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We investigate the complex dispersion relation of a transverse antisymmetric wave on a horizontal soap film. Experimentally,

the complex wave number k at a fixed forcing frequency is determined by measuring the vibrating amplitude of the soap film:

the wavelength (linked to the real part of k) is determined by the spatial variation of the amplitude; the decay length (linked to

the imaginary part of k) is determined by analyzing the resonance curves of the vibrating wave as a function of the frequency.

Theoretically, we compute the complex dispersion relation taking into account the physical properties of the bulk liquid and

gas phase, and of the gas-liquid interfaces. The comparison between the computation (developed to the leading order in our

experimental conditions) and the experimental results confirms that the phase velocity is fixed by the interplay between surface

tension, and liquid and air inertia, as reported in previous studies. Moreover, we show that the attenuation of the transverse

antisymmetric wave originates from the viscous dissipation in the gas phase surrounding the liquid film. This result is an

important step to understand the propagation of an acoustic wave in a liquid foam, in a bottom-up approach.

1 Introduction

Although solid foams are commonly used as acoustic

dampers1,2, little is known about the acoustic properties of

liquid foams, which are dispersions of gas bubbles in a liquid

matrix stabilized by surfactants. Recent studies report mea-

surements of the velocity and attenuation of sound in liquid

foams: several regimes of propagation have been identified as

a function of the frequency, as well as acoustic resonances3–6.

Various sources of attenuation have been invoked to account

for the observations, which depend on the bulk properties of

the gas and liquid phase (compressibility, density and viscos-

ity), on the interfacial properties of the liquid-gas interfaces

and on the local structure of the foam. The foam liquid skele-

ton is made of thin membranes (soap films), Plateau borders

(which contain most of the liquid of the foam) at the junc-

tion between soap films, and vertices at the junction between

Plateau borders7: the vibration motion of all those constitutive

elements is mechanically coupled during the acoustic wave

propagation. Understanding the vibration of those individual

elements is fundamental to model their coupling and therefore

the acoustic propagation in liquid foams.

In this article, we are interested in the vibration motion of

one of those elements: an individual soap film isolated on a

rigid frame. We investigate the response of the film to a trans-

verse vibration by measuring and modeling the dispersion re-
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lation and the attenuation of the wave propagating on the film.

Various linear models of the dispersion relation of a trans-

verse vibration on horizontal soap films exist in the litera-

ture8–10. They differ by the ingredients taken into account,

amongst the physical characteristics of the bulk liquid and gas

phases (volume mass and viscosity) and of the liquid-gas in-

terface (surface tension and interfacial visco-elasticity). They

predict two oscillation modes, a squeezing or symmetric mode

(where both interfaces vibrate symmetrically with respect to

the middle plane of the film), and an antisymmetric or bend-

ing mode (where the interfaces vibrate in phase). Due to the

strong viscous friction associated with the symmetric mode,

the most commonly observed vibration mode is the bending

mode. An experimental measurement of the dispersion rela-

tion of the bending mode, reported in ref.11, shows that the

elastic restoring force is due to the surface tension, whereas

inertia comes from the inertia of the liquid in the soap film

and from the inertia of the air, which is dominant at low fre-

quency. The attenuation of the wave is very low and has not

been measured to our knowledge. At large vibrating ampli-

tude, non-linear behaviors of vibrated soap films have also

been observed and studied. They concern the generation of

vortices within the plane of the film11, the self-adaptation of

the local thickness of the soap film to the vibration ampli-

tude12, the formation of a liquid bulge in the middle of the

film, and the soap film bursting at high forcing amplitude13.

In this article, we investigate the complex dispersion rela-

tion of the bending mode of a soap film. Whereas the real

part of the dispersion relation confirms the variation of the
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wavelength versus the frequency already reported in the lit-

erature8,11,14, the imaginary part enables us to determine the

attenuation of the vibrating wave. We report here for the first

time a theoretical modeling of the attenuation, as well as an

experimental determination of the attenuation length. This de-

termination is based on the measurement of the amplitude of

a standing transverse wave on the film around the geometrical

resonances, in the frequency range 200-2000 Hz. The film

is vibrated with a low forcing amplitude so that non-linear

effects are not observed. The comparison between the ex-

perimental results and the analytical model developed to the

leading order shows that, in our experimental conditions, the

attenuation of the transverse wave originates from the viscous

dissipation in the surrounding air. This result can be com-

pared with the case of microscale mechanical resonator where

the viscous damping of the air may be an important limiting

factor for mass detection15.

The article is organized as follows. The experimental setup

and methods of analysis are described in section 2. In section

3, we present the measurements of the real part of the dis-

persion relation, and of the soap film amplitude which shows

resonant modes of the standing vibrating wave. The theoret-

ical complex dispersion relation is derived in section 4. In

section 5, the complex dispersion relation is simplified to the

leading order in our experimental conditions. It is divided into

its real part and its imaginary part, which are both separately

compared to the experimental results. The theory and the ex-

perimental data agree very well, although some additional pa-

rameters have to be added to the model, probably due to the

presence of the meniscus linking the film to its rigid support.

Concluding remarks are given in section 6, and the results are

discussed: they are compared to the propagation of a trans-

verse wave on a monolayer, and outlooks of this work are sug-

gested in terms of investigating the coupling between the soap

film and the meniscus dynamics.

2 Materials and methods

2.1 Experimental setup

The liquid films are made from a solution of deionized wa-

ter and a cationic surfactant TTAB (tetradecyltrimethylam-

monium bromide) with a concentration of 2.8 g/L. Glycerol

(10%wt) and dodecanol (0.04%wt) are added to increase the

film stability, extending the duration of the film from a few

minutes to a few days. The surface tension γ and interfacial

viscoelastic complex modulus ε = ε ′+ iε ′′ are measured us-

ing an oscillating bubble tensiometer: γ = 22.5 mN/m, ε ′ = 5

mN/m, ε ′′ = 25 mN/m at 0.1 Hz. The mass density of the liq-

uid phase is ρ = 1.0 103 kg.m−3 and its dynamic viscosity is

η ≃ 1.3 10−3 Pa.s. All the experiments were performed using

the same solution.

Fig. 1 Experimental closed cell in which the soap film is formed.

Except at the top of the cell, the walls are made of black PVC. In the

centre of the cell, the soap film is formed in the middle of a porous

glass plate. The porous glass plate and the PVC walls have a

cylindrical symmetry. The cell is closed at the top by a lid made of a

glass slide glued on a plexiglas ring, pushed inside the PVC cell.

The glass cover is tilted from the horizontal.

(a)

(b)

(c)

Fig. 2 (a) Experimental setup (see text), where the closed cell is

described in Fig. 1; (b) image of a vibrating soap film (obtained by

replacing the laser with a parallel white light and using a CCD

camera placed above the film): the bright rings correspond to the

antinodes of the standing vibrating wave (frequency f = 948 Hz;

film thickness e = 0.36 µm – at this thickness the film is not black;

the colored interference fringes are visible online; the soap film is

formed with TTAB in water – no dodecanol nor glycerol); (c)

principle of the measurement of the deformation of the film and

notations: the film is represented at a given time t; the deflection X

of the laser beam is linked to the local slope of the film ∂ζ/∂ r. (For

the sake of clarity, the length scales are not respected.)
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The soap film is formed on a rigid circular porous glass

plate having a circular bevelled hole in the middle (hole diam-

eter 16.2 mm). The porous plate is placed horizontally in the

middle of a home made closed cylindrical cell (Fig. 1). The

internal height of the cell is larger than twice the film diame-

ter. The porous plate is clamped between a step in the internal

wall of the cell and a threaded tube that can be screwed on

top of the porous plate. The horizontal and bottom walls of

the cell, as well as the threaded cylinder, are made of black

polyvinyl chloride (PVC). The internal bottom of the cell has

a conical shape. The cell is closed by a circular microscope

glass plate, tilted from the horizontal plane. The internal face

of the glass cover is coated with a commercial anti-fog car

windscreen coating to prevent vapor condensation. The four

elements of the cell (PVC walls, porous plate, threaded cylin-

der and lid) can be rigidly clamped together to be vibrated on

a shaker without relative motion. Between each experiment,

the cell is dismounted and carefully rinsed; the porous plate is

plunged in acetone for several hours and then rinsed in several

successive baths of deionized water, before being dried and

plunged in the surfactant solution.

The soap film is formed as follows: the porous plate is

clamped and saturated with the soap solution. The film is

stretched from the border of the hole using a Teflon slide. Just

after the soap film is formed, the cell is closed and mounted

on a drill where the film is centrifuged for a few minutes, as in

ref.16, until it becomes a homogeneous black film (thickness

e ≃ 0.01 to 0.1 µm). Let us notice that the so-formed black

soap film is very stable and can last for several days without

any noticeable evolution. After the centrifugation, the cell is

placed on a shaker (Mini-shaker Type 4810 from Bruel&Kjær)

that creates a vertical displacement at a given frequency f

(Fig. 2a). A centripetal circular transverse wave is created on

the film from the borders; the wave is totally reflected at the

centre of the film, and a resulting standing wave takes place on

the soap film at the forcing frequency (Fig. 2b). Depending

on f , resonances are then observed for some defined ratio of

the wavelength versus the soap film diameter.

The amplitude of the transverse wave is determined using

a laser beam (Coherent StingRay Laser, wavelength 660 nm,

output power 20 mW), set at normal incidence when the film

is at rest: the beam, reflected by the soap film, is deflected

when the film is deformed. The incident laser beam is Gaus-

sian. The laser is focused in the plane of the soap film, having

a waist of (126 ± 2) µm in this plane. This waist is approx-

imately 25 times smaller than the smallest wavelength of the

soap film investigated in this article. The horizontal deflec-

tion X is recorded using a position sensitive detector (PSD –

Hamamatsu C10443-03) placed above the film. Due to the tilt

angle of the lid and of the conical shape of the internal bottom

of the cell, the beam reflected by the top and by the internal

bottom of the cell does not reach the PSD: only the laser beam

reflected by the soap film is detected. X is related to the value

of the local slope of the film:

X(r, t) = 2D
∂ζ

∂ r
(r, t) (1)

where ζ (r, t) is the vertical displacement of the circular soap

film at a distance r from the centre at time t and D is the dis-

tance between the soap film and the PSD (Fig. 2c): D = 16 cm

or 17 cm depending on the experiment. Eq. (1) is valid for

ζ ≪ D and for ζ ≪ λ where λ is the wavelength of the anti-

symmetric vibration. The PSD has a photosensitive area of 12

mm × 12 mm and gives the position of the center-of-gravity of

the spot light, independently of the spot light size, shape and

intensity. The PSD is connected to a lock-in amplifier which

measures the deflection X at the forcing frequency.

The shaker is placed on a motorized translation stage to scan

the local slope along a diameter of the vibrating film.

The electric shaker vibrates with a constant acceleration,

therefore the amplitude of the forcing decreases with the

forcing frequency like 1/ f 2. The amplitude Acell of the

cell placed on the shaker is determined independently using

an accelerometer (Charge Accelerometer Type 4393-V from

Bruel&Kjær) in order to calibrate the setup. We notice that

the setup (experimental cell and electronics) introduces an ad-

ditional resonance in the range 1050 Hz - 1350 Hz.

2.2 Data analysis

In the large wavelength limit (wavelength large compared to

the vertical displacement and to the thickness of the film), the

standing wave having a cylindrical symmetry writes

ζ (r, t) = A0J0(kr)ei(ωt+φ0) (2)

where A0 is the displacement amplitude at r = 0, J0 is the

Bessel function of the first kind and of zero order, ω = 2π f is

the angular frequency, k = k′+ ik′′ is the complex wave num-

ber and φ0 is the phase at r = 0 and t = 0. In those conditions,

Eq. (1) becomes

X(r, t) =−2DA0kJ1(kr)ei(ωt+φ0) = |X |eiψ eiωt (3)

The modulus |X | and the argument ψ of the laser beam de-

flection are measured, at the angular frequency ω , thanks to

the lock-in amplifier.

We write a boundary condition:

ζ (R, t) = Abei(ωt+φb). (4)

where Ab and φb are respectively the amplitude and phase

of the displacement at a distance R from the centre of symme-

try. Combined with Eq. (2), this gives:
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Fig. 3 Amplitude of the deflection of the laser beam measured at f

= 1440 Hz: modulus |X | and argument ψ of X as a function of the

position r from the centre of the film (diamonds). In the top graph,

the solid line is the best fit of the data using Eq. (3) with

k = k′+ ik′′. One finds k′=1715 m−1 and A0=2.1 µm. The vertical

dotted lines highlight the method used to determine the value of k′

(example here with m1 = 3.83 the first zero of the Bessel function

J1(k
′r)). The bottom graph shows the determination of the phase

shift φ0 around r = 0.

{

A0 = Ab/|J0(kR)|
φ0 = φb − arg(J0(kR))

(5)

Eq. (5) predicts resonances of the soap film transverse vi-

bration when |J0(kR)| is minimum. Let us note that the min-

imal value of |J0(kR)| does not reach zero due to the imagi-

nary part k′′ of the wave vector. Moreover, the variation of A0

and φ0 around the resonance frequencies strongly depends on

the value of k′′. Therefore, the measurement of the transverse

wave attenuation k′′ is based on the analysis of the shape of

the resonance curves, as explained below.

3 Measurements

Fig. 3 shows the measurements of the modulus and the argu-

ment of the amplitude of the laser beam deflection X(r) at a

given frequency. |X(r)| is compared to Eq. (3) using k′, k′′

and A0 as free parameters. The best fit gives the measurement

of k′ and A0. However, the fit poorly depends on the value of

k′′, which cannot reasonably be determined with this method.

The phase shift φ0 is determined graphically using the plot of

ψ(r) as shown in Fig. 3.

The parameters k′, A0 and φ0 [2π] are then plotted as a

function of the frequency (Figs. 4 and 5). Five resonances

are visible on Fig. 4: two of them fall in the frequency range

1050 Hz - 1350 Hz where the resonance of the setup mixes
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Fig. 4 Amplitude A0 and phase shift φ0 [2π] in the centre of the

film as a function of the frequency f , measured as described in Fig.

3, showing the resonances of the transverse standing wave of the

film. A resonance of the setup is observed between 1050 Hz and

1350 Hz: the resonances of the soap film falling in this frequency

range are therefore not analyzed in this article.

with the resonance of the soap film. The three other reso-

nances correspond to resonances of the soap film: the analysis

of the profiles |X(r)| shows that they correspond to modes n

= 2, 3 and 5, having (2n−1) antinodes along the diameter of

the film. Those modes are expected considering the axisym-

metric geometry of the vibrating film with an antinode in the

centre according to Eq. (2). The mode n = 4 is expected in

the frequency range 1050 Hz - 1350 Hz, therefore this mode

will not be further investigated in this article. Surprisingly, the

fundamental mode (n = 1) could not be observed, the vibrat-

ing amplitude being too small to be detected for frequencies

lower than 280 Hz. Finally, we notice a continuous drift of the

phase φ0 in Fig. 4, which adds up to the π phase shifts at each

resonance. We have checked that this phase shift is not caused

by the electronics of the setup (the phase shift due to the setup

is of 0.5 radians between 200 Hz and 2000 Hz, much smaller

than the measured phase shift of φ0).

Fig. 5 shows the variation of k′, extracted from the determi-

nation of X(r), as a function of the frequency: one notices that

the wave propagation is dispersive, with an increasing phase

velocity ω/k′ versus f .
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Fig. 5 Real part of the wave vector k′ as a function of the frequency

f : experimental measurements obtained as described in Fig.3

(circles) and best fit using Eq. (19) with the thickness e of the soap

film as a fitting parameter (here e = 0.08 µm) (full line). For

comparison, Eq. (19) is also plotted with e = 0 (dotted line) and e =

0.2 µm (dashed line).

Fig. 6 Notations used for the computation of the dispersion relation

(the length scales are not respected).

4 Theoretical dispersion relation

In this section we compute the complex dispersion relation of

the transverse wave on the horizontal soap film. We consider

a liquid film of constant thickness e = 2h. The liquid has a

viscosity η and a constant mass density ρ . The wavelength is

assumed to be large compared to e and to the amplitude ζ of

the vertical displacement. For simplicity, we consider here a

two-dimensional problem (see Fig. 6): the film at rest is along

the x axis; the transverse wave, a deformation along the z axis,

propagates in the x direction. In other words, the problem is

infinite in the perpendicular y direction. We have checked that

the same calculation performed in a 3D geometry with an axial

symmetry leads to the same dispersion relation.

We develop here the calculations taking into account the in-

terfacial visco-elastic modulus ε , the inertia of the air ρa and

the viscosity of the air, ηa. To our knowledge, it has been con-

sidered theoretically only by Joosten8, in the MHz regime and

in the limit of incompressible interfaces (ε → ∞). The calcu-

lation presented here extends this approach to other regimes,

in particular to the kHz regime and the case of a finite ε cor-

responding to our experimental conditions.

4.1 Velocity and pressure fields for an antisymmetric vi-

bration

The velocity field ~v of a liquid volume element obeys the in-

compressibility condition and the Navier-Stokes equation:

{

div(~v) = 0

ρ∂t~v =−
−−→
gradP+η

−→
∆v+ρ~g

(6)

where P is the local pressure and ~g is the gravitational ac-

celeration. ∂t stands for the partial derivation with respect to

time t. The nonlinear inertial term in the Navier-Stokes equa-

tion has been neglected in the long wavelength limit.

The velocity field can be written as a combination of a po-

tential flow and a rotational flow: ~v(x,z, t) = −
−−→
gradΦ+

−→
rot~Ψ,

where Φ(x,z, t) is the potential function and ~Ψ=Ψ(x,z, t)~ey is

the vorticity function, ~ey being a unit vector in the y direction.

Therefore







∆Φ = 0

−ρ∂tΦ+(P−P0)−ρg(h− z) = 0

−ρ∂tΨ+η∆Ψ = 0

(7)

where P0 is the pressure at rest at z = h. For an antisymmetric

solution, Φ(x,−z, t) = −Φ(x,z, t) and Ψ(x,−z, t) = Ψ(x,z, t)
(the origin of the z axis is chosen in the plane of symmetry

of the film at rest). The solutions corresponding to an oscilla-

tion at the angular frequency ω , propagating in the x direction

write
{

Φ(x,z, t) = Asinh(kz)ei(ωt−kx)

Ψ(x,z, t) = Bcosh(mz)ei(ωt−kx) (8)

where k = k′+ ik′′ is the complex wave number (note that

here a damped oscillation corresponds to a negative k′′), and

m2 = k2 + iρω/η . A and B are two integration constants. We

then obtain

{

vx(x,z, t) = (ikAsinh(kz)−mBsinh(mz))ei(ωt−kx)

vz(x,z, t) = (−kAcosh(kz)− ikBcosh(mz))ei(ωt−kx) (9)

and, using Eq. (7),

P(x,z, t) = P0 +ρg(h− z)+ iρωAsinh(kz)ei(ωt−kx) (10)

The motion of the air under and above the film must also be

considered. The velocity field in the air~va is calculated using

the same approach as above. We write~va(x,z, t) =−
−−→
gradΦa+
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−→
rot~Ψa with ~Ψa = Ψa~ey. Since the propagation velocity of the

perturbation is small compared to the sound velocity in the air,

the air is assumed to be incompressible. Therefore
{

div(~va) = 0

ρa∂t~va =−
−−→
gradPa +ηa

−→
∆va +ρa~g

(11)

where ρa and ηa are respectively the mass density and the

dynamic viscosity of the air. Using the same argument as pre-

viously (Eq. (7)) and taking into account the boundary condi-

tions Φa(x,z, t), Ψa(x,z, t)→ 0 when z → ∞, the solutions are,

for z ≥ Z1, where Z1 is the position of the upper interface of

the film:
{

Φa(x,z, t) =C exp(−kz)ei(ωt−kx)

Ψa(x,z, t) = Dexp(−maz)ei(ωt−kx) (12)

with m2
a = k2 + iρaω/ηa, and C and D two integration con-

stants. The velocity field and the pressure field in the air can

then be deduced:
{

vax(x,z, t) = (ikC exp(−kz)+maDexp(−maz))ei(ωt−kx)

vaz(x,z, t) = (kC exp(−kz)− ikDexp(−maz))ei(ωt−kx)

(13)

and

Pa(x,z, t) = P0 −ρag(z−h)+ iρaωC exp(−kz)ei(ωt−kx) (14)

4.2 Continuity of the velocity and of the stress at the in-

terface

We now consider the liquid-air interfaces. The continuity of

the tangential and normal stresses at the upper interface (Z1 ≃
h) writes:
{

−η (∂zvx +∂xvz)h +ηa (∂zvax +∂xvaz)h + ε ∂xxξ = 0

(P−Pa)h −2η (∂zvz)h +2ηa (∂zvaz)h + γ ∂xxζ = 0

(15)

where ξ and ζ are the displacements respectively along x

and z of the upper interface Z1 (see Fig. 6), and ε = Sdγ/dS

is the viscoelastic modulus, S being the interfacial infinitesi-

mal area. In our case the surface is one dimensional, therefore

ε = dγ/∂xξ . In the first equation, the tangential viscous forces

in the liquid and in the air are balanced by the interfacial vis-

coelastic stress in the plane of the interface. The second equa-

tion balances the pressure jump at the interface with the vis-

cous normal forces in the liquid and in the air, and the normal

force coming from the interfacial curvature.

In the long wavelength limit , ξ and ζ are given by

{

∂tξ ≃ vx(Z1)≃ vx(h)
∂tζ ≃ vz(Z1)≃ vz(h)

Therefore
{

ξ (x, t) = ω−1 [kAsinh(kh)+ imBsinh(mh)]ei(ωt−kx)

ζ (x, t) = ω−1 [ikAcosh(kh)− kBcosh(mh)]ei(ωt−kx)

(16)

Moreover the continuity of the x and z components of the ve-

locities~v and~va at the interface leads to an expression of vax,

vaz and Pa as a function of the constants A and B (instead of C

and D).

4.3 Dispersion relation

Eqs. (15) couple the velocity fields and the pressure fields

in the air and in the liquid. Using the expressions (9), (10),

(13) and (14) for those fields and the condition of continuity

of the velocities at the interface, eqs. (15) result in a system of

two equations with two unknowns, A and B. The determinant

has to be equal to zero. To the first order in kh and mh (long

wavelength limit), this gives the dispersion relation:

ω2

k2

(

ρh+
ρa

k

ma

ma − k

)

= γ +
ηω

ηω − iεk2h

[

ε(kh)2 +E
]

(17)

with

E = γ
ηa

η
(k+ma)h+

ρaω2h

k(ma − k)

(

1−
ηa

η

k2 +m2
a

k2

)

−iηaωh

[(

−3+2
ηa

η

)

+
ma

k

(

1−2
ηa

η

)

−
m2

k2
(k+ma)h

]

5 Comparison between theory and experimen-

tal results

In our experimental conditions, Eq. (17) can be simplified.

It is developed to the first order in k′′/k′. Furthermore, ηa ≃
2.10−5 Pa.s is neglected compared to η . We use the values of

the physical parameters given in section 2.1, ρa ≃ 1 kg.m−3

and e∼ 1 µm or less. Using the relation ηak′2/(ρaω)≪ 1 and

considering the case |ε|h ≤ 10−7N so that |εk2h|/(ηω)≪ 1,

eq. (17) is simplified to the leading order and divided into a

real part and an imaginary part.

5.1 Real part of the dispersion relation

Taking into account the orders of magnitude corresponding

to our experimental conditions and range of frequencies, the

real part of the dispersion relation is simplified in two steps.

First we keep the leading order for each physical ingredient,

in particular ηa and ε , and we get the following equation :

ω2

k′2

(

ρh+
ρa

k′
+ρa

√

ηa

2ρaω

)

≃ γ +O(k′h)2ε ′ (18)

with O(k′h)2 a term of the second order in (k′h).
The phase velocity ω/k′ is given by the ratio between the

restoring force (terms in the right-hand side of the equation)

and the inertia (terms in brackets in the left-hand side). The

main effect of the interfacial viscoelasticity ε is thus a small
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correction to the restoring force, whereas the main effect of

the viscosity of the air is a slight increase in the inertia.

These two corrections are actually negligible in our exper-

imental conditions and we get finally the real part of the sim-

plified dispersion relation :

ω2

k′2

(

ρe+2
ρa

k′

)

≃ 2γ (19)

The phase velocity is thus essentially given by the ratio be-

tween the surface tension of the film, which acts as a restoring

force, and the inertia. The air is displaced on a vertical dis-

tance of the order of the wavelength, therefore the inertia of

the air cannot be neglected in comparison with the inertia of

the liquid in the film.

Eq. (19) has already been predicted in previous stud-

ies8,11,14. Our calculation shows that this expression is robust

even if parameters such as the interfacial viscoelasticity and

viscosities of the liquid and the air are taken into account: they

have a negligible role in our experimental conditions. Note

that Eq. (19) is still valid if |ε| is as large as 1 N/m, since the

viscoelastic term is always multiplied by (kh)2 (see Eq. (17))

which is of order 10−6.

Fig. 5 shows a comparison of Eq. (19) with the experimen-

tal measurements of k′ versus f = ω/(2π), using e as a fitting

parameter: the agreement is excellent. As highlighted on the

graph, the fit poorly depends on e: in our experimental con-

ditions, e is smaller than 100 nm and the inertia of the air is

actually larger than the inertia of the liquid. Would e vary by

50 percent, the adjustment would still be satisfying, as shown

on Fig. 5.

5.2 Imaginary part

The imaginary part of the dispersion relation becomes, when

keeping only the leading term describing the effects of the vis-

cosity ηa and of the interfacial viscoelasticity ε :

ω2

k′2

(

−k′′

k′

(

ρe+3
ρa

k′

)

−ρa

√

ηa

2ρaω

)

≃ O(k′h)2ε ′′ (20)

The contribution of the surface viscosity ε ′′ to the attenua-

tion is very small compared to the contribution of the viscosity

of the air, and the simplified imaginary part of the dispersion

relation is finally :

−k′′

k′

(

ρe+3
ρa

k′

)

≃ ρa

√

ηa

2ρaω
(21)

Eq. (21) predicts that the attenuation of the transverse

wave is mainly determined by the air viscosity. The quan-

tity
√

ηa/(2ρaω) ≃ 50 µm appears as the typical dis-

tance over which the dissipation in air takes place. Let

us note that the equivalent distance in the liquid should be
√

η/(2ρω) ≃ 10 µm: the dissipation in the liquid is thus

limited by the film thickness which is 100 times smaller. This

is the reason why the dissipation in the liquid is negligible.

5.3 Measurement of k′′ and comparison with the theory

The experimental measurement of k′′ is based on the analy-

sis of the shape of the resonances presented in Fig. 4: k′′

corresponds to the best fit of the experimental data using Eq.

(5), performed as follows. The measurements of A0 and φ0

are plotted as a function of k′ using Eq. (19) to convert the

(angular) frequency in terms of the real part k′ of the wave

vector. The amplitude A0 is divided by the vibration ampli-

tude of the cell Acell , measured independently at the same fre-

quency. The results are shown in Fig. 7 around one resonance.

[A0/Acell ] (k
′) and φ0(k

′) are then fitted using the following

expressions, extracted from Eq. (5):

{

A0/Acell = α/|J0(kR)|
φ0 = φb − arg(J0(kR))

(22)

The parameters R, α = Ab/Acell and k′′ are three fitting

parameters for the amplitude A0/Acell around a resonance,

which determine respectively the frequency, the amplitude and

the width of the resonance peak. R, φb and k′′ are also three fit-

ting parameters for the phase φ0. Let us note that φb is linked

to the continuous drift of φ0 observed in Fig. 4. The results

of the fits are reported in table 1. The fact that α 6= 1 and

φb 6= 0 suggests that the meniscus between the rigid support

and the soap film could play a role by attenuating or amplify-

ing the forcing amplitude transmitted from the support to the

film, and by introducing a phase difference between the con-

trolled forcing and the border of the film. Moreover the cou-

pling between the response of the meniscus and the response

of the soap film could also be responsible for the fact that the

position R of the minimum of |J0(kR)| does not correspond

exactly to the radius of the support, equal to 8.1 mm. Thus the

parameters R, α and φb are linked to the boundary conditions,

as if an effective forcing of amplitude α ×Acell and phase φb

would be applied to the soap film at r = R. On the other hand

the parameter k′′ is associated to the intrinsic attenuation of

the wave on the soap film.

The measurements of k′′ extracted from the fits are plotted

in Fig. 8 as a function of the frequency of the corresponding

mode. The data are compared to the theoretical modeling of

k′′( f ) (obtained by combining Eq. (19) and (21)) represented

on the same graph without any fitting parameter. The agree-

ment between the theory and the measurements is very good.
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Fig. 7 Diamonds: amplitude and phase φ0 of the standing wave at

r = 0, for the resonant mode n = 5 (see Fig. 4). The amplitude is

rescaled by the amplitude of vibration of the experimental cell.

Solid lines: fits of the data using Eq. (22) with 3 fitting parameters

(see text).
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Fig. 8 k′′ as a function of the frequency f of the resonant modes.

The experimental data are extracted from the fits of the amplitude

(empty symbols) and of the phase (full symbols) using Eq. (22), for

two films of thickness e ≃ 60 nm (squares) and e ≃ 80 nm

(diamonds). The solid line corresponds to the model Eq. (19) and

(21) without any fitting parameters (the curves for both thicknesses

are superimposed).

Table 1 Parameters obtained from the best fits of the data using Eq.

(22) for a soap film of thickness e ≃ 80 nm (see Fig. 7 for the

example of the mode n = 5).

mode 2 mode 3 mode 5

k′′ (m−1) 8 ± 5 15 ±5 31 ±5

R (mm) 9.3 ±0.1 8.8 ±0.1 8.5 ±0.1

α 0.9 ±0.2 9 ±1 15 ±1

φb ([π]) 0.4 ±0.1 -0.5 ±0.1 +0.7 ±0.1

6 Discussion and Conclusion

We have measured the attenuation of a transverse antisymmet-

ric wave on a thin soap film. Since the attenuation is very

small (we find a decay length 1/k′′ = 3 to 14 cm – larger than

the radius of the film – depending on the forcing frequency),

its determination is based on the analysis of the width of the

resonant curves (amplitude and phase in the centre of the film

as a function of the frequency), which strongly depends on

the imaginary part k′′ of the wave number. The amplitude and

phase of the vibrating film were determined by measuring the

deflection of a laser beam reflected by the film, at the forcing

frequency.

Using the same approach as in refs.8–10, we have computed

the complex dispersion relation of the antisymmetric waves in

the long wavelength limit. We have obtained analytical ex-

pressions for the real part and the imaginary part of the dis-

persion relation, simplified to the leading order in our experi-

mental conditions. The real part (variation of the wavelength

with the frequency) agrees with our measurements, taking the

film thickness e as a fitting parameter like in ref.11. Concern-

ing the imaginary part, the very good agreement between the

theory and the measurements evidences that, in our experi-

mental conditions, the dominant source of attenuation of the

antisymmetric wave on a soap film is the dissipation by vis-

cous friction in the air. This is the main result of this article.

This behavior is very different from the propagation of a

transverse wave in a surfactant monolayer at the surface of the

liquid solution17. In this system, the wave attenuation depends

mainly on the rheological properties of the liquid phase and of

the liquid-air interface. The measurement of the attenuation

of the capillary wave is actually used as a standard technique

to determine the surface dilational viscoelastic modulus of the

monolayer18. Theoretically, the interfacial viscoelasticity acts

as a tangential stress which balances, at the interface, the vis-

cous shear stresses in the liquid and in the air (see first line

of Eq. (15)). This 2D viscoelastic stress depends on the local

displacement ξ in the plane of the interface. In a vibrating

soap film, because of the liquid incompressibility and of the

symmetry of the wave, ξ is of the order of the perpendicular

displacement ζ of the interface multiplied by (k′e) (see Eq.

(16) in the long wavelength limit). Therefore, ξ ∼ 10−3ζ in a
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vibrating soap film, whereas ξ ∼ ζ in the case of a vibrating

monolayer: for the same value of the 2D viscoelastic modu-

lus ε , the tangential 2D viscoelastic stress at the interface of a

soap film is therefore three orders of magnitude smaller than

the tangential 2D viscoelastic stress at the surface of a mono-

layer. As a consequence, the viscoelastic interfacial modulus

plays no role on the wave attenuation as long as it is smaller

than 1 N/m. Let us notice that the viscoelastic surface mod-

ulus is an increasing function of the frequency. It has been

measured here at 0.1 Hz, which is very small compared to

the typical frequencies applied in the experiments. However,

measurements performed at higher frequencies on similar sys-

tems19 show that the viscoelastic surface modulus saturates at

high frequency at a value of the order of 100 mN/m, which is

still too small to play a role in the soap film vibration. Besides,

we have also shown that the liquid viscosity plays a negligible

role in the wave attenuation on a soap film, contrary to what

is observed for a monolayer. The reason is that for a soap

film the dissipation process in the liquid is limited by the film

thickness, which is about 100 times smaller than the typical

distance over which the dissipation occurs for a monolayer at

the same frequency.

A peculiar behavior of some fitting parameters of the

model appears in the analysis of the resonances: first, the

distance R of the effective forcing from the centre of the film

is slightly larger than the radius of the rigid frame supporting

the film; second, the effective forcing amplitude given by

the fit is smaller or larger (depending on the frequency) than

the vibrating amplitude of the support; third, an additional

phase shift between the forcing and the response of the film is

observed, which depends on the frequency. All those param-

eters are linked to the boundary conditions of the soap film.

They might reveal a complex behavior of the liquid meniscus

that separates the soap film from its support: we interpret the

observed shifts in R and the soap film amplitude and phase

of the effective forcing as an effect of the coupling between

the soap film and the meniscus. The relative motion between

the film and the meniscus could also be responsible for the

large attenuation of the transverse wave at low frequency20.

Further studies will use this experimental setup to investigate

this dynamical coupling between the meniscus and the soap

film, which is central to understand the acoustic propagation

in liquid foams6.
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When a soap film is vibrated (antisymmetric mode), the wave attenuation is 
dominated by the viscous dissipation in the surrounding air. 
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