we 

know that eqn (1) underestimate the contribution from polymer brush to the lateral 

pressure. At high content of polymer-lipids, the area per lipid A1 will increase 

prominently, which causes a distinct decrease of the effect grafting density effσ . The 

direct contribution from polymer brush Kp is nearly compensated by decrease grafting 

density from the area expansion. Therefore, more grafted polymer chains can not 

induce extra modulus.  
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Figure 6. (a) The fraction increase of the area per lipid molecule (A1-A1,0) / A1,0, which expansion 

is induced by the lateral pressure from polymer brush, as a function of the mole fraction of 

polymer lipid Xp. The lateral pressure is obtained the numerical SCFT calculation. The other 

parameters are set as χ = 0, A1,0 = 0.65 nm
2
, b = 0.39 nm, B2 = 2.51 nm

2
, B3 = 0.779 nm

4
. The 

numbers of segments each chain are N = 8, 17, 45, 114, whose values correspond to PEGs with 

molar masses of 400, 800, 2000, 5000. (b) Dependence of total bending modulus Ktotal on mole 

fraction Xp of polymer lipid in the membrane for a lipid monolayer. All other parameters are the 

same as (a), together with d1,0 = 1.5 nm. For each given mole fraction value, the SCFT calculation 

is executed with variable lipid area A1 determined in figure (a) as well as lipid monolayer 

thickness d1.   

 

4. CONCLUSION  

In this paper we study the contribution of neutral polymer brushes to the bending 

rigidity of the grafting surface. The strategy is to expand the free energy of a bent 

brush in power of the curvature to the second order and then to extract the bending 

modulus. By use of numerical SCFT with taking into account the solvent explicitly, 

we obtain the precise dependence of K on parameters N, σ and χ. Our calculation 

covers the parameter space with 0.1 < σ < 0.9. For long chain this region corresponds 

to a highly dense brush, i.e., the crossover region between a melt brush and a 

moderate density brush. In this aspect, our results is an important supplementary to 

Milner and Witten’s SST treatment. The main finding is that the consideration of 

solvents leads to important modification to the classic analytical expression of eqn (1). 
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The numerical result can not give a simple power dependence of K on the grafting 

density, nevertheless, it indeed gives an approximate N
3
 dependence for K. The 

solvent quality also has great influence on K when the grafting density is not so high.  

We then apply our method to a real experimental system, namely, a lipid 

monolayer consisting of lipid and PEG-grafted lipid mixture, and study how the 

bending modulus of lipid monolayer changes with the content of polymer lipid. In our 

treatment the complex coupling between the change of lipid area and polymer grafting 

density is rationally considered. The accurate calculation demonstrates that the added 

PEG-lipids cause much larger lateral pressure, as well as significant expansion of 

lipid area, compared to the prediction from analytical expression of eqn (1). From the 

experimental view point, our calculation for K provides a more reliable prediction on 

elastic properties of membrane, which is very important on quantitatively 

understanding and controlling the role of modified polymers to biomembrane. 
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