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Simulations show that lyotropic liquid crystals confined to a quasi-2D planar geometry with 

dimensions comparable to the length of the particles will develop novel linear defect structures that 

mediate the competing tendencies of mutual- and wall-induced alignment. 
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Defect structures mediate the isotropic-nematic transition in strongly
confined liquid crystals†
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Using Monte Carlo simulations we study rod-like lyotropic liquid crystals confined to a square slab-like geometry with lateral
dimensions comparable to the length of the particles. We observe that this system develops linear defect structures upon entering
the planar nematic phase. These defect structures flank a lens-shaped nematic region oriented along a diagonal of the square box.
We interpret these structures as a compromise between the 2-fold order of the bulk nematic phase and the 4-fold order imposed
by the lateral boundaries. A simple Onsager-type theory that effectively implements these competing tendencies is used to model
the phase behavior in the center of the box, and shows that the free-energy cost of forming the defect structures strongly offsets
the transition-inducing effects of both the transverse and lateral confinement.

1 Introduction

Most applications of liquid crystals require these materials to
be confined to small cells with boundaries specifically treated
to orientationally “anchor” the mesogenic molecules, allowing
the optical properties of the cell to be controlled1 . In spite
of the fact that the typical dimensions of these cells is con-
tinuously shrinking (current state-of-the-art displays employ
∼ 70µm pixels), commercially employed thermotropic meso-
gens typically have lengths of the order of a few nm’s, so that
a continuum description, in which the finite size of the par-
ticles is ignored, suffices to predict the relevant orientational
patterns2,3 . What happens, however, if the cell dimensions
could be shrunk to the order of the particle size? This raises
the interesting fundamental problem of liquid-crystalline be-
haviour in a regime where the particle size itself is a relevant
parameter. What is the interplay between boundary effects and
mutual interactions when these share the same length scale?

To experimentally address these questions, one would
need either much smaller cells, or much longer particles.
Since smaller cells are currently experimentally challenging
to make, we can look to nature, which in principle provides us
with filamentous protein aggregates in the micrometer length
range. Prominent examples of such naturally occuring meso-
gens are the cytoskeletal polymers F-actin and microtubules,
which both have lengths & 10 µm, and which in vivo are in
fact generically confined to cellular (sub)volumes with dimen-
sions comparable to that of these filamentous particles them-
selves4, Chap. 16 . Indeed, recent experiments on F-actin in pho-
tolithographically created micrometer-sized slablike geome-
tries show that intriguing ordering patterns can be observed,
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even at densities far below that of the bulk transition, that
clearly reveal the tug-of-war between alignment with the lat-
eral boundaries and mutual alignment5,6 . Both these tenden-
cies derive from the same source: the gain in translational
entropy associated with reduction of excluded volume, either
with the wall or between the particles, will, with increasing
density, outweigh the decrease in orientational entropy due to
ordering. However, using F-actin as a model rod-like particle
has two main drawbacks: the in-situ polymerized filaments are
likely to be widely polydisperse, and their persistence length
of ∼ 16µm is itself of the order of both the filament length, as
well as the confinement dimensions, making it likely that en-
thalpic effects associated with bending also come into play6

. In another recent experimental work7 genetically modified
FD-virus particles were employed. The latter have the advan-
tage of being both length-monodisperse and highly rigid. The
length of the virus particles, however, is slightly less than a mi-
cron (880 nm), and hence still much smaller than the typical
lateral system sizes of several 10s of microns. It is therefore
also not surprising that the phenomenology of these experi-
ments is well described by continuum theories as also reported
there. These two examples indicate that the present experi-
mental state of the art is, as yet, not fully able to probe the
questions we pose in a well-controlled manner.

To properly address the regime in which a) the size of
the confining cell is only a few times larger then the meso-
gens and b) the particles involved are non-deformable, we
turn to particle-based simulations. These allow us to study
these questions in a systematic manner in the simplest pos-
sible setting. We therefore consider systems composed of
purely length-monodisperse and perfectly rigid hard rods. We
focus on the same finite planar geometry of the experiments
described in5 . We thus consider in a cuboidal cell with a
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height significantly smaller than the length of the particles,
and a square lateral cross-section, with side length a few times
the length of the particles. We find that in this geometry the
system undergoes a transition at a density ∼ 25% below that
of the the 3d bulk isotropic-nematic transition. The ordered
phase is characterized by a lens-shaped nematic region ori-
ented along one of the diagonals with +1/4 disclination lines
in the corners, and, strikingly, flanked by two disclination
walls emerging from the two corners of the other diagonal
(for a general discussion on defects in liquid crystals please
refer to8,9 ). This latter phenomenon is a clear signal of the
non-trivial impact of finite particle-size.

Although, in the regime of comparable confinement size
with mesogen length, earlier simulation studies have been re-
ported for hard rods in a slab-like geometry10,11 , these stud-
ies employed periodic boundary conditions in the lateral di-
rection, and hence lack the requisite wall-bulk competition
effect. Intriguingly, the experiments on vibro-fluidized as-
semblies of macroscopic metal rods (length ∼ 3 cm) in pla-
nar geometries12 do consider the same geometry and with
hindsight12, Fig. 4a also suggest the presence of the linear de-
fect structures. In these experiments the length of the sides
of the confining cell is less than 10 times the rod length and,
hence, one could expect that finite particle size plays a role
in the organization. However, these authors argued that the
patterns they observed are in fact consistent with continuum
Frank elasticity theory in the same geometry, where no de-
fects other than the +1/4 point singularities in the corners of
the diagonal ordering axis have been reported. Moreover, as a
rigorous link between vibrated granular media to the statisti-
cal physics of thermally excited systems is lacking, we are at
present unable to gauge how far these two systems are truly
analogous. Very recent theoretical work by González-Pinto et
al13 considers a liquid crystal composed of rectangular par-
ticles confined to a 2d square nanocavity a few times larger
than the particle length. In this case, however, the particles
are restricted to two discrete orientations. Since these parti-
cles can only be aligned parallel to the walls, the formation
of a lens-shaped nematic region aligned along the diagonal is
impossible, precluding the phenomena reported here. Another
very recent theoretical study by Chen14 , which considers the
solution of the 2d Onsager theory for infinitely thin needles
confined to a square with sides 3 to 11 times larger than the
particle length, does not seem to reproduce the linear defect
structures, but rather suggests that the particles are at least par-
tially aligned to the cross-diagonal as well, for which we find
no evidence.

In order to illustrate the impact of the different factors at
play, and to rationalize the result on the transition density we
also discuss a microscopic toy-model, which captures part of
the phenomenology of the observed isotropic-nematic transi-
tion.

2 Simulations

2.1 Methods

In our simulations we use rigid spherocylindrical particles of
diameter D, which we adopt as our unit of length, and cylin-
der length L, covering a range of aspect ratios L/D from 10
- 38. The length of the square base of the cuboidal simulation
volume was fixed to W = 73 units (see Fig. 1). In first in-
stance, the height of the cell H was chosen to be either 3 or 6
units. In both these cases, the length of the particles is higher
than the height, precluding rotations out of plane, thus defin-
ing a quasi-2d geometry. Next, we also considered the true 2d
case, by setting H = 1. We take the z-axis of our reference
frame along the height, and align the remaining two axes with
the side walls. The mutual interactions between the particles,
as well as the interaction with walls, are hard, and therefore
fully specified by the purely geometrical condition of no over-
lap. The simulation method is a standard Metropolis Monte
Carlo scheme15 . For convenience, the particles are initially
arranged in a regular pattern. We checked that the initial con-
figuration has no effect on the final pattern, result being the
same as for a random starting configuration. The most compu-
tationally demanding step in our algorithm is the inter-particle
overlap check. In order to speed up the simulation we use
a Verlet list scheme. This allows us to decrease the number
of overlap checks per step, since only particles located in the
vicinity of the particle that we attempt to move are considered
not all the particles in the container. After the equilibration
of the system (less than 10% of the total simulation time), we
sample configurations that are independent. The distance, in
Monte Carlo time, between two independent configurations is
decided according to the mean diffusion time of particles over
half the container size. We typically use 1000 configurations
per simulation from which we extract the parameters of inter-
est, averaging over these parameters to obtain the final results.
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Fig. 1 Schematic of the simulated system: (a) A single particle and
its size and configuration parameters. (b) The simulation box and its
dimensions.

Apart from the standard second rank tensor order parame-
ter Q9 , which provides a global measure of the order in our
system and is used to monitor the equilibration of the system,
we also employ a spatially resolved version, providing local

2 | 1–7

Page 3 of 8 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



information on the orientational order, defined as

Qk =
1∑

i

lki

⟨∑
i

lki

(
3

2
ûi ⊗ ûi −

1

2
13

)⟩
(1)

where k labels a specific subvolume, i enumerates the parti-
cles in the system, each with its orientation specified by the
unit vector ûi, l

k
i is the length of particle i inside the subvol-

ume k, 13 is the 3d unit tensor, and the angular brackets de-
note equilibrium averaging. In practice, we found that height-
spanning rectangular subvolumes of footprint 3.5× 3.5 units,
were an optimal compromise between resolution and compu-
tational effort. The use of the length lki measured along the
cylindrical part of the particles, instead of the more formally
correct weighting by the volume fraction that particle i occu-
pies in subvolume k, is a computationally convenient approx-
imation, whose error is expected to be small for the highly
elongated particles we consider. A frame-independent mea-
sure of the local degree of alignment is obtained by consid-
ering the largest positive eigenvalue λk+ of Qk, which ranges
from 0 for a 3d fully disordered isotropic system, to 1 for a
fully aligned system. The corresponding eigenvector n̂k

+ of
Qk, commonly called the director and defined up to its sign,
points along the average direction of the preferred alignment.

2.2 Results

Changing the volume fraction of the particles –η = ρVpart,
with ρ the number density and Vpart = πD2L/4 + πD2/6
– we generically observe three types of orientational patterns
within the simulation volume. All of them are in-plane struc-
tures, characterized by a smallest eigenvalue of Q of λz ≃
−1/2. For small volume fractions, we observe local align-
ment of the rods along the four side walls (fig 2 (a), (d), and
(g)). Moving to the middle of the volume the degree of order
rapidly falls off, with the center essentially fully isotropic in-
plane corresponding to λ+ ≃ 1/4. In this regime, the wall in-
duced ordering appears dominant. At higher volume fractions,
the system becomes smectic (see fig 2 (c), (f), and (i)), with the
number of smectic layers dependent on the aspect ratio of the
particles. Here the excluded-volume driven mutual alignment
mechanism is able to overcome the barrier caused by disalign-
ing the particles at the two side walls along the smectic direc-
tor. At intermediate values of the volume fraction, the com-
petition between the globally incompatible 4-fold ordering in-
duced by the side walls and 2-fold nematic order due to mu-
tual alignment leads to a compromise structure. We observe
a lens-shaped nematic domain along one of the diagonals (see
fig 2 (b)). This domain is flanked by two wall defect struc-
tures emanating from the corners of the other diagonal. As
we approach these corners, the degree of order drastically de-
creases (see fig 2 (h)). Crossing the defect wall, the preferred

direction of the particles makes a finite jump (see fig 2 (e)).
The results in figure 2 (d-i) are obtained by averaging over the
local orientation of the particles and the local degree of order
of independent configurations from the same simulations. For
the pattern characterized by the lens-shaped nematic we ob-
serve two configurations that are equivalent by symmetry, with
the lens oriented along either of the two diagonals of the cell.
Above the isotropic-nematic transition the pattern the systems
randomly picks one of these two configurations. The patterns
so-obtained are very stable with statistical errors typically two
orders of magnitude smaller than the quantity being measured
in each subvolume, except for the subvolumes that contain the
disclinations, where the fluctuations are much more promi-
nent. The observed states are generically independent of the
initial conditions up to their symmetry, as it is possible to se-
lect the specific diagonal of order in the nematic state, or the
layer orientation in the smectic state through a suitable bias in
the initial arrangement of the particles. Depending on the ini-
tial configurations, we do sometimes observe particles trapped
perpendicularly to the smectic layers, invariably next to the
wall. We do not have enough statistics to conclude whether
these transversely oriented particles are “trapped”, or an equi-
librium phenomenon such as first discussed in16 .

Fig. 2 Distinct states of the system: isotropic with wall alignment
(a,d,g), lens-shaped nematic (b,e,h), and smectic(c,f,i). (a-c)
Snapshots of typical configurations (top view). Color code
corresponds to the minimum angle between the long axis of the rod
and the x axis (scale bar on the right hand side). (d-e) Local
orientation of the particles; Color code corresponds to the minimum
angle between the local director n̂k

+ and the x axis (scale bar on the
right hand side).(g-i) Local degree of order of the system λk

+. All
results presented in this figure are obtained for H = 3 and
L/D = 20. Volume fractions are η = 0.075 for (a), (d), and (e),
η = 0.175 for (b), (e), and (h), and η = 0.3 for (c), (f), and (i).
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2.3 Disclination walls

To properly characterize these disclination walls, we define an
angular deficit parameter δ on the lattice dual to our square
mesh of subvolumes. If n̂1, n̂2, n̂3 and n̂4 are the four direc-
tors of the subvolumes that surround a point on the dual lattice
in a fixed either clockwise- or anticlockwise order, then the
angular deficit is defined as

δ = min∠
(
n̂1, n̂2

)
+min∠

(
n̂3, n̂4

)
, (2)

where the angle chosen is the minimal one obtained when the
otherwise arbitrary signs of the director are varied. For a ho-
mogeneous nematic state this parameter vanishes. For the case
of a gradual distortion, say a bend deformation, the parameter
should vary smoothly. At any kind of singularity, however, the
parameter provides a localized signal. As figure 3 shows, the
parameter is high along the disclination walls, with a maxi-
mum in the corners, corresponding to the almost π/2 differ-
ence in angle caused by the wall induced ordering. As one
moves along the diagonal, the particles on either side gradu-
ally splay away from the alignment at the wall, causing δ to
decrease to a minimum, when the edge of the lens-shaped ne-
matic domain is reached. Note that δ also picks up a signal
at the +1/4 strength disclinations in the corners of the ne-
matic domain, but this effect does not penetrate very far into
the bulk.

Fig. 3 Disclination parameter δ scaled by its maximum value π
(color code given by the scale bar on the right). System parameters:
H = 3, L/D = 20 and volume fraction η = 0.175.

2.4 Isotropic-nematic transition

To quantify the density dependence of development of order in
our system, we study the value of the order parameter λmid

+ of
the subvolume exactly in the middle of the slab, i.e. the point
farthest removed from the strong boundary-induced ordering
at the side walls, which is high irrespective of the density. We
tracked λmid

+ for particles of aspect ratio L/D = 15, 20 and
25, for a range of volume fractions, spanning the isotropic,
nematic and smectic regimes. In order to optimally isolate the
influence of confinement and remove the known dependence

of the mutual interactions on particle length, we scale all vol-
ume fractions by the value of the packing fraction at the bulk
isotropic-nematic transition, which we obtain from the simu-
lations of Bolhuis and Frenkel17 , which defines the reduced
volume fraction η̄ = η/ηc (3d). Under this scaling the three
curves indeed collapse reasonably well onto a single master
curve (see Fig. 4).
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Fig. 4 Local degree of order λmid
+ in the middle of the slab as a

function of the density scaled by the bulk isotropic-to-nematic
transition density. Error bars denote standard error in the mean.
Simulation results at H = 3 for L/D = 15 (green circles),
L/D = 20 (purple squares) and L/D = 25 (red triangles). The
green, purple and red dashed vertical lines located between η̄ = 1.5
and 1.7 correspond to the nematic to smectic transition observed in
the simulation in confinement for rods with L/D = 15, 20 and 25
respectively (from left to right). The black dashed line at η̄ = 1.0
marks the bulk isotropic-nematic transition.

At low volume fractions we expect the system to have an
isotropic in-plane distribution, corresponding to λmid

+ ≃ 1/4.
The fact that the simulation data only reproduce this expected
value at slightly higher volume fractions is due to the unavoid-
able undersampling of contributing configurations at low vol-
ume fractions. At a reduced volume fraction η̄c ≃ 0.75 we
observe a strong first-order jump to a value λmid

+ ≃ 0.8. As
is usual in a finite system there are strong fluctuations in the
transition region. Moreover, in this case the system is ob-
served to repeatedly flip between the two symmetry equiva-
lent preferred orientations along either of the diagonals. It is
the latter effect that dominates the large error bars in the lo-
cal degree of order in the transition region. Beyond the tran-
sition point, λmid

+ increases, gradually saturating towards its
maximal value λmid

+ . 1, with only a small dip observed at
reduced volume fraction η̄s ≃ 1.5, which marks the transition
to the smectic state, in which the particles have to rotate from
the box diagonal to either of the two shorter symmetry axes.
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2.5 Results for 2d system

In order to check whether the effects reported above survive in
the limit of a true 2d system, we also performed simulations
by setting H = 1. In this system in which the particles are
fully confined to the plane we again observe the same three
distinct states: an isotropic phase with wall alignment in the
vicinity of the boundary, a lens-shaped nematic and a layers
arrangement. The density dependence of these states and the
behavior of the order in the middle of the slab is very similar to
the quasi-2d case (cf. figure 5 (a)). Most importantly, the lens-
shaped nematic is again stabilized by linear defects, which in
this geometry are now pure line defects.

(e)(c)

(b)

(d)
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Fig. 5 Results for 2d system (box-height H = 1 and L/D = 20):

(a) λmid
+ versus 2d packing fraction η ≡ N(πD/4 + L)

W 2
(where N

is the number of particles), showing the location of the I-N transition
(left-hand dotted vertical line) and the 2d smectic transition
(right-hand dotted vertical line). (b) snapshot at η = 0.41 (c) local
order parameter (d) defect parameter (e) orientation pattern

3 Microscopic toy model

A notable result of our simulations is that the isotropic-
nematic ordering transition takes place at a value of the den-
sity closer than expected to that of the homogeneous bulk. The
results of Cosentino et al.11 suggest that the transverse slab-
like confinement strongly induces the in-plane ordering transi-
tion, which in their case happens at a reduced volume fraction
η̄c ≃ 0.25, this value being fairly insensitive to the height of
the slab, only increasing slightly when true 2d confinement is
approached, where the nature of the transition changes to one
driven by the condensation of bulk topological defects. More-
over, one also expects that by itself the pre-alignment effect
caused by the interactions with the side walls would also fa-
cilitate the transition. Our results, however, indicate that, in
the strong lateral confinement limit, nematic in-plane order

is inevitably accompanied by the appearance of extended de-
fect structures. These defects obviously carry a free-energy
penalty, which potentially offsets the order-promoting effect
of the transverse and lateral confinement.

To illustrate the effect of these competing mechanisms, we
designed an Onsager-type18 microscopic toy model that im-
plements all the relevant effects, albeit in an effective man-
ner. We thus consider a monodisperse system of highly elon-
gated hard rods of length L ≫ D. The mutual excluded
volume at fixed relative orientations in this limit given by
E (ω̂, ω̂′) = 2L2D sin γ (ω̂, ω̂′), where γ (ω̂, ω̂′) is the an-
gle between two rods with orientations ω̂ and ω̂′. To mimic
the confinement due to the finite height of the system, we im-
pose a potential βW∥ (ω̂) = ξ∥P2 (ẑ · ω̂) ,with P2 the second-
rank Legendre polynomial, and the prefactor is chosen to be
ξ∥ =

(
L2/H2

)
, which matches the width of the Boltzmann

weight of this potential to the maximal out-of-plane angle the
rods can adopt, and any other non-dimensional factors are ab-
sorbed into the inverse temperature scale β. By symmetry,
the effect of the side walls should be 4-fold symmetric in
terms of the in-plane azimuthal angle φ. We implement this
by adding the potential βW⊥ (ω̂) = −ξ⊥R4

4 (ω̂) ∝ cos (4φ)
, where Rm

l (ω̂) is a real spherical harmonic (see Supplemen-
tal Material19 for details) and ξ⊥ is a free parameter. Fi-
nally, we include a penalty associated with the defect struc-
tures, which we take to be proportional to the magnitude of
in-plane order measured by the standard biaxial order param-

eter T =

√
⟨R2

2⟩
2
+
⟨
R−2

2

⟩2
, and whose strength is set by

the free parameter ξd.This leads to the following free energy
functional in terms of a normalized orientational distribution
function ψ (ω̂):

βF [ψ]

N
≡ Φ [ψ] =

∫
dω̂ψ (ω̂) {logψ (ω̂)− 1}+

ρL2D

∫
dω̂

∫
dω̂′ψ (ω̂)ψ (ω̂′) sin γ (ω̂, ω̂′)+

ξ∥

∫
dω̂ψ (ω̂)R0

2 (ω̂)− ξ⊥

∫
dω̂ψ (ω̂)R4

4 (ω̂)+

+ξd

{(∫
dω̂ψ (ω̂)R2

2 (ω̂)

)2

+

(∫
dω̂ψ (ω̂)R−2

2 (ω̂)

)2
} 1

2

,

where ρ is the number density. We numerically solve the
minimization problem for this functional using a cumulant
expansion technique, which results in a finite set of cou-
pled equations for the expansion parameters, solved through
a relaxation procedure (for details please consult the Supple-
mental Material19 ). In Fig. 6 we demonstrate that such a
model readily fits the simulation results using the parameters
ξ⊥ = 0.07 for L/D = 15, 25 and ξ⊥ = 0.08 for L/D = 20,
and ξd = 0.01. The figure also shows that the term represent-
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ing the transverse confinement, either by itself, or in conjunc-
tion with the one describing the coupling to the lateral walls,
lowers the transition density to . 50% of the bulk value. The
system, however, is very sensitive to the defect term, which,
although small in amplitude, is sufficient to raise the transition
density to the observed value.
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Fig. 6 Local degree of order λmid
+ in the middle of the slab as a

function of the density scaled by the bulk isotropic-to-nematic
transition density. Simulation results at H = 3 for L/D = 20
(purple squares) and toy model fit (purple circles represent the result
of the numerical minimization, whereas the purple line connecting
them is just a guideline for the the eye) . The black dashed line at
η̄ = 1.0 marks the bulk isotropic-nematic transition. The gray
vertical lines correspond, from left to right, to the location of the
transitions in the model for ξd = 0 and for ξd = ξ⊥ = 0.

4 Conclusion

We have shown that novel defect structures mediate the com-
petition between mutual alignment and wall alignment in a
confined system where finite particle size matters. We argue
that such effects can generically be expected in uniaxially or-
dered phases whenever the geometry tries to impose “bend”
distortions on the local director pattern on a spatial scale com-
pared to the length of particles. In the case at hand this situa-
tion occurs in the corners of our simulation cell on the diago-
nal perpendicular to main axis of order. Whereas in a contin-
uum description the resulting singularities can be fully local-
ized to isolated points7 , in the finite particle-size case these
defects can be expected to have a spatial extent comparable to
the length of the particles.

Whether the nature of the defect structures observed here –
essentially a continuously decaying jump discontinuity in the
director pattern– is in fact universal remains to be elucidated.
It is therefore interesting to see what the implications of these
findings are for other confinement geometries.

It will be interesting to see what happens if the height of
the slab is increased, a regime we did not address in view of
the significant computational costs involved. We do, however,
believe that the defect walls will remain present. The experi-
ments reported in7 involving sub-micron long FD-virus par-
ticles in wells of several microns deep revealed that, even for
systems in which the particles can in principle freely rotate
out of plane, the observed structures are nevertheless strongly
planar. This indicates that the planar alignment induced by the
dominating top and bottom surfaces propagates throughout the
whole sample, rendering the system effectively 2d, and hence
susceptible to the defect structures described here. In the limit
that the height equals the side length and the system geometry
becomes cubic, we would predict that the central lens-shaped
nematic region will align along a major diagonal of the cube
with possible sheet-like defect structures emanating from the
flanking vertices.

Our results should also be contrasted a number of comple-
mentary studies that have appeared of hard rods confined to
2d circular disks — simulations with homeotropic boundary
conditions20 , density functional theory21 and very recently
simulations with both homeotropic and planar boundary con-
ditions22 –, or a 3d spherical volume23 with planar degen-
erate boundary conditions. In all these cases one expects to
find as stable configurations either a single (homeotropic b.c.)
or a polarly opposite pair of disclination points (planar b.c).
These defects structures, however, are purely topological in
origin, and well-described by continuum theory in the limit
of strong anchoring and weak elastic effects (see e.g.24 ), and
hence are not dependent on the finite size of the particles. The
same arguably also holds for more complex situations, such
as rods on the surface of a sphere20,25 , squares on a sphere26

, liquid crystals between concentric spherical shells27,28 , liq-
uid crystals confined to cylindrical pores29 , liquid crystals
on a toroidal surface30 , or the complicated defect fields that
can be designed using surface treated collids or surfaces31–34 .
This highlights the non-trivial nature of the stable linear defect
structures we have observed.

Finally, experimental validation of these results clearly
raises the challenge of producing sufficiently rigid monodis-
perse colloidal rods of the right dimensions and the ability
to resolve orientational patterns at (sub)micron resolutions.
Also, from a theory perspective, the proper approach is prob-
ably still lacking, as the “null” result (as far as the defects
is concerned) of14 suggest that we are dealing with a phe-
nomenon that potentially requires a more powerful density
functional theory, which takes into account interparticle cor-
relations beyond the second virial coefficient level of the On-
sager theory.
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