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Deformation of two soft layers connected by a liquid bridge in the process of separation 
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Abstract 

 

Two solids can adhere to each other with the presence of a liquid bridge between 

them, which is called wet adhesion. When the solid is soft, the liquid bridge can cause 

deformation in the material, and in turn, the deformation may have dramatic effect on 

the wet adhesion. To investigate the effect, in this article, we calculate the deformation 

in two soft layers with different separations and connected by a liquid bridge. We 

illustrate the effect of deformation in the soft layers on the adhesive force. For a given 

liquid volume and separation between the two layers, the adhesive force increases 

dramatically by decreasing the elastic moduli of the soft layers. We also discuss the 

contact between the two soft layers due to the deformation caused by the liquid bridge. 

Depending on the volume of the liquid bridge, the two layers may contact with each 

other at the center of the wetting area or some other locations between the center and 

the contact line. The results may improve current understanding of wet adhesion 

between soft materials, and have potential applications in designing and fabricating 

soft devices and structures.   

 

Email: shqcai@ucsd.edu 

Page 2 of 27Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

Introduction 

Adhesion between two solid surfaces can be vital in making various structures 

and devices.
 1-3

 In terms of the adhesive mechanism, adhesion between two solids can 

be broadly divided into dry adhesion and wet adhesion. For dry adhesion, 

intermolecular interaction such as van der Waals force is responsible for the adhesion.
 

4,5
 Many animals, including insects, spiders, lizards and geckos, have the capability to 

cling to different surfaces using van der Waals forces.
6,7
 For wet adhesion, liquid 

bridges exist between two adjacent surfaces and capillary force is responsible for the 

adhesion.
 8,9

 Examples of wet adhesion range from the aggregation of granular 

materials in a wet environment
 10
 and crack propagation in the presence of moisture,

 11
 

to the attachment of animals like beetles, blowflies and ants, who can release fluid to 

attach their pads onto different surfaces.
 12-14

  

Many experiments have shown that adhesion can cause deformation in the 

material, which, in turn, can dramatically affect the adhesion properties.
15-17

 In the 

past, deformation in the material due to dry adhesion has been intensively studied.
 18,19

 

For example, based on London theory of van der Waals forces between small particles 

and colloids,
 20
 Johnson-Kendall-Roberts (JKR) theory extended the Hertz contact 

theory
 21
 to study the adhesion between two elastic spheres, with considering the 

deformation caused by van der Waals forces.
 22
 Gao et al. proposed an accordion 

model to investigate the properties of gecko adhesion, and found that deformation in 

foldable hard skin due to dry adhesion is crucial for the multi-functionalities of the 

accordion pad including self-cleaning, strong attachment and easy detachment.
 23  
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Diverse deformation modes and mechanical instabilities, such as cavitation and elastic 

fingering, have been frequently observed in the process of separating a rigid probe 

from the surface of a soft adhesive thin film
 24-26

. It has been clearly demonstrated that 

complex deformations in the materials are closely related to their adhesion properties.
 

24-26
 

 Compared to dry adhesion, the deformation in the material due to capillary 

forces in wet adhesion has been much less studied. This is probably because the 

deformation in the material caused by capillary force is usually small and negligible. 

However, recent experiments have shown that capillary forces can induce large 

deformations or even mechanical instabilities in soft materials. 
27-29

  

As a matter of fact, the deformation in the material due to capillary force can be 

estimated by comparing the size of the material with elasto-capillary length: / Eγ ， 

where E  is elastic modulus of the material and γ  is the surface free energy density. 

30
 When the size of the material is much larger than the elasto-capillary length, 

capillarity-induced deformation can be ignored in the material. However, when the 

size of the material is comparable or smaller than the elasto-capillary length, 

capillarity-induced deformation in the material can be dramatic.
31,32

 Therefore, in this 

paper, we study wet adhesion between two soft layers with considering the 

deformation of the material.  

In calculating the deformation of a solid caused by a liquid droplet, the analysis 

of the deformation around three-phase contact line is critical. To avoid possible 

deformation singularity in the three-phase contact line, surface stresses in the solid
33,34
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are considered. By closely following the methods in the literature,
 35
 we calculate the 

deformation of the soft layers caused by the liquid bridge connecting them. Using 

shooting method, for given liquid volume and separation between two layers, we 

calculate the adhesive force caused by the liquid bridge. The influence of elastic 

moduli of soft layers on the adhesive force is also investigated. The results may 

improve current understanding of wet adhesion in soft materials, and have potential 

applications in designing and fabricating soft devices and structures.   

Model and formulation 

Fig. 1a sketches the system to be investigated in this article. Two identical soft 

layers, with infinitely large lengths in two planar directions and finite thickness h , 

are in wet adhesion with each other through a liquid bridge with volume V . The two 

layers are attached to two rigid plates respectively. Two separation forces with equal 

magnitudes but opposite directions are applied on the rigid plates. We assume the 

shape of the liquid bridge is axisymmetric with radius R  of wetting area on the top 

and bottom of the soft layers, as shown in Fig.1a. We specify a cylindrical coordinate 

system, whose origin O lies on the surface of the undeformed lower soft layer (Fig. 

1a).  

Due to the presence of liquid surface tension, the pressure inside the liquid bridge 

is different from the pressure outside, and the difference is defined as Laplace 

pressure P, which can be calculated by Young-Laplace equation 
36
,  

lg

1 2

1 1
P

R R
γ
 

= + 
 

,                           (1) 

where 1R  and 2R  are the two principal radii of curvature of the surface of the liquid 
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bridge as shown in Fig. 1a, and lgγ  is surface tension of liquid. Since the effect of 

gravity is neglected, P  is a constant in the liquid bridge, and the surface of the liquid 

bridge has the same mean curvature at any point.  

The contact angle 0θ  of the liquid bridge on the layer is given by Young’s 

equation
 36
  

sg sl lg 0cosγ γ γ θ− = ,                          (2) 

where 
slγ  and 

sgγ  are solid-liquid interfacial free energy density and solid-gas 

interfacial free energy density, respectively. Eqn (2) is the consequence of minimizing 

total interfacial free energy of the system with allowing the contact line move freely 

in the tangential direction of the surface. However, eqn (2) leads to an imbalance of 

vertical forces with magnitude lg 0sinγ θ  (Fig.1b), which can deform the soft layers 

as well.  

When the system is in equilibrium, the separation force F  is balanced with the 

adhesive force which is the sum of the effect of liquid surface tension and Laplace 

pressure P  as shown in Fig.1c:  

( ) 2

lg 0 02 sin cosF R R Pπ γ θ θ θ π= − + ,              (3) 

where θ  is commonly known as the "apparent'' contact angle, which is the angle 

between the surface of the liquid bridge at the contacting point and the horizontal 

surface as shown in Fig.1b.   

To obtain the Laplace pressure in eqn (3), we need to calculate the profile of the 

liquid bridge for a given volume and separation between two layers. To describe the 

profile of liquid bridge affected by surface deformation of layers, we set up a new 
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vertical coordinate as ( )1 ,0zz z u R= − , where ( ),0zu R  is vertical displacement of 

the soft layer at the contact line. The shape of the liquid bridge can be described by 

the function ( )1r r z=  (Fig.1a), and the two principal radii of curvature are given by 

2

1 1 'R r r= − + , ( )3/22

2
1 ' / ''R r r= + . So, the Young-Laplace equation in eqn (1) can 

be rewritten as  

( )3/2 22
lg

'' 1

1 '1 '

P r

r rrγ
= −

++
 .                     (4) 

The boundary conditions for eqn (4) are 

1 0z
r R= = ,                             (5a) 

1 0
' 1 / tan
z

r θ= = − .                         (5b) 

Because of the mirror symmetry, we have,  

( )1 /2 ,0
' 0

zz d u R
r = − = .                          (6) 

Ignoring the deformation of the two soft layers, the above equations are adequate 

to compute Laplace pressure and the adhesive force. However, as discussed in the 

Introduction, in this article we intend to take into account the deformation of the soft 

layers caused by the liquid bridge and investigate the effect of the softness of the 

layers on the wet adhesion. In the following, we are going to list the equations for 

calculating the deformation in the soft layers.  

Because the shape of the liquid bridge is assumed to be axisymmetric, the 

deformation of the soft layers is also axisymmetric. We assume both strain field and 

rotation in the material are small, so the governing equations for the axisymmetric 

deformation of soft layers are the Navier equations 
37
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 ( ) ( )2

2
1 2 0r

r

u
u

r r
ν

∂ − ∇ − + ∇⋅ =  ∂ 
u ,                  (7a) 

 ( ) ( )21 2 0
z

u
z

ν
∂

− ∇ + ∇⋅ =
∂

u .                     (7b) 

where ru  and zu  are the r  and z  components of the displacement u , and ν  is 

the Poisson’s ratio of the material. In this article, strains in deformed soft layers do not 

exceed 8% in all the calculations. Although 8% strain is by no means infinitesimal 

deformation, we believe linear elasticity can still be a good approximation in our 

model. As a matter of fact, linear theories have met with remarkable success in 

describing even moderately large deformation. 

Because the two soft layers are identical, we only need to calculate the 

deformation in the bottom layer. The layer is constrained by a rigid plate on its bottom 

surface, so the boundary condition for the displacement is 

( ), 0r h− =u                            (8) 

for all r  with origin O. 

The traction imposed by the liquid bridge on the surface of the soft layer in 

vertical direction is given by  

( ) ( ) ( ) ( )lg 0 0,0 sin coszz r R r PH R rσ γ θ θ θ δ= − − + −            (9) 

for all r  with origin O, where ( )xδ  and ( )H x  are the Dirac delta and Heaviside 

step functions, respectively. It is noted that the angle θ  can be affected by the 

deformation of the soft layer, as 

( )
0

,0
arctan

zu R

r
θ θ

∂ 
= −  

∂ 
 .                     (10) 

To solve the axisymmetric problem, we follow the method adopted by Jerison et 
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al. 
35 

Because the tangential traction on the surface ( ),0zr rσ  is negligible, we 

assume the deformation of the soft layer is only caused by the vertical traction 

( ),0zz rσ . The surface displacement of the soft layer is given by 
35
 

 ( ) ( ) ( )1 1

0 0
, 0 ,0

z zz zz
u r K s rσ− − =    H H  ,                (11) 

where 
0H  is Hankel transformation of order 0, and ( )1

zzK s−  is 
35
 

 ( )
( )

( ) ( )
( ) ( )

( )

2

1

22 2 2

2 1 1

2 15 12 8 2 3 4 cosh 2

3 4 sinh 2 2

zz

s

K s
sE ss h sh

sh sh E

ν

ν γν ν ν
ν

−
−

=
−− + + + −

+
− −

,  (12) 

where s  is the radial wavenumber of the Hankel transform of order 0, and the 

surface stress of the soft layers sγ  is considered here for cutting off the divergence 

of strain at the triple line. For simplicity, we assume surface stress is same on the 

solid-liquid interface and solid-gas interface. The deformation can be obtained by a 

dual integral equation when the surface stresses on the solid-liquid interface and 

solid-gas interface are different. 
38
 In the following calculations we set the ratio 

between solid-liquid interfacial free energy density and surface stress of the soft layer 

to be lg / 0.5sγ γ = . 

Combining eqn (9) and (11), we can obtain the vertical displacement of the soft 

layer on the surface caused by the liquid bridge as 

( ) ( ) ( ) ( ) ( ) ( )1 1

0 0 0 0
0

,0 sin cosz lg zz

PRJ sR
u r s RJ sR K s J sr ds

s
γ θ θ θ

∞ − 
= − + 

 
∫ , (13) 

where the expression within the square of the integration is the Hankel transform of 

order 0 of the right-hand side of eqn (9), 0J  and 1J  are the 0 and 1 order Bessel 

function of the first kind respectively.  

Based on the displacement given by eqn (13), we can calculate the volume of the 
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liquid bridge by the integration,  

( )
( ) ( )

/2 ,0
2

1
0 0

2 2 2 ,0 ,0
zd u R R

z z
V r dz r u r u R drπ π

−
= − −  ∫ ∫ ,          (14) 

where the first term of the right-hand side is the volume enclosed by the outline of the 

liquid bridge ( )1r r z=  and two horizontal axes 1 0z =  and ( )1 2 ,0zz d u R= − , and 

the second term corresponds to the volume of the soft layers above 
1 0z =  and below 

( )1 2 ,0zz d u R= − . 

In the following, we are going to describe the numerical method of solving the 

above equations and discuss the results we obtain.  

Results and discussions 

For a given volume of the liquid bridge, to calculate the adhesive force as a 

function of the separation between two layers, we use shooting method. In the 

calculation we first guess the values of radius R  of the wetting area and Laplace 

pressure P , and calculate surface deformation by solving eqn (13) with 

corresponding boundary conditions. After the surface deformation is computed, we 

further calculate the liquid profile by solving eqn (4) with corresponding boundary 

conditions eqn (5a) and (5b). Based on the surface deformation and liquid profile, we 

can calculate the separation d and liquid volume V, by solving eqn (6) and (14), 

respectively. Through several iterations, we can obtain the contacting radius and 

Laplace pressure for prescribed liquid volume V and separation d. After the radius of 

the wetting area R and the Laplace pressure P are calculated, we derive the adhesive 

force between the two soft layers for a given liquid volume V and separation d  

from eqn (3).  In the calculation, we assume the soft layer is incompressible, 
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i.e., 0.5ν = , and the contacting angle 0 / 3θ π= .  

Fig. 2 plots the adhesive force as a function of separation d  for several elastic 

moduli of the soft layers and different volumes of liquid bridge. Because the radius of 

wetting area R  and Laplace pressure P  decreases with increasing separation d , 

the adhesive force decreases monotonically with increasing the separation. From Fig. 

2a, b and c, we can also conclude that larger volume of liquid bridge results in larger 

adhesive force for the same separation distance between the two layers.  

Fig. 2 also illustrates that the separation force is larger for softer layers with the 

same separation distance between the two layers. To better show the influence of 

softness of the layer on the magnitude of adhesive force, Fig. 3 plots the adhesive 

force as a function of modulus of the soft layer for three different volumes of liquid. It 

clearly shows that the adhesive force can dramatically increase when the layer is soft. 

For instance, with the liquid volume 3/ 0.3V h =  and the separation / 0.359d h = , 

the adhesive force can increase as large as 4 times when the non-dimensional number 

lg / Ehγ  changes from 0.01  to 0.08 . 

If the separation between two layers is too large, the liquid bridge breaks, which 

can be predicted by instability analysis on the liquid.
 39,40

 In this paper, because we 

focus on the effect of the elastic modulus of the soft layer, we stop our calculation of 

the force-separation curve once the Laplace pressure is zero, which is actually very 

close to the breakage of the liquid bridge.  

If the separation between the two layers is too small, under the action of surface 

tension and Laplace pressure, the surfaces of the two soft layers can deform and 
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contact with each other. To avoid the complexity of calculating contact, our 

calculation starts from the separation distance larger than the distance when the 

contact between the two soft layers initially happens. The circular solid points in Fig. 

2 indicate the conditions when two surfaces of the layers initially contact with each 

other.   

Fig. 4 plots how the elastic modulus affects the contact between the two soft 

layers, for different volumes of liquid bridge. The layers with lower modulus can 

contact with each other for larger separation distance. However, the separation 

distance between the two layers for the initial contact does not necessarily change 

monotonically with increasing liquid volume, as shown in Fig.4. For lg / 0.1Ehγ = ，

the separation distance for initial contact with 3/ 0.3V h =  is smaller than that with 

smaller volume, 3/ 0.1V h = . Interestingly, the separation distance for initial contact 

with 3/ 0.05V h =  is also smaller than that with 3/ 0.1V h = .   

Fig. 5 plots the mean curvature of the liquid bridge as a function of separation, 

for different liquid volumes. For a fixed elastic modulus of the soft layer, mean 

curvature of the surface of the liquid bridge decreases with increasing the separation.  

For a given separation, the mean curvature of the liquid bridge increases with 

decreasing elastic modulus. The result implies soft layers tend to increase the Laplace 

pressure in the liquid bridge. We can understand the results as following: for a fixed 

liquid volume and separation, the surfaces of the two layers with smaller elastic 

modulus are closer to each other through larger surface deformation. Therefore, for 

softer layers, the mean curvature of the liquid bridge and the Laplace pressure in the 
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liquid are larger. 

Fig. 6a and b plot the displacement of the wetting area of the soft layer for 

several separation distances, with liquid volumes 3/ 0.05V h =  and 3/ 0.1V h = , 

respectively. For 3/ 0.05V h =  (Fig. 6a), when the separation is large, the maximum 

vertical displacement of the soft layer is at the contact line, i.e. / 1r R = . When the 

separation is small, the maximum displacement is at the center, i.e. / 0r R = . 

Therefore, when the two soft layers get close enough, they contact with each other at 

the center first. For 3/ 0.1V h =  (Fig. 6b), when the separation is large, the maximum 

displacement is also at the contact line. However, when the separation decreases, the 

maximum displacement moves to the center of the contacting area. When the 

separation becomes small enough, the maximum displacement appears at a location 

between the center and contact line. In consequence, when the two soft layers get 

close enough, they first contact with each other at certain location between the contact 

line and the center of the wetting area.   

As shown in Fig.1c and eqn (3), the deformation in the soft layer is induced by 

the surface tension and Laplace pressure. The surface tension acts on the contact line, 

thereby generating the largest vertical displacement at the contact line. However 

Laplace pressure induces the largest vertical displacement at the center of the wetting 

area, when the radius of the wetting area is small. The Laplace pressure can cause the 

largest vertical displacement at a location apart from the center, when the wetting area 

is large. The deformation shown in Fig. 6a and b is due to the combination of surface 

tension and Laplace pressure.  
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Fig. 6c plots vertical displacement at the center of the wetting area as a function 

of the separation. For 3/ 0.05V h = , the vertical displacement at the center is a 

monotonic function of the separation. For 3/ 0.1V h = , the vertical displacement at 

the center is a non-monotonic function of the separation. To be more detailed, the 

vertical displacement at the center of the soft layer increases first and then decreases 

with increasing the separation. The non-monotonic function can be understood by 

considering the finite thickness of the soft layer and the Poisson’s effect of the 

material. Both Laplace pressure and wetting area decrease with increasing the 

separation between the two soft layers. Although larger Laplace pressure tends to 

cause larger vertical displacement at the center, larger wetting area (scaled by the 

thickness of the soft layer) results in smaller vertical displacement at the center due to 

Poisson’s effect. Therefore, maximal vertical displacement at the center may appear 

for medium Laplace pressure and wetting area and consequently medium separation 

as shown in Fig. 6c.  

To better illustrate the effect of Laplace pressure on the deformation of the soft 

layer, we calculate the vertical displacement with assuming the contact angle 0 0θ = . 

Therefore, the surface deformation is only induced by the Laplace pressure. Fig. 7a 

and b plot the displacement for several separations with two different liquid volumes 

3/ 0.06V h =  and 3/ 0.3V h = . When the separation between the two layers is small, 

for small liquid volume, the maximal displacement is at the center of the wetting area 

(Fig. 7a); for large liquid volume, the peak displacement appears at a location 

between the center and the contact line (Fig. 7b). Now, however, the maximal vertical 
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displacement of the layers is not at the contact line, even for large separations. 

Fig. 7c plots the vertical displacement at the center of the wetting area as a 

function of the separation. For a small volume 3/ 0.06V h = , the vertical displacement 

at the center is a monotonic function of the separation. For a large volume 

3/ 0.3V h = , the vertical displacement at the center is a nonmonotonic function of the 

separation. The result is qualitatively similar to that shown in Fig. 6, though the 

surface deformation is only induced by the Laplace pressure in Fig. 7.   

Fig. 8 plots the calculated configuration of two soft layers connected by a liquid 

bridge with different separations. When the two soft layers are close enough to each 

other (Fig. 8a), the two soft layers contact at a location between the center and the 

contact line. With increasing the separation, the radius of the wetting area and the 

curvature of the surface of the liquid bridge gradually decrease (Fig. 8b-d). There 

exists a critical separation between the two layers, beyond which a stable liquid bridge 

no longer exists due to instability. 
39,40

  

 

Conclusions 

In this paper, we study wet adhesion between two soft layers connected by a 

liquid bridge. We calculate the adhesive force between the two soft layers for different 

separation distances. In the calculation, we have taken account of the surface 

deformation of the soft layers caused by the liquid bridge. The calculation shows that 

the adhesive force between two soft layers decreases with increasing separation. For a 

given liquid volume and separation, the adhesive force caused by the liquid bridge 
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increases with decreasing the elastic moduli of the soft layers. Our calculations have 

also shown that the two layers may contact each other at small separation. Depending 

on the volume of the liquid bridge and the moduli of the soft layers, the two soft 

layers may contact each other at the center of the wetting area or some place between 

the center and contact line. Our results may improve the understanding of 

elasto-capillary phenomena in soft materials, and have potential applications in 

designing and fabricating soft devices.  
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Fig.1 a). Schematic of a liquid bridge connecting two soft layers. b). Young’s equation 

leads to a net force with magnitude lg 0sinγ θ  per unit length at the contact line. c). The 

soft layer deforms under the action of Laplace pressure and liquid surface tension. In 

this case, the Laplace pressure P  always pulls the soft layer because the pressure 

inside the liquid is smaller than the atmospheric pressure.  
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Fig.2 Adhesive force between two soft layers as a function of separation distance for 

different elastic moduli of the soft layers with three different volumes of the liquid 

bridge: a). 3/ 0.05V h = ; b). 3/ 0.1V h = ; c). 3/ 0.3V h = .  To avoid the complexity of 

calculating contact between the two layers, calculations start from a separation 

distance larger than the distance for the initial contact, which is marked as grey 

circular dots in the figure.  
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Fig.3 Adhesive force between the two soft layers increases with decreasing the elastic 

moduli of the soft layers. . 
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Fig.4 Dependence of separation distance for the initial contact between the two soft 

layers on their elastic moduli, for three different volumes of liquid bridge.  
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Fig. 5 Mean curvature of the liquid bridge surface, which is defined as 

1 21/ 1/k R R= + , decreases with the increase of the separation between the two soft 

layers for three different liquid bridge volumes: a). 3/ 0.05V h = , b). 3/ 0.1V h = , c). 

3/ 0.3V h = . 
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Fig.6 Vertical displacement of the wetting area of the soft layers for different 

separation distances with contact angle 
0 / 3θ π=  and two different volumes of the 

liquid bridge: a). 3/ 0.05V h = , b). 3/ 0.1V h = . (c) plots vertical displacement at the 

center of the wetting area of the soft layer as a function of the separation, with two 

different volumes of the liquid bridge 3/ 0.05V h =  and 
3/ 0.1V h = .  
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Fig. 7 Vertical displacement of the wetting area for different separation distances with 

zero contact angle 
0 0θ =  and two different volumes of the liquid bridge: a) 

3/ 0.06V h = , b). 
3/ 0.3V h = . (c) plots vertical displacement at the center of the 

wetting area of the soft layer as a function of the separation, with two different 

volumes of the liquid bridge 3/ 0.3V h =  and 
3/ 0.06V h = .  
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Fig.8 Snapshots of the deformation of the soft layers and the shape of the liquid 

bridge at four different separations with the following parameters: 3/ 0.1V h = , 

lg / 0.01Ehγ = , 
lg / 0.5

s
γ γ = , 

0 / 3θ π= , 0.5ν = . The two layers begin to contact with 

each other when the separation is / 0.1105d h =  as shown in (a). The separations are 

/ 0.1496d h =  and / 0.2566d h =  in (b) and (c) respectively. The Laplace pressure 

drops to zero when the separation is as large as / 0.4064d h =  as shown in (d). It is 

noted that in the figure, to clearly show the deformation in soft layers, the horizontal 

scale is selected different from the vertical scale. In addition, only a portion of soft 

layers are included in the figure. The dimensionless thickness of each soft layer 

should be 1 and the lateral size of the soft layer is infinitely large.  
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