
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Stability and dynamics of magnetocapillary interactions

Rujeko Chinomona,a Janelle Lajeunesse,b William H. Mitchell,b Yao Yao,b and Saverio E. Spagnolieb

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 200X

DOI: 10.1039/b000000x

Recent experiments have shown that floating ferromagnetic beads, under the influence of an oscillating background magnetic

field, can move along a liquid-air interface in a sustained periodic locomotion [Lumay et al., Soft Matter, 2013, 9, 2420]. Dynamic

activity arises from a periodically induced dipole-dipole repulsion between the beads acting in concert with capillary attraction.

We investigate analytically and numerically the stability and dynamics of this magnetocapillary swimming, and explore other

related topics including the steady and periodic equilibrium configurations of two and three beads, and bead collisions. The

swimming speed and system stability depend on a dimensionless measure of the relative repulsive and attractive forces which

we term the magnetocapillary number. An oscillatory magnetic field may stabilize an otherwise unstable collinear configuration,

and striking behaviors are observed in fast transitions to and from locomotory states, offering insight into the behavior and

self-assembly of interface-bound micro-particles.

1 Introduction

The last decade has seen a burst of interest in the manip-

ulation of colloidal particles, including applications such as

tunable smart materials and micro-scale self-assembly1, and

the behavior of colloidal particles bound to a liquid-air inter-

face and forced by electric and magnetic fields2–10. Focuses

have included particles of differing types11–13, the dynamics

of self-assembled vesicles14, time-dependent forcing12,15,16,

Janus particles17,18, self-propelled structures19, optical ef-

fects20, the rate of cluster formation21, and self-assembly on

ultra-soft gels22,23. The introduction of colloidal building

blocks into soft media such as fluid interfaces, nematic liq-

uid crystals, or more complex mesophases creates distortions

of the medium which can be used to fabricate more elabo-

rate colloidal objects1,24–28. Much effort has been devoted to

achieving complex self-assembly by tailoring the shape of the

elementary colloidal building blocks27,29.

In what is playfully known as the “Cheerios effect,”24,30,

identical particles floating at an air-liquid interface experience

capillary forces which act to draw them together. The Chee-

rios effect and similar surface-mediated aggregation have been

investigated in the context of vesiculation31,32, colloidal floc-

culation24,28, millimetric ecology33,34, and the buckling and

folding dynamics of floating filaments35,36.

Colloidal suspensions, upon the introduction of another

physical force such as a magnetic field, can exhibit surpris-

ing behaviors and dynamics. Localized magnetic snake and
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aster shapes can emerge when the colloidal suspension is con-

fined at the interface between two immiscible liquids and is

energized by the alternating magnetic field9,37. Piet et al. pro-

vided an experimental and theoretical study of this snake-aster

transition, and showed that viscosity can be used to control

the outcome of the dynamic self-assembly in magnetic col-

loidal suspensions13. If the system is well characterized the-

oretically, the dominant force balance can be tuned to yield

desirable shapes. Recent examples include the use of adhe-

sion and delamination38–44, and swelling and capillary inter-

actions45–47. In a recent experiment, Lumay et al.48 studied

Fig. 1 Three paramagnetic beads afloat on a meniscus. Reproduced

from Lumay et al.48, with permission from The Royal Society of

Chemistry.

the peculiar dynamics of a small number of identical floating

ferromagnetic beads, which in addition to capillary attraction

also experience dipole-dipole magnetic repulsion induced by

an external magnetic field (see Fig. 1). A balance between the
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attractive capillary forces and the repulsive magnetic forces

leads to a self-assembled equilibrium structure. Then, upon

the introduction of an oscillating magnetic field in the plane

parallel to the fluid surface, the self-assembled structure was

found to transport itself through the liquid while undergo-

ing a periodic internal dynamics. Subsequent efforts by the

same group showed more intriguing transitions49,50 and self-

assembly of magnetocapillary swimmers51.

In this paper, we investigate analytically and numerically

the equilibrium configurations of two and three beads in a con-

stant and an oscillatory magnetic field, study the stability of

these configurations to small perturbations, and explore the

magnetocapillary swimming dynamics described by Lumay

et al.48. Swimming speeds and stability properties are deter-

mined analytically as a function of a dimensionless measure

of the relative repulsive and attractive forces which we term

the magnetocapillary number. The fluid is assumed to be suf-

ficiently viscous, or the beads sufficiently small, so that the

Stokes equations of viscous flow apply. For certain physical

parameters, an oscillatory magnetic field is shown to stabilize

an otherwise unstable collinear configuration, and striking be-

haviors are observed in fast transitions to and from propulsive

states. In addition, large oscillatory magnetic fields can induce

bead collisions. The results may provide insight into the be-

havior and self-assembly of interface-bound micro-particles.

The paper is organized as follows. The equations of motion

are described in §2, along with a description of the dimen-

sionless parameters which characterize the system, and a note

on the numerical method used. In §3 we describe equilibrium

states of two and more beads in the case of a fixed background

magnetic field, and we study analytically the stability of these

equilibria with the introduction of an oscillatory component

of the magnetic field. In §4 we choose parameters that lead

to a periodic mode of locomotion, and we study the effects of

the various parameters on the mean translational velocity. We

conclude with a discussion in §5.

2 Equations of motion and dimensionless pa-

rameters

We begin by describing the forces acting on a system of N

negatively buoyant colloidal particles confined to an air-liquid

interface. In the case of a single floating bead, the equilib-

rium shape of the interface is determined by a force balance

of the effective weight of the bead (the bead weight minus the

Archimedean buoyancy force) and surface tension. The length

scale over which the surface exhibits significant curvature is

the capillary length, ℓc =
√

γ/∆ρg, where γ is the interfacial

surface tension, ∆ρ is the density difference between the two

fluids, and g is the acceleration due to gravity (ℓc ≈ 2mm for

an air-water interface)52. In the case that two identical beads

are floating on the surface, the surface area energy is reduced

when they are drawn nearer to each other, giving rise to an at-

tractive force between them (the Cheerios effect). We denote

the position of the ith bead center by xxxi, the vector from the ith

bead to the jth bead by rrri j = xxx j − xxxi, the interparticle distance

by ri j = |rrri j|, and we define r̂rri j = rrri j/ri j. The surface defor-

mation due to the presence of the jth bead leads to an attractive

force on the ith bead given by

FFF j
c = 2πγ āBo5/2Σ2K1(ri j/ℓc)r̂rri j, (1)

where γ is the surface tension, ā is the bead radius, Bo is the

Bond number, Bo = (ā/ℓc)
2, and K1(·) is the first modified

Bessel function of the second kind. Finally, Σ = (2δ −1)/3−
cos(θc)/2+ cos3(θc)/6, where θc is the contact angle at the

bead-air-fluid interface and δ is the ratio of the bead and liquid

densities30.

The introduction of an external magnetic field to the system

can lead to induced dipole-dipole repulsion or attraction be-

tween floating paramagnetic particles. An isolated paramag-

netic bead in a uniform field of strength HHH0 induces a magnetic

dipole moment mmm, where

mmm =
4

3
π ā3χHHH0, (2)

and χ is the effective magnetic susceptibility. The dipole

moment associated with each particle is then given by mmm =
(4/3)π ā3χB/µ0, where B is the local flux density which

combines the flux density of the external magnetic field B0

(B0 = µ0HHH0, where µ0 is the free-space permeability), and a

local dipolar component. The resulting force on the ith bead

due to the induced dipole on the jth bead is given by

FFF j
m =−3µ0

4π

(

(mmm ···mmm)r̂rri j −5(mmm · r̂rri j)
2r̂rri j +2(mmm · r̂rri j)mmm

r4
i j

)

(3)

(see53). We will consider external magnetic fields with a

constant vertical component (in the ẑzz direction, perpendicular

to the fluid surface) and an oscillatory horizontal component

(in the x̂xx direction, parallel to the fluid surface). This yields

B= B̄zẑzz+ B̄x sin(2π f̄ t)x̂xx, with f̄ the frequency of the oscillat-

ing magnetic field, and so the induced magnetic force may be

written as

FFF j
m =−

(

4π ā6χ2B̄2
z

3µ0

)

(

FFF
j
0 +

(

B̄x sin(2π f̄ t)

B̄z

)2

FFF j
x

)

, (4)

where

FFF
j
0 =− r̂rri j

r4
i j

, FFF j
x =

−r̂rri j +5(x̂xx · r̂rri j)
2r̂rri j −2(x̂xx · r̂rri j)x̂xx

r4
i j

. (5)
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As illustrated in Fig. 2, this force can induce further repul-

sion or attraction, depending on the arrangement of the beads

relative to the direction of the magnetic field. If the beads are

aligned perpendicular to the horizontal field, the dipole axes

will tilt in unison as shown in Fig. 2b, resulting in a slight

extra repulsion between the beads due to an increase in the

magnitude of the total magnetic flux density |B|. However, if

the beads are aligned parallel to the horizontal field, the mag-

netic dipole axes will rotate so as to diminish the magnetic

attraction between the beads, as shown in Fig. 2c.

Absent any other forces on the beads it will be shown that

locomotion is impossible, so that the viscous hydrodynamic

forces must be considered to account for the locomotion seen

in the experiments. We will consider the fluid regime where

the viscous dissipation overwhelms any inertial effects (Stokes

flow)54. The Reynolds number associated with individual

bead motion through the fluid is given by Re = ρ ā f̄ d/µ ,

where ρ is the fluid density, d is a characteristic amplitude of

bead displacement during oscillation, and µ is the fluid viscos-

ity. The fluid used in the experiments is a glycerol-water mix-

ture, resulting a characteristic viscosity µ = 10−3Pa · s. The

beads have radius ā = 250µm, the magnetic field frequency is

approximately f̄ = 3Hz, and typical displacement amplitudes

are d = ā/5, resulting in a small Reynolds number: Re≈ 0.03.

The fluid flow uuu generated by the motion of the jth bead is

modeled through the most slowly decaying fundamental so-

lution of the viscous Stokes equations, the Stokeslet singular-

ity55,

uuu j =
1

8πµri j

(

I+ r̂rr jir̂rr
T
ji

)

·FFFh, (6)

where I is the identity operator and −FFFh is the viscous drag

on the jth bead. The Stokes drag law in an infinite fluid states

that FFFh = 6πµ āẋxx j. This is a rough approximation; the beads

are only partially immersed and the flow above is appropriate

for a fluid of infinite extent and no boundaries. However, the

effect of partial immersion may be understood as a reduction

in the effective bead radius ā, and the effect of the shear-free

liquid-air interface could be modeled using the method of im-

ages55,56 which at leading order would introduce a factor of

2 to the flow above (which may cancel the effect of partial

immersion).

Including all of the forces acting on the beads, and under

the assumption of linearity (for instance, assuming that the

surface deformation gradient is sufficiently small), the parti-

cle motions can be understood as a superposition of pairwise

interactions. Momentum balance then gives

ẋxxi = ∑
j 6=i

(

uuu j +
FFF j

6πµ ā

)

, (7)

where FFF j = FFF j
c +FFF j

m, the combined capillary attraction and

magnetic repulsion.

2.1 Nondimensionalization

The system is made dimensionless by scaling lengths on the

capillary length, ℓc, forces on the capillary force F , where

F = 2πγ āBo5/2Σ2, velocities on F/(6πµ ā), and time on

6πµ āℓc/F . The dimensionless velocity of the ith bead (where

all variables are now assumed to be dimensionless) then satis-

fies

ẋxxi = ∑
j 6=i

(

uuu j +FFF j
)

, (8)

where

FFF j =F(ri j)r̂rri j

−Mc (Bx sin( f t))2

(

r̂rri j −5(x̂xx · r̂rri j)
2r̂rri j +2(x̂xx · r̂rri j)x̂xx

r4
i j

)

,

(9)

and we have defined the dimensionless horizontal magnetic

field amplitude Bx = B̄x/B̄z and frequency f = 3µ āℓc f̄/F ,

and the dimensionless force

F(r) = K1(r)−
Mc

r4
. (10)

In the above we have introduced a key dimensionless constant

Mc, which we term the magnetocapillary number,

Mc =
1

ℓ4
cF

(

4π ā6χ2B2
z

3µ0

)

=
2ā5χ2B̄2

z

3µ0γBo5/2Σ2ℓ4
c

, (11)

which compares the relative magnitudes of the repulsive mag-

netic force and the attractive capillary force. Finally, the di-

mensionless fluid velocities in Eq. (8) are written as

uuu j =
3a

4ri j

(ẋxx j +(ẋxx j · r̂rr ji)r̂rr ji) , (12)

where a = ā/ℓc is the dimensionless bead radius.

In this paper we will restrict our attention to a regime where

the particles and inter-particle distances are smaller than the

capillary length, a ≪ 1, and in the forthcoming analysis we

will frequently use an approximation of the first modified

Bessel function of the second kind, K1(r) ≈ 1/r for r ≪ 1

(though in the numerical simulations we need not make such

an assumption). In the experiments of Lumay et al.48, the bead

radius is approximately 10% of the capillary length (a ≈ 0.1),

though the inter-particle distances are not much smaller than

the capillary length. The magnetic field strengths are approxi-

mately B̄z = 2.5 ·10−3T and B̄x = 4 ·10−3T , with frequencies

on the order of f̄ = 1Hz.

Estimating the magnetocapillary number relevant to the ex-

periments is nontrivial given the large number of physical pa-

rameters in its definition. However, the equilibrium configu-

ration gives us a clue. When Bx = 0, an equilibrium for two
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Fig. 2 Illustration of the anisotropic effect of the horizontal component of the magnetic field on two floating beads. (a) A vertical field leads to

an induced dipole-dipole repulsion. (b) A component of the magnetic field in the direction perpendicular to the line of centers between the

beads leads to a tilting of the dipole axes, leaving the bead repulsion unchanged for fixed |B|. (c) If the beads are aligned with the horizontal

magnetic field component, the tilting of the dipole axes result in a reduced repulsion, or even a magnetic attraction for sufficiently large

horizontal field amplitude Bx.

beads (and three beads, as we will show in the following sec-

tion) is achieved when F(r) = 0, where the capillary attraction

exactly balances the magnetic repulsion. With K1(r) ≈ 1/r,

the equilibrium bead distance is then given by r = M
1/3
c . The

equilibrium distances described in the experimental work are

on the order of 4a, resulting in an approximate value of the

magnetocapillary number of Mc ≈ 0.06. In addition, this

gives a means of estimating F without measuring δ ,θc,Σ
and γ . Namely, using ā = 2.5 · 10−4m, ℓc = 2.5 · 10−3m,

µ0 = 4π · 10−7N/A2 (the permeability of the vacuum) and

χ = 3.6 (the magnetic susceptibility of chrome steel beads57),

we find that F ≈ 2.8 · 10−8N. Appropriate dimensionless

quantities for understanding the experiments are then a = 0.1,

Bx ∈ [0,2], and f ≈ 2.5 (using f̄ = 1Hz). These are the values

used in the present work unless otherwise stated.

Finally, the dimensional velocity scale in the experiments

for frequency f̄ = 3Hz is estimated to be U = 6mm/s. Av-

erage speeds of the center of mass in the experiments were

found to be as large as one bead radius per period, corre-

sponding to a dimensionless swimming speed of U ≈ (2.5 ·
10−3m) ∗ (3s−1)/U ≈ 1.25. The capillary wavelength in the

experiment is (2πγ/ρ f̄ 2)1/3 ≈ 6cm, i.e. much larger than the

particle systems, and we will neglect such effects.

As a way to explore parameter space and to test the validity

of the analytical expressions that will be derived in this paper,

the system of equations (8) are integrated numerically. Due

to the relative velocity dependence of the Stokeslet flow, the

system is implicit in the bead velocities at every moment in

time. An explicit specification of the bead velocities is recov-

ered by inverting a 2N × 2N matrix for a given configuration

at every moment in time. In some cases the numerical integra-

tion is tasked with distinguishing periodic swimming motions

from periodic but non-swimming states with high confidence.

Time-stepping is achieved using the fourth-order Runge-Kutta

method, and any results presented in the remainder of the pa-

per remain robust upon reducing the timestep size. We have

verified the accuracy of the method by a convergence study

and comparison to exact solutions in the simplest symmetric

settings.

3 Equilibrium states and stability

Consider two floating beads under the influence of a fixed ver-

tical magnetic field in the ẑzz direction (Bx = 0). In equilib-

rium the beads are motionless, and the inter-particle distances

are determined by a balance of the induced dipole-dipole re-

pulsion and the capillary attraction, F(r) = 0 in Eq. (10).

Approximating the modified Bessel function for r ≪ 1 as

K1(r) ≈ 1/r, this balance is achieved when 1/r = Mc/r4,

so that the equilibrium distance between the beads is given

by r∗ = M
1/3
c . Naturally, the equilibrium distance increases

with the magnetocapillary number (a measure of the relative

strength of the magnetic repulsion). Linearizing Eq. (8) about

this fixed point, the equilibrium configuration is easily found

to be asymptotically stable to perturbations.

Similarly, consider three floating beads located at the ver-

tices of an equilateral triangle as in Fig. 3b. Equilibrium is

achieved when each pair FFF i +FFF j = 000, for i, j ∈ {1,2,3} and

i 6= j. Since the beads are not collinear, the three resulting

equations require that each pairwise force is balanced, FFF i = 000.

Hence, the equilibrium distance for three beads in this equi-

lateral placement is identical to that in the two-bead case,

r∗ =M
1/3
c , and just as in the case of two beads this equilateral

placement is asymptotically stable.

Another equilibrium configuration exists when the three

beads are collinear, in which case equilibrium is achieved

when F(r)+F(2r) = 0; again using K1(r) ≈ 1/r, the beads

settle to a slightly smaller distance r̃ =(17Mc/24)1/3, as illus-

trated in Fig. 3c. This collinear conformation is asymptotically
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θ

xi

xj

r̂ij

x̂

(a)

(b)

ŷ (c)

π/3

π/3

π/3

r∗ = M1/3
c

r̃ =

(

17Mc

24

)1/3

Fig. 3 Equilibria for (a) two beads and (b,c) three beads for a

constant vertical magnetic field. The equilateral triangle is an

asymptotically stable configuration, and the inter-particle distances

at equilibrium are each identical to the equilibrium distance in the

two-bead problem, r∗ = M
1/3
c . The equilibrium distance in the

collinear case (c) is slightly smaller, r̃ = (17Mc/24)1/3.

stable to perturbations along the axis of the bead placement,

but is asymptotically unstable to any perturbations that destroy

bead collinearity, with the perturbed configuration rapidly re-

arranging to form an equilateral triangle. This may also be

understood through a simple argument: the inter-particle dis-

tance in the three bead case is smaller than in the two bead

case, so that neighboring bead pairs are under compression.

Given a perturbation that destroys collinearity, the neighbor-

ing beads under compression give rise to a force leading to

the further degradation of collinearity. The instability of the

collinear configuration is reminiscent of the buckling of float-

ing elastic filaments due to capillary self-attraction36.

3.1 Stability of equilibria under an oscillating magnetic

field

The stability of the equilibria illustrated in Fig. 3 are straight-

forward to analyze, but the introduction of an oscillating com-

ponent of the magnetic field, Bx 6= 0, introduces new com-

plexity and reveals some surprises. In particular, two beads

are driven towards alignment with the horizontal field, a suf-

ficiently large oscillation can stabilize the previously unsta-

ble collinear configuration, and an equilateral configuration is

driven towards a perpendicular alignment with the field.

3.1.1 Stability and collision of two oscillating beads

First we consider the simple case of two floating beads. If the

beads are aligned with the oscillating magnetic field (r̂rr12 ∝ x̂xx),

the particles will oscillate along the x̂xx axis due to both the ro-

tation of the magnetic dipoles and the modulation of the am-

plitude of the net magnetic field, with the distance between

the beads varying in time, and with no movement along ŷyy (see

Fig. 2c). Meanwhile, if the beads are aligned perpendicular to

the oscillating magnetic field (r̂rr12 ∝ ŷyy), the particles will move

periodically along ŷyy, now due only to the modulation of the net

magnetic field and with no movement along x̂xx (see Fig. 2b).

More generally, let r̂rr12 form an angle θ with x̂xx as shown in

Fig. 3a, and assume that the beads are placed initially at the

equilibrium distance r∗ where F(r∗) = 0. Writing the inter-

particle vector as rrr12 = xxx2 − xxx1 = rrr = r (cos(θ)x̂xx+ sin(θ)ŷyy),
then using Eq. (8) we find

ṙrr =− 3a

4r
(ṙrr+ ṙ r̂rr)−2F(r)r̂rr

+
2Mc

r4
(Bx sin( f t))2

(

(1−5cos2(θ))r̂rr+2cos(θ)x̂xx
)

.

(13)

Decomposing the system dynamics into its radial and angular

components, we have

(

1+
3a

2r

)

ṙ =−2F(r)− Mc

r4
(Bx sin( f t))2 (1+3cos(2θ)) ,

(14)
(

1+
3a

4r

)

θ̇ =−2Mc

r5
(Bx sin( f t))2

sin(2θ). (15)

Assuming a constant separation distance r and Bx 6= 0,

Eq. (15) indicates that the angle θ = π/2 (where the beads

are set perpendicular to the oscillating field) is unstable, and

that the system will be driven to a stable orientation, θ = 0

(where the beads are aligned with the oscillating field) for

θ ∈ [0,π/2). In general, however, the distance r also fluc-

tuates in time, but r is uniformly bounded below in the regime

of interest (the bodies cannot overlap), which is sufficient to

ensure that θ = 0 is the only stable equilibrium. Hence, two

beads are driven towards alignment with the oscillating hori-

zontal field for any relative amplitude Bx 6= 0.

For a sufficiently large oscillating magnetic field the mag-

netic dipole moments may undergo a large rotation (see

Fig. 2c) and the two beads may collide. The critical value

of Bx above which this occurs, determined by numerical in-

tegration of the dynamics, is shown as a function of Mc and

f in Fig. 4. The value is larger for larger Mc since the mag-

netic repulsion is stronger and the beads remain distant, and

for larger frequencies when the bead dynamics are driven by

the mean horizontal field, 〈B2
x sin2( f t)〉 = B2

x/2, instead of its

full magnitude, ‖B2
x sin2( f t)‖∞ = B2

x .

To estimate this value we set θ = 0 in Eq. (14) and con-

sider two limits. First, in the limit as f → 0, we set r = 2a
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Fig. 4 The critical value of Bx above which two oscillating beads

aligned with the horizontal magnetic field collide.

(so that the beads are just in contact) and ask if the interac-

tion is repulsive for all time. With K1(r) ≈ 1/r, this results

in the critical value Bx =
√

(1−8a3M
−1
c )/2. If Mc is small,

the magnetic repulsion is relatively weak and the beads col-

lide with only a small oscillation of the field (or even with no

oscillating field for extremely small Mc), while for any appre-

ciable Mc the critical value increases towards Bx = 1/
√

2, as

observed in Fig. 4. Next, in the limit as f → ∞, ignoring cap-

illary attraction (which can only reduce the critical value of

Bx for collision) the beads are certain to collide if the period

average of 1−2B2
x sin2( f t) is negative, or Bx = 1. This upper

bound is consistent with the numerical results in Fig. 4.

3.1.2 Stability of three oscillating beads The stability of

three beads due to the oscillating horizontal magnetic field

is even more interesting, as there is a surprising stabilization

of the collinear state. If the system is initially collinear and

placed in alignment with the horizontal magnetic field then

the field oscillation acts only to modulate the inter-particle dis-

tances in a periodic fashion. However, consider a perturbation

to the system that retains up-down symmetry, a translation of

the central bead by a relative angle θ that breaks collinearity as

shown in Fig. 5a. The beads oscillate in time at the frequency

of the horizontal magnetic field, but may return towards the

oscillating collinear state or may deteriorate towards a differ-

ent oscillating state. Figure 5b shows the deterioration of a

nearly collinear oscillatory state with Mc = 1.5, Bx = 0.25,

and θ(0) = 0.1; the system escapes to a state oscillating about

the equilateral triangle configuration. Meanwhile, the bead

trajectories using Mc = 1.5 and Bx = 0.7 are shown in Fig. 5c,

where the system is initialized as a perturbation away from the

stable equilateral configuration when Bx = 0. The system os-

cillates briefly and then transitions rapidly to the oscillating

collinear state.

To explore when the system returns to the oscillating

collinear state or deteriorates under such a symmetric per-

turbation we look first to the numerical simulations. For a

given value of Mc we first determine numerically the (un-

stable) collinear equilibrium configuration in the case Bx = 0

(solving for r∗), then shift the center bead symmetrically a

distance r∗/10 to give the initial condition for the oscillatory

cases with Bx > 0. The system either recovers to an oscil-

latory collinear state (circles in Fig. 6), or collapses to the

periodic dynamics about the equilateral triangle configuration

(triangles in Fig. 6). Beyond a critical value of the horizontal

magnetic field strength that depends on the magnetocapillary

number, the oscillatory collinear state is found to be stable.

The threshold value of the field strength diminishes monoton-

ically to zero with increasing magnetocapillary number, reach-

ing zero at approximately Mc ≈ 2.74. We will return to this

special value shortly. For yet larger values of Bx, the parti-

cles again collide. The computed values distinguishing this

collapse of the system are shown in Fig. 6 as squares, and we

observe a slow monotonic increase in the critical value with

increasing magnetocapillary number as in the two-bead case.

The critical value of Bx which distinguishes the stability of

the collinear state to transverse perturbations may be deduced

by studying the equations of motion that describe r(t) and θ(t)
(see Fig. 5a), and assuming that both θ and McB2

x are small.

The hydrodynamic interactions are neglected to simplify the

analysis. After dropping all terms of order O(θ 2) we arrive at

the following system,

ṙ =−F(r)−F(2r)− 17Cx

8r4
sin2( f t), (16)

d

dt
ln(θ) =−1

r

[

2F(r)−F(2r)+
79Cx

8r4
sin2( f t)

]

, (17)

where we have defined Cx =McB2
x . To begin our analysis, we

denote by r̃ the value of r for which dr/dt = 0 in (16) when

Cx = 0, or where F(r̃)+F(2r̃) = 0. Considering first Eq. (16),

assuming that Cx ≪ 1 we pursue a regular perturbation expan-

sion that results in the ansatz

r(t) = r̃+Cx

(

A+
g(t)

f

)

+O
(

C2
x

)

, (18)

where A is a constant and g(t) is a mean-zero oscillatory

function whose magnitude is of order unity. To find A, note

that over many periods, the average of the right hand side

of Eq. (16) can be rewritten as −ACx (F
′(r̃)+2F ′(2r̃))−

17Cx(16r̃4)−1 +O(Cx)
2, and by setting it to 0 we obtain

A =− 17

16r̃4(F ′(r̃)+2F ′(2r̃))
· (19)

This constant represents a shift in the mean relative posi-

tion of neighboring beads with the introduction of a nontriv-

ial oscillatory part of the magnetic field. Inserting the ansatz
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Fig. 7 The oscillating equilateral triangle configuration is stable when oriented perpendicular to the horizontal magnetic field. Here Bx = 0.5
is fixed. (a) The angle Θ(t), shown in (d), as a function of time for three frequencies and two magnetocapillary numbers. (b) The decay rate λ

is shown, where Θ(tn) = Θ(0)exp(−λ tn) and tn = πn/ f ; λ is seen to decay strongly with increasing magnetocapillary number. (c) The decay

rate also decreases with increasing frequency of oscillation. (d) The physical mechanism of stability, illustrated. For a small rotation of the

stable orientation the horizontal field deforms the configuration into a nearly isosceles triangle; the closest beads rotate strongly towards the

stable two-bead alignment with the field, resulting in a return of the system to the unperturbed oscillating configuration. The above may also

be seen as a small perturbation away from the symmetrically oriented equilateral case, and hence is also the mechanism by which the

symmetric case is unstable to small system rotations.

another issue arises for Mc > 3.34, as there is no such equi-

librium: the beads only interact via dipole-dipole repulsion. In

the above and for the remainder of the paper we will assume

that Mc < 2.74.

Returning to the question of collapse, we look to Eq. (16)

and perform the same estimates as for the two-bead case.

For f → 0, setting r = 2a and asking whether there is a

time for which the interaction can be attractive, the result-

ing estimate is a critical value of the horizontal field, Bx =
√

(1−192a3M
−1
c /17)/2, which is very slightly smaller than

the estimate in the two-bead case. For large values of Mc

the beads are well separated and a somewhat larger horizontal

field amplitude is necessary to induce a collision. Meanwhile,

for f → ∞, again ignoring capillary attraction results in an up-

per bound of Bx = 1. For finite f and large Mc the critical

value then lies between these two values, as we observe in

Fig. 6.

3.1.3 Stability of the equilateral configuration to small

rotations Finally, we observe in simulations that the oscil-

lating equilateral configuration is stable when aligned per-

pendicular to the magnetic field, (the line of symmetry is in

the ŷyy direction - the arrangement shown at the bottom left

of Fig. 6), and is in unstable when aligned symmetrically

with the oscillating field. To quantify this stability we de-

fine Θ as the angle between ŷyy and ℓℓℓ = xxx1 − (xxx2 + xxx3)/2, with

sin(Θ) = x̂xx · ℓℓℓ/|ℓℓℓ|. Fig. 7a shows Θ(t) as a function of time

for a selection of frequencies and magnetocapillary numbers,

with Bx = 0.5 fixed, and we observe exponential decay with

oscillations in every case. The rate of decay, however, de-

pends on the frequency and the magnetocapillary number. We

therefore define the exponential decay rate λ for the discrete

map Θn = Θ(tn) with tn = πn/ f for integer values of n, and

λ =− limn→∞ log(Θn/Θ0)/tn. Figures 7b-c show that this de-

cay rate decreases rapidly with increasing magnetocapillary

number for Mc ∈ (0,1), and also decreases somewhat with

increasing frequency.

The physical mechanism underlying this unexpected result

is illustrated in Fig. 7d. For a small rotation of the equilateral

configuration the horizontal magnetic field brings the beads

on the bottom of Fig. 7d closer to each other and they rapidly

rotate towards alignment with the field (the stable two-bead

configuration), resulting after a few cycles to a return of the

system to the unperturbed oscillating state. Larger magne-

tocapillary numbers place the beads further from each other

so that the stabilizing two-bead adjustment to the oscillating

field is not as strong. Meanwhile, increasing the frequency of

oscillation keeps the beads from undergoing large amplitude
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variations in position, again inhibiting the mechanism, and re-

sulting in smaller decay rates. The mechanism by which the

symmetrically oriented equilateral triangle is unstable is iden-

tical to the description above - the illustration in Fig. 7d may

be seen instead as a small rotation away from the symmet-

ric state, so that a small rotation drives the system away from

the symmetric configuration and towards the stable oscillating

state.

4 Fast magnetocapillary swimming requires

other physics

In the experiments of Lumay et al.48, it was shown that three

or more beads in the presence of an oscillating horizontal mag-

netic field may swim across the liquid-air interface. To ex-

plore the possibility of swimming in the mathematical model

studied here, we simulate the dynamics of three beads using

the parameters estimated based on the experiments, as dis-

cussed in §2. Namely, we consider a magnetocapillary number

Mc = 0.06, dimensionless frequency f = 2.5, and horizontal

magnetic field amplitudes Bx ∈ [0,1]. As we have seen in the

previous section, for this value of Mc and horizontal fields

with Bx / 0.5, the collinear oscillating state is unstable and

the system is driven to a nearly equilateral configuration with

any perturbation away from collinearity. However, we have

also found in numerical simulations that the nearly equilat-

eral configuration is stable for considerably larger values of

Bx. In particular, simulations suggest that with Mc = 0.06,

the nearly equilateral configuration is stable for all values of

Bx up to Bx ≈ 0.7, at which point the magnetic field is large

enough to create magnetic attraction and the simulations be-

come nonphysical (the bodies collide).

Setting Bx = 0.5, and initializing the system in the Bx = 0

equilateral equilibrium configuration, the three beads oscil-

late in a periodic and left-right symmetric fashion with a very

small net drift along the ŷyy direction. Transport in the di-

rection perpendicular to the oscillating part of the magnetic

field is consistent with what is observed in the experiments.

The system swims along the axis of symmetry with speed

U = 1.5 · 10−4, so that each bead translates one bead radius

only after many thousands of cycles. Figure 8 shows the

computed swimming velocity as symbols for a range of Bx,

with Mc = 0.06 fixed. The velocity increases monotonically

until the bodies collide at Bx ≈ 0.7. Other simulations not

shown here suggest that the swimming mode is stable to small

random perturbations of the initial configuration (while large

perturbations may deliver the system to the stable oscillatory

collinear state for large horizontal magnetic fields Bx as previ-

ously described).

We proceed now to investigate the swimming speed by an-

other asymptotic calculation. Once again we consider the case

U

Bx

Mc = 0.06

Bx

U

0 0.1 0.2 0.3 0.4 0.5 0.6
!0.5

0

0.5
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1.5

2

2.5

3
x 10

!4

0 0.1 0.2 0.3
!1

0

1

2

3

x 10
!6

x1

x2x3

Fig. 8 The swimming speeds for a range of horizontal magnetic

field amplitudes Bx with Mc = 0.06 fixed. The beads swim along

the axis of symmetry with monotonically increasing speed with

increasing Bx until the beads collide at Bx ≈ 0.7. Symbols show the

result of numerical simulations, while the solid line represents the

O(B4
x) asymptotic approximation from Eq. (30).

where |Bx| ≪ 1 and employ a regular asymptotic expansion.

The dynamics are constrained to the symmetric configuration

illustrated in Fig. 5b, and the departure of the beads from their

relative equilibrium positioning is assumed to be small. Let-

ting ε = McB2
x ≪ 1, the bead positions are written as

xxx1 =

(√
3

2
r∗+ εy

(1)
1 + ...

)

ŷyy, (22)

xxx2 =

(

r∗

2
+ εx

(1)
2 + ...

)

x̂xx+
(

εy
(1)
2 + ...

)

ŷyy, (23)

xxx3 =−
(

r∗

2
+ εx

(1)
2 + ...

)

x̂xx+
(

εy
(1)
2 + ...

)

ŷyy, (24)

with F(r∗) = 0. The expressions above are inserted into the

equations of motion, Eq. (8). Taylor expanding about ε =
0, and writing F(r) = F1(r − r∗)+ . . . , at first order in ε the

resulting system is written compactly as

ẋxx = F1Axxx+ cBBẋxx+(1− cos(2 f t))ccc, (25)

where xxx = (y
(1)
1 ,x

(1)
2 ,y

(1)
2 )T , F1 > 0 and cB = 3a/(4r∗) with

A=





−3/2 −
√

3/2 3/2

−
√

3/4 −9/4
√

3/4

3/4
√

3/4 −3/4



 , (26)

B=





0 −
√

3/2 7/2

−
√

3/4 −2 0

7/4 0 1



 , (27)

and ccc = [16(r∗)4]−1(−2
√

3,−9,
√

3)T . Although the expres-

sions above do not rely on this approximation, should we set
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K1(r) ≈ 1/r then r∗ = M
1/3
c and F1 = 3/M

2/3
c . Inverting to

isolate the velocity,

ẋxx = F1(I− cBB)
−1
Axxx+(1− cos(2 f t))(I− cBB)

−1ccc. (28)

Since A has one zero eigenvalue and two negative eigen-

values, the same is true of (I− cBB)
−1A as long as cB is

sufficiently small. The system is diagonalized by writing

(I− cBB)
−1A = TJT−1, where J is a diagonal matrix with

diagonal terms 0,λ2,λ3, with λ2,λ3 < 0. Note that the first

column of T is (1,0,1)T , which is the eigenvector of A cor-

responding to the eigenvalue 0. Performing a change of vari-

ables, yyy = T−1xxx, we have that

ẏyy = F1Jyyy+(1− cos(2 f t))ddd, (29)

with ddd = T−1(I− cBB)
−1ccc, and it is possible to show that the

solution must be of the form yyy= eee0+eee1 cos(2 f t)+eee2 sin(2 f t)
with constant unknown vectors eee0, eee1, and eee2. In particular,

due to the structure of the vector ccc there is no linearly grow-

ing part of yyy in time (see Appendix A). Since we must have

Jeee0 + ddd = 000, the first component of the vector eee0 is left un-

specified, so that yyy is only determined up to a constant multi-

ple of (1,0,1)T , which simply indicates the invariance of the

dynamics under translations in the ŷyy direction. The remaining

vectors eee1 and eee2 are solved by inverting a 6× 6 system of

equations. The symbolic computation software Mathematica

was used to solve for the somewhat long expressions which

we do not reproduce here. The main result of the calculation

above, however, is that there is no swimming of order ε (i.e. of

order McB2
x).

To find a nontrivial swimming speed we must proceed with

the asymptotic expansion to terms of size O(ε2) = O(M 2
c B4

x).
The linear system at the next order is identical to the one at first

order but with a more involved forcing term that depends on

the O(ε) dynamics. The full solution at second order is found

in a similar calculation as for the solution at first order, but

the dynamics are found to involve a term that grows linearly

in time. The resulting expression for the swimming speed,

writing U = ε2U2 +O(ε3) =U2M
2
c B4

x , is found to be

U2 = 864
√

3a f 2F1

(

9a2 +15ar∗−8(r∗)2
)

Φ−1, (30)

Φ = (r∗)5(9a−4r∗)
(

f 2(15a+8r∗)2 +144F2
1 (r

∗)2
)

×
(

f 2
(

171a2 +72ar∗−64(r∗)2
)2

+144F2
1 (r

∗)2(9a−4r∗)2
)

.

(31)

The analytical estimate of the swimming speed is shown in

Fig. 8 as a solid line. The approximation begins to deterio-

rate near Bx ≈ 0.4. Investigating Eq. (30) allows for the op-

timization of parameters for maximizing the swimming speed

in some contexts. For instance, setting Mc = 0.06 and a= 0.1,

the swimming speed is maximized by selecting the frequency

f ≈ 15.2, which increases U2 to 0.32 (from U2 = 0.065 in

the case f = 2.5). Nevertheless, the swimming speed in that

case is still exceptionally small. Note that larger oscillation

frequencies can increase the available relative horizontal field

strengths Bx, since the dipole moments are redirected before

particles can collide. At least up until the regime of bead col-

lision, with increased Bx comes larger particle excursion dis-

tances, larger hydrodynamic interactions, and greater swim-

ming speeds.

In zero Reynolds number locomotion, the Scallop theo-

rem states that no propulsion is possible if the kinematics

are time-reversible (so-named for the single degree of free-

dom available to a simple scallop)58–60. In the present setting,

the dynamics of the three beads are very nearly but not quite

time-reversible so locomotion is possible. However, the beads

nearly move back and forth along the same curve through-

out each cycle, so that the kinematics are not sufficiently well

removed from reversible dynamics to result in a significant

swimming speed. Other simple swimming bodies in viscous

fluids are designed specifically to avoid such reversible kine-

matics, such as the three-bead model swimmer of Najafi and

Golestanian61.

5 Discussion

We have investigated the stability and dynamics of two and

three floating paramagnetic beads under the influence of cap-

illary attraction and magnetic repulsion. The introduction of

an oscillating horizontal magnetic field was found to influence

the stability properties in surprising fashion: two beads are

driven towards alignment with the oscillatory part of the field,

while three beads are driven towards a nearly equilateral ar-

rangement unless the horizontal field is of large amplitude,

in which case the horizontal collinear state is asymptotically

stable. We proceeded to study the locomotion of the nearly

equilateral configuration and compared the results of analyt-

ical and numerical calculations, which matched closely for a

wide range of Bx.

One of the main findings of this research is that the Stoke-

sian hydrodynamic interactions are not sufficient to describe

the observed dynamics in the experiments, and to our knowl-

edge the question of precisely how the swimming speeds ob-

served in the experiments are achieved remains open. Al-

though not presented here we have also considered the effect

of particle and fluid inertia by solving the Basset-Boussinesq-

Oseen equation of unsteady flow62. However, since the

Reynolds numbers relevant to the experiments are very small,

Re ≈ 0.03, we have found that inertia has only a very small

effect on the computed swimming speed.

We have also investigated the role of Brownian fluctuations,

but the dimensionless diffusion constant relevant to the ex-

periments (from the fluctuation-dissipation theorem) leads to
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forces six orders of magnitude smaller than the capillary and

magnetic forces on the beads. Moreover, even for artificially

inflated values of the diffusion constant the dynamics are still

driven on average by a deterministic swimming motion at the

same mean swimming speed. Also recall that the oscillating

magnetic field renders the swimming configuration stable to

rotational perturbations. Hence, thermal effects which act to

reorient the body are over-damped and the swimming system

tends to remains on course as it moves through the fluid until

the diffusion constant is extremely large. This said, the physi-

cal forces that lead to swimming speeds in the work of Lumay

et al.48 that are orders of magnitude larger than those derived

in this paper are almost certainly immune to the effects of ther-

mal fluctuations.

Other physics appears to be necessary in order to describe

the experiments. For instance, we have neglected bead ro-

tations, and their subsequent effects on magnetic dipole mo-

ments, inter-particle forces, surface effects, and associated

fluid structures and viscous stresses. We have also neglected

the partial immersion of the beads, though while viscous drag

might seem to reduce the swimming speed, in fact the beads

cannot translate at all on average without the hydrodynamic

interactions. Finally, the model of capillary attraction may be

too simplistic: a modulation of the surface shape and associ-

ated forces with bead translation and rotation may be impor-

tant. These considerations may be examined in a future work.

We are grateful to Nicolas Vandewalle for helpful com-

ments. This work was a product of an NSF-funded summer

Research Experiences for Undergraduates (REU) at the Uni-

versity of Wisconsin-Madison, grant number DMS-1056327,

with thanks to Andrej Zlatos.

A No magnetocapillary swimming at O
(

B2
x

)

.

Here we show that the three bead system described in §4 does

not swim at first order in McB2
x , which is assumed to be small.

Specifically, we will show that with A given in (27), that the

center of mass grows linearly in time as t → ∞ if and only if

c1 + 2c3 6= 0, and since this is not the case, there is no swim-

ming at first order. Writing xxx = (y
(1)
1 ,x

(1)
2 ,y

(1)
2 )T , and recalling

the change of variables yyy = T−1xxx, the center of mass at first

order is given by

ȳ(t) =
1

3
y1(t)+

2

3
y2(t) = (1/3,2/3,0)Tyyy(t)

= (1/3,2/3,0)





1 ∗ ∗
0 ∗ ∗
1 ∗ ∗



yyy(t) = y1(t)+C2y2(t)+C3y3(t)

(32)

for some constants C2 and C3. Now recall that yyy satisfies

ẏyy = F1Jyyy+(1− cos(2 f t))ddd, (33)

where ddd = T−1(I − cBB)
−1ccc, and ccc =

[16(r∗)4]−1(−2
√

3,−9,
√

3)T . Component-wise, we

write ẏi = F1λiyi + (1 − g(t))di, with g(t) = cos(2 f t).
Since λ2,λ3 < 0, y2(t) and y3(t) both remain uniformly

bounded in time. As for y1(t), since the first diagonal

term of J is 0, y1(t) satisfies ẏ1 = (1 − g(t))d1, hence

y1(t)− d1t
(

= d1

∫ t
0 g(s)ds+ y1(0)

)

is uniformly bounded in

time. Using Eq. (32), we have that |ȳ(t)− d1t| is uniformly

bounded in time; in other words, the swimming speed is given

by d1.

However, d1 6= 0 if and only if c1 +2c3 6= 0, which we will

now show. Let us denote the columns of A by {aaa1,aaa2,aaa3}.

By inspection we have that ccc ∈ span{aaa1,aaa2,aaa3} if and only

if c1 + 2c3 = 0. Recall from the diagonalization process that

T−1(I− cBB)
−1A = JT−1, whose first row is a zero vector.

In other words, if c1 + 2c3 = 0, then the first component of

T−1(I−cBB)
−1ccc is 0 (since ccc∈ span{aaa1,aaa2,aaa3}), which gives

that d1 = 0. On the other hand, if ccc 6∈ span{aaa1,aaa2,aaa3}, then

d1 cannot be 0, since the set ccc such that d1 = 0 has dimension

2 and span{aaa1,aaa2,aaa3} is already of dimension 2. Inspecting ccc

we note that indeed c1 +2c3 = 0, and hence there is no swim-

ming of order ε (i.e. of order McB2
x).
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Graphical abstract

Stability and dynamics of magnetocapillary interactions

Rujeko Chinomona, Janelle Lajeunesse, William H. Mitchell, Yao Yao and Saverio E. Spagnolie

Floating ferromagnetic beads under the influence of an oscillating background magnetic field

can move along a liquid-air interface in a sustained periodic locomotion. We investigate the

stability and dynamics of this “magnetocapillary swimming,” and explore the steady and

periodic equilibrium configurations of two and three beads. Striking behaviors are observed

in fast transitions to and from locomotory states, offering insight into the behavior and self-

assembly of interface-bound micro-particles.
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