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Diffusion of small to medium sized molecules in polymeric medical device materials underlies 

a broad range of public health concerns related to unintended leaching from or uptake into 

implantable medical devices. However, obtaining accurate diffusion coefficients for such 

systems at physiological temperature represents a formidable challenge, both experimentally 

and computationally. While molecular dynamics simulation has been used to accurately predict 

the diffusion coefficients, D, of a handful of gases in various polymers, this success has not 

been extended to molecules larger than gases, e.g., condensable vapors, liquids, drugs. We 

present atomistic molecular dynamics simulation predictions of diffusion in a model drug 

eluting system that represent a dramatic improvement in accuracy compared to previous 

simulation predictions for comparable systems. We find that, for simulations of insufficient 

duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful 

metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics 

correlate to error in D. We also identify a relationship between diffusion and fast dynamics in 

our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing 

systems. Our work provides important precedent and essential insights for utilizing atomistic 

molecular dynamics simulations to predict diffusion coefficients of small to medium sized 

molecules in condensed soft matter systems. 

 

 

 

Introduction 

Composite drug-polymer systems have long played a pivotal 

role in controlled release and targeted drug delivery 

applications.1 While a great diversity of potential delivery 

strategies exist due to the nearly limitless variety of synthetic 

polymers available and to the numerous options for drug-

polymer association, most approaches essentially involve 

encasing drug in some way within polymer. The polymer then 

acts as an engineered diffusive barrier,2-4 selectively regulating 

chemical transport to achieve the desired drug release profile 

while simultaneously impeding the ingress of physiological 

fluids. Diffusion is thus ultimately the means through which the 

polymer mediates molecular exchange between the delivery 

system and the body. Drug eluting coatings often incorporate 

powerful anti-proliferative drugs that are not intended for 

release over long periods of time and thus slow unintended 

release of such drugs presents a potential risk to patients. In 

general, polymeric medical device materials contain small and 

potentially hazardous molecules and the potential that such 

molecules may leach into the body presents a serious public 

health concern. Potential leachables of concern include 

chemical additives (e.g. plasticizers and colorants) and 

byproducts of manufacturing (e.g. bisphenol-A5). Assessment 

of cumulative patient exposure to leachables over time requires 

knowledge of the diffusion rate of a specific leachable through 

a specific device material. Knowledge of diffusion rates for 

such systems would allow for an assessment of the relevant 

leaching timescales, which can persist for months, years, or 

decades. Knowledge of diffusion rate is also essential to 

assessing the timescale of ingress of
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Figure 1. Chemical constituents (left) and 

ternary composition map (right) of 

simulated drug eluting stent coating. Drug = 

tetracycline (TAC); polymer = poly(styrene-

b-isobutylene-b-styrene) (SIBS); solvent = 

tetrahydrofuran (THF). Limited solubility of 

drug/polymer effectively reduces the 

system to the 3 binary systems along the 

edges of the composition map. Simulations 

were performed for compositions 

indicated. Binary systems are distinguished 

by color in a manner consistent with color 

coding in Table I: TAC/THC (red), SIBS/THF 

(blue), TAC/SIBS (green).  

 

 

 

small molecules into polymeric device materials, which can 

adversely affect device safety. Water ingress into coatings on 

pacemaker leads and cochlear implants must, for example, be 

sufficiently slow to prevent electrical short-circuiting over the 

lifetime of the implant.  

While ingress and egress of harmful molecular species have a 

direct and evident impact on device safety, diffusion affects 

device performance and reliability in more subtle but important 

ways. The drug release profile of drug eluting coatings depends 

on the specific drug/polymer microstructure formed during 

processing. Coating manufacture typically involves non-

equilibrium processes, such as solvent casting, in which 

macroscopic phase separation is inhibited. Consequently, non-

equilibrium microstructural features, such as drug inclusions, 

arise and the size and distribution of these features are dictated 

by diffusivity.6 Such non-equilibrium microstructural features, 

along with other microstructural features, e.g. the presence of a 

drug wetting phase and the microphase-separated morphology 

of block copolymer components,7 can profoundly impact drug 

release.8, 9  

Thus, the safety and manufacturing reliability of next-

generation drug delivery systems will all rely on the ability to 

accurately predict or measure molecular diffusivity for such 

systems. Unfortunately, experimental measurement of the slow 

diffusion of small to medium sized molecules in polymeric 

systems at physiological temperature, presents a significant 

challenge. This challenge is rooted in both the small size of the 

diffusants of interest and the inherently slow rate of transport in 

polymers.  

Labelling techniques, most notably fluorescence recovery after 

photo-bleaching (FRAP), have been employed to study 

diffusion of large molecules, such as synthetic polymers,10-12 

polyelectrolytes,13 proteins,14 and dextrans.4 However, 

fluorescence techniques are of limited utility in quantifying 

diffusivities of smaller molecules through polymeric and other 

highly viscous matrices; when a fluorescent labeling molecule 

is comparable in size to the diffusing molecule to which it is 

bound, the resulting complex is of significantly greater size 

than the diffusing molecule alone, thus substantially altering the 

measured diffusion rate. Thus, applications of fluorescent 

labelling to the study of small molecule diffusion tend to focus 

on qualitative trends in diffusivity as a function of physico-

chemical system characteristics. Examples include the effect on 

diffusion rate of probe size10, 15 and charge,16 the extent of 

hydrogen bonding between the probe and the polymer matrix, 

as well as the degree of stiffness,13, 17 crosslinking density,18 

and hydrophobicity of the polymer matrix.  

Extraction methods and approaches based on diffusion cells, 

which monitor increasing diffusant concentration in solution, 

are widely employed to measure small molecule release from 

polymeric materials. However, extraction approaches are of 

limited effectiveness where diffusion is slow and diffusant 

solubility in the extraction solvent is low, as is often the case 

for leachables in polymeric medical device materials. In this 

case, in order to release detectable quantities of diffusants in a 

reasonable timeframe, exhaustive extraction techniques using 

elevated temperatures and aggressive solvents must be 

employed. While exhaustive extraction is an important tool for 

determining the total amount of a contaminant in a device, it is 

of limited relevance to prediction of in vivo exposure.  

Nuclear magnetic resonance (NMR), in particular pulsed field 

gradient spin echo (PGSE-NMR), has been used to determine 

diffusivity in solvent-rich systems, such as polymer solutions 

and gels.19-21 However, in addition to being both costly and 

time-intensive, diffusion rates measurable by PGSE-NMR are 

limited to values greater than O(10-9) cm2/s and therefore may 

not be suitable to address health concerns discussed above, e.g. 

slow leaching of drugs or harmful molecules from devices.  

Our work is focused on predicting diffusion of molecules larger 

than gases but relatively small on the scale of polymers (i.e. 

molecules with dimensions in the range of a few Angstroms to 

tens of Angstroms and molecular weights of approximately 50-

1000 Daltons), which we will refer to as non-gaseous small 

molecules. Given the significant challenges in measuring non-

gaseous small molecule diffusivity in polymers, it is of interest 

to explore the possibility of predicting diffusivity in silico. 
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Molecular dynamics simulation, a powerful computational tool 

that provides atomistically22 detailed data on the motion of 

molecules in thermalized systems, is in principle an ideal 

approach to determining diffusivity. The quantitative 

relationship between diffusivity and individual molecular 

displacement was originally derived by Einstein23-25 and can be 

expressed as 
                                         
 (1) 
 

 

where i is the molecular index, Na is the number of molecules 

in a given system, ri is the instantaneous three-dimensional 

position vector of molecule i, to is an arbitrary reference time, 

∆t is the time differential over which squared displacements are 

computed, and the brackets <> denote the ensemble average 

over multiple instances of the same chemical system. The 

summation in Equation (1) gives the mean-squared 

displacement of a given chemical species in a given system, 

<∆r2>, for a given ∆t. For sufficiently large ∆t, the derivative of 

the mean-squared displacement is constant and thus D is 

independent of ∆t. Equation (1) provides a straightforward 

method to determine diffusion coefficients directly from the 

trajectory output of simulation runs.  

Molecular dynamics simulation has long been used to 

investigate molecular diffusion. Early work was restricted to 

qualitative studies of diffusion in coarse-grained26-28 and simple 

fluid29, 30 systems. With improvements in molecular mechanical 

force fields and dramatic increases in processor speed, diffusion 

studies have begun to address more complicated systems.31-38 

While a great deal of effort has focused on studying qualitative 

transport behavior of coarse-grained polymer systems,37, 39-42 

accurate predictions of diffusion in polymers using atomistic 

molecular dynamics simulation have been largely restricted to a 

few particularly small gases.43-55 Obtaining accurate predictions 

of non-gaseous small molecule diffusivity at physiologic 

temperature in polymers remains a daunting challenge. In 

particular, published predictions of the diffusion in polymers of 

condensable vapors,55-57 liquids,58-64 drugs,65 etc., where 

available, are typically lacking in experimental validation and 

performed at highly elevated temperatures.53, 66-70 A notable 

exception is work by Li et al.,71 which stands to date as the 

most extensive and systematic comparison of simulation 

predictions and experimental measurements of diffusivity of 

small non-gaseous molecules in various polymers. Notably, 

simulation predictions for most diffusant/polymer systems were 

much larger than corresponding experimental values, by as 

many as four orders of magnitude.  

This poor predictive performance is particularly surprising 

given that the simulation approach of Li et al. was substantially 

equivalent to the approach long applied successfully to gaseous 

diffusion in polymers. Furthermore, diffusants considered by Li 

et al. were limited to small or medium sized molecules and thus 

represented only an incremental increase in size over gas 

molecules. In this work, we present results that represent the 

first accurate and experimentally validated computational 

predictions of small non-gaseous molecule diffusion in a 

polymeric system. In addition, we explore the physical basis 

underlying previous inaccurate predictions of molecular 

diffusion and suggest how simulations may be better applied to 

making meaningful predictions of transport in similar systems.  

We model an important drug delivery system, polymer-based 

drug eluting stent (DES) coatings, which are commonly applied 

to implantable stents by casting drug and polymer from 

solution. DES coatings are essentially ternary 

drug/polymer/solvent systems where composition changes over 

the lifetime of the coating, as solvent evaporates during casting 

or as drug is released in vivo. Our simulated DES system is 

represented by the composition map shown in Figure 1 and 

includes the following components: poly(styrene-b-isobutylene-

b-styrene) (SIBS) tri-block copolymer, widely employed in 

commercial DES coatings; tetrahydrofuran (THF), commonly 

used in solvent casting of DES coatings; and tetracycline 

(TAC), an antiobiotic drug that is not employed in DES 

coatings, but serves as a safe surrogate drug for our 

accompanying laboratory work and is comparable in size and 

chemical structure to the powerful and often toxic drugs used in 

DES coatings. Due to chemical incompatibility of polymer and 

drug, the system can be well understood by considering only 

binary systems of solvent-polymer, solvent-drug, and drug-

polymer, i.e. the three binary axes of the ternary composition 

map shown in Figure 1. In this work, we predict diffusion 

constants at the compositions along each of these binary axes 

shown in Figure 1. Knowledge of diffusivity values at these 

compositions will provide essential quantitative insight into 

chemical transport rates within drug eluting coatings 

throughout the entire product life cycle. For example, predicted 

drug diffusivity in SIBS can be used in conjunction with film 

thickness and morphology to predict order of magnitude release 

times for embedded drug and/or residual solvent. Furthermore, 

predicted diffusion coefficients presented herein serve as the 

basis for hierarchical predictive modeling by providing 

parameters necessary for meso- and macro-scale models. In 

particular, diffusivity values are a necessary prerequisite for our 

ongoing phase field modeling studies72 of entire product life 

cycle of drug eluting stent coatings, from microstructure 

formation during processing to subsequent release.  

 

Methodology 

Simulation 

Initial amorphous structures were constructed using Materials 

Studio software from Accelrys based on the approach of 

Theodorou and Suter73. Molecules were grown incrementally 

such that the ensemble-distributions of chain torsions in the 

completed structure are consistent with those found in 

equilibrium mixtures. Growing chain configurations were also 

checked for high energy close-contacts and un-physical ring 

spearing configurations, which were discarded from 

consideration. Initial structures were constructed at lower 

density (0.4 g / cm3 to  0.6 g / cm3) and subsequently ramped to 

density 0.84 g / cm3 using an alternating series of molecular
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Figure 2. Confocal Microscope Images of Drug Microstructure in Drug/Polymer (TAC/SIBS) Coating. High drug concentration is indicated by red in (a) and light green in 

(b) and (c). Three-dimensional data shown in (a) demonstrate lamellar distribution of drug within the coating. Drug distribution along a single plane within the drug-

rich lamellar layer is shown in (b).  Perpendicular cross-sections along the depth of the coating are shown in (c).  Drug distribution within the coating is consistent with 

a second-rank laminate model. 

dynamics steps and geometry optimization. Structures were 

then subjected to additional energy-minimization using an 

alternating sequence of steepest descent and conjugate gradient 

optimizations to an energy tolerance of 0.01 kcal / mol. To 

expedite calculation of electrostatic interactions during 

construction of initial amorphous cell structures, charge groups, 

in which individual charges for a group of atoms are 

consolidated onto a single center, were employed. Assignment 

of charges was performed based on the ‘subunit’ assignment 

method of Materials Studio and cutoff distances of 10 Å and 8 

Å were utilized for Lennard-Jones and electrostatic interactions, 

respectively. 

In total, 57 amorphous structures were generated (including 

multiple versions of each binary system and concentration 

shown in Figure 1) in Materials Studio and exported for 

subsequent density equilibration and production runs. 

Production runs were performed using LAMMPS74, open 

source software made available by Sandia National Laboratory. 

The generalized Amber force field (GAFF)75 was employed for 

molecular dynamics simulation runs in LAMMPS. GAFF is 

designed to provide realistic interactions between different 

types of molecules - e.g. drug and polymer - that are not treated 

by traditional force fields. A handful of torsion parameters for 

our system were missing are were determined from available 

parameters as prescribed in Wang  et al.75  

Initial structures imported to LAMMPS from Materials Studio 

were each subjected to a six million step equilibration in the 

isobaric-isothermal (NPT) ensemble to eliminate remaining 

high energy structural features and to determine equilibrium 

density for subsequent production runs in the canonical (NVT) 

ensemble. A time-step of 1 fs was utilized for the first 2 million 

steps of the isobaric-isothermal equilibration runs, followed by 

4 million time-steps of 4 fs each. Density for a given binary 

system at a given concentration was determined by averaging 

the density of all individual runs over the final 1 million steps. 

In the final stage prior to production runs, the box size for each 

individual run was linearly ramped over 100,000 steps to attain 

the appropriate average density determined in the isobaric-

isothermal stage.  

Production runs utilized a time-step of 4 fs, such that a total of 

250,000,000 steps were required to achieve 1 µs of simulation 

time. Center-of-mass trajectories for individual drug, polymer, 

and solvent molecules were sampled every 10 picoseconds. Our 

simulated system was fully atomistic and the vibrational motion 

of hydrogen atoms was explicitly considered, as employing the 

SHAKE algorithm to hold bond lengths of H-atoms fixed had a 

surprisingly large effect on system dynamics. A cutoff distance 

of 12 Å was utilized for both Lennard-Jones and electrostatic 

interactions.  

Simulations were run in parallel with 24 to 48 processors 

dedicated to individual runs. The amount of wall required to 

complete the simulation runs was large (of the order of months) 

and the total processor time, (total wall 

time)*(#processors/run)*(#runs), for our set of simulations was 

very large, as documented in Table I.  

Experimental 

To validate our simulation predictions, films of SIBS were cast 

from THF and utilized for vapour sorption analysis (VSA) 

diffusivity determinations. Films of SIBS tri-block polymer (30 

wt % polystyrene) were fabricated by solution casting into 

fluorinated polymeric moulds from 5 % (w/v) THF. After 

drying in air for 12 hours, the films were removed from the 

moulds and placed under vacuum at 1 Torr for 48 hours. The 

entire drying procedure was conducted at room temperature and 

resulted in polymer films of ≈60 µm thickness. The dried films 

were then placed in a vapour sorption analyser. After 

equilibration at 37 oC, THF mass uptake was measured as a 

function of time at five different solvent partial pressures or 

activities, a, until equilibrium was achieved. The binary 

diffusion coefficient, Dsp, and the solvent concentration, C, at 

each of the five activities was determined by fitting mass 

uptake data to the one-dimensional analytical solution to Fick’s 

second law76,  
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   (2) 
 

 

where Mt is the mass at time t, Meq is the mass at equilibrium, 

and L is the coating thickness. To facilitate a direct comparison 

with the molecular dynamics predictions, the best fit diffusion 

coefficients were converted to THF self-diffusivity using an 

established method.77 The procedure described above was 

repeated five times and the resulting standard deviations in Dsp 

were less than 50% of the average values. 

In theory, the same approach could be utilized to determine the 

THF diffusivity as function of concentration in TAC. In 

practice, however, challenges arise associated with fabricating 

macroscopic films of TAC (required by vapor sorption 

methods) that are both structurally sound and consistent with 

the microscopic phases present in thin drug-polymer composite 

coatings. Pure TAC coatings manufactured by this method do 

not fully densify and therefore are extremely brittle and prone 

to cracking; thus, solvent uptake is dictated not by the intrinsic 

behavior of the material but by the pore space. To circumvent 

these issues, composites coatings of TAC and SIBS (with 

varying TAC concentrations of 0.8, 0.12, 0.16 w/w) were 

fabricated. THF uptake into these composite coatings was 

determined using the same approach described above, allowing 

for a determination of the effective THF diffusivity, De, within 

the composite. From the effective diffusivity in the composite, 

we were able to determine the THF diffusivity in the drug 

phase using the following procedure. 

We note that the structure of the composites, as exemplified in 

confocal images provided in Figure 2, is representative of a 

second rank laminate.78 Images were collected using a Leica 

(Solms, Germany) TCS SP-2 confocal microscope. This 

structure is consistent both with previous reports of 

microstructures in spray cast TAC-SIBS composite coatings6 

and computer simulations of spray cast structures.9, 72 A second 

rank laminate structure consists of alternating layers parallel to 

the film surface consisting of either pure polymer (1) or drug 

and polymer (2). For this configuration, the relationship 

between the diffusivity of the ensemble De perpendicular to the 

film surface and the diffusivities of the layers Di is given by,  

 

 

           (3)  

 

where φ is the volume fraction of layers with both drug and 

polymer. The structure within these drug-polymer layers is 

further assumed to consist of alternating layers of drug and 

polymer that are perpendicular to the top level layers. Thus, 

within these layers we have:  

 

      (4) 

 

where Dsp and Dsd are the diffusivities of solvent (THF) in the 

pure polymer (SIBS) and pure drug (TAC) phases, respectively, 

and Φ is the volume fraction of the pure drug within the drug-

polymer layers. To progress, we recognize that φ and Φ are 

related through the total volume fraction of drug in the 

ensemble, Vd = φΦ. We note that in the limits of Φ=1 and φ=1, 

there exist only layers of pure drug and pure polymer, 

perpendicular and parallel to film surface, respectively. Thus, 

the model encompasses a range of potential structures including 

the extrema.  

After introducing the above constraint, Equation (3) can be 

expressed as:  

    

                      (5) 

 

where R is the ratio of binary diffusion coefficients Dsd/Dsp. 

Based on the measurements described above, we have 

determined values of De/Dsp at five different activities and three 

values of Vd, for a total of 15 equations. Further, R depends 

only on activity and the microstructure parameter Φ depends 

only on Vd. Thus, we have at most eight unknowns and an 

overdetermined system of equations. Here, we have further 

assumed that the topology of the structure is invariant, i.e. Φ is 

constant over the range of Vd probed, reducing the number of 

unknown parameters to six. This simplification was made after 

observing that the fit values of Φ did not vary substantively 

when they were solved for separately. Therefore, based on 

                         (5), we 

determined the ratio Dsd/Dsp and R at each of the five activities, 

as well as the structural parameter Φ, using a standard non-

linear least squares routine. Standard errors in the fits for 

Dsd/Dsp were less than 20% of the fit values. We note that the 

application of                          

(5) assumes that the solvent solubility in both the drug and 

polymer phase of the composites are identical. In fact, there 

was no discernible difference between C(a) measured in SIBS 

compared to any of the composite structures. Thus, the C(a) 

determined for SIBS was used to convert the fit Dsd values to 

the THF self-diffusivity in TAC using the previously referenced 

approach79. 
 

Results and Discussion 

A summary of our simulated systems and predicted diffusion 

coefficients is provided in Table I. Results are categorized most 

broadly by the chemical identity of the binary system, i.e. 

THF/TAC, THF/SIBS, and TAC/SIBS. Each row of data 

summarizes simulations for a specific binary system at a fixed 

concentration, for which there are multiple independent runs. 

Data provided in the table include the number of independent 

runs, the simulation time (∆tsim) per run, the total processor time 

expended for all runs for a given binary system at a given 

concentration (tproc), system density (ρ) employed in the 

production run, the number of atoms per simulation box 

(Natoms), the length of the simulation box (Lbox), the 

characteristic length scale of confinement of Hydrogen atoms in 

the system (the Debye-Waller factor, u2), and predicted 

diffusion coefficients, Dpred, with standard deviation. Dpred 

values are provided for both TAC and THF diffusivity. ∆tsim 
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equals the number of molecular steps per run multiplied by the 

temporal increment of each time-step.  tproc
 equals the total 

elapsed wall time multiplied by the number of processors 

employed for a given run summed over all runs. In total, 57 

independent simulation runs, each of approximately one µs in 

duration, were performed. Simulations of this

 

 
Table 1.  Overview of simulated systems and predicted diffusion constants. 

duration remain computationally demanding and greater than 

one hundred years of total processor time were expended in 

running the entire set of simulations. 

It is instructive to compare overall trends in our predicted 

diffusion coefficients to those of Li et al. Whereas experimental 

values of diffusion coefficients tabulated by Li et al. varied 

widely as a function of system composition, from roughly 10-5 

cm2 / s to 10-9 cm2 / s, simulation predictions for the same 

systems were heavily biased towards the more rapid end of the 

range, from roughly 10-5 cm2 / s - 10-7 cm2 / s. Notably, 

simulation predictions of reasonable accuracy, i.e. predictions 

of the same order of magnitude as the corresponding 

experimental values, corresponded to the fastest diffusing 

systems, whereas the most erroneous predicted values 

corresponded to systems for which the experimentally 

determined diffusion was slowest. The experimental 

diffusivities tabulated by Li et al. clearly trend towards slower 

diffusion for systems with larger diffusants and less flexible 

polymers, whereas faster diffusivity was characteristic of 

systems featuring smaller diffusants or polymer backbones with 

higher degrees of flexibility. Taken together, this strongly 

suggests that poor diffusivity prediction was largely attributable 

to the inability to accurately predict slower diffusion in systems 

with more restricted dynamics and that it is important to be 

mindful of the potential to overestimate diffusion rates for 

systems of more limited mobility.  

Encouragingly, our predicted diffusion constants, Dpred, are 

strongly system dependent in a manner more consistent with 

experimental results,65, 80 spanning orders of magnitude with 

chemical composition. The upper limiting values of our Dpred 

values extend to nearly 10-5 cm2 / s for THF diffusion in 

systems with high THF concentration. For a given binary 

system containing THF, the higher the THF concentration, the 

more fluid-like, or the less constrained the dynamics. Our 

lowest Dpred estimates are of the order of 10-11 cm2 / s and 

correspond to diffusion of the larger drug molecule TAC in the 

polymer SIBS in the absence of THF.  

While observed trends between our Dpred values and system 

composition are encouraging, to demonstrate the accuracy of 

our simulation predictions requires validation with 

experimental measurements on the same system. As discussed 

in the introduction, experimental determinations of diffusivity 

of small non-gaseous molecules in polymer systems is highly 

challenging, particularly for systems where diffusivity is 

particularly slow, e.g. systems of low solvent concentration. 

While it is not feasible to experimentally validate predicted 

diffusion constants for all, or even most, system compositions 

and concentrations treated in our simulation work, it is 

particularly important to have validation at low solvent 

concentration. Such systems are most relevant to concerns 

related to leaching and are the most challenging to accurately 

predict using molecular dynamics simulation.  

To provide such validation, we have employed vapor sorption 

analysis (VSA) to measure the diffusive uptake of THF vapor 

into films of polymer and drug. THF mass in the coating was 

measured as a function of time over a range of THF activities 

and fitted to the analytic solution to Fick’s second law in one-

dimension. Mutual coefficients determined in this way were 

subsequently converted to self-diffusion coefficients using the 

method of Duda et al.77 to allow for direct comparison with our 

molecular dynamics predictions. Weight fraction of THF was 

determined by subtracting the original film mass from the mass 

following THF uptake and equilibration. Details of the VSA 

technique and our composite film approach to determining THF 

diffusion in TAC are provided in the Experimental Methods 

section.  
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Figure 3. Comparison of predicted and experimental diffusion coefficients. 

Predicted (simulation) and experimental (vapor sorption) diffusion coefficients 

for THF diffusion in SIBS (a) and TAC (b). The literature value for THF self-

diffusion is included for comparison (solid black diamond). For (a), experimental 

data shown correspond to individual measurements. Uncertainty in 

experimental data for (b) is discussed in Experimental Methods. (c) Discrete 

cumulative probability comparison of predicted (Dsim) vs. experimental (Dexp) 

diffusion coefficients for this study (red) and the work of Li et al. (blue).  

While VSA measurements are limited to systems with volatile 

diffusants, we were able to use VSA to validate our simulations  

along two of the THF-containing binary axes (THF/TAC and 

THF/SIBS) of our model system composition map shown in 

Figure 1. While VSA experiments are further limited to low 

solvent concentration within the coating (to maintain 

mechanical integrity of the coating) literature values for self-

diffusion in pure THF provides validation at the upper bounds 

of the THF/TAC and THF/SIBS axes. At the conclusion of this 

work, we will address the reasonableness of our drug diffusion 

predictions, which cannot be validated with VSA. 

In Figure 3, predicted (simulation) and experimental (VSA) 

diffusion coefficients of THF in SIBS (Figure 3a) and THF in 

TAC (Figure 3b) are plotted as a function of THF mass 

fraction. Multiple determinations of diffusivity were made at 

each of THF concentration and data points in Figure 3a and 

Figure 3b correspond to individual determinations. For systems 

with low THF concentration (10% THF and 20% THF), Dpred 

values for THF fall in the range from 10-8 cm2 / s to 10-9 cm2 / s. 

Agreement with experimental VSA values is impressive, 

particularly given that the predictions of Li et al. were poorest 

when compared to experimental diffusivities in this range. 

Furthermore, Dpred for pure THF, 1.2 x 10-5 cm2 / s, is in good 

agreement with literature values81 for THF self-diffusion (2.6 x 

10-5 cm2 / s). A fit to all data based on the well-known Vrentas-

Duda model 79, 82 of diffusion, which has been shown to provide 

good empirical fits to small molecule diffusion in polymers as a 

function of solvent concentration, is also shown in Figure 3. 

While no experimental data are available for 50% THF and 

75% THF systems, there is good agreement between predicted 

diffusivities and the Vrentas-Duda model fit. 

In Figure 3c, a discrete cumulative probability distribution plot 

is shown, providing a visually intuitive means of quantifying 

order of magnitude deviations between our predicted and 

experimental data. The cumulative distribution function, Cx, of 

a real valued random variable X is given by 

  
(6) 

 

i.e. the probability that the random variable X takes on a value 

less than x. For our purposes, the random variable X is taken 

from the set of log(Dpred / Dexp) values obtained by comparing 

each Dpred value from an independent simulation run to the 

corresponding average experimental value for the same system. 

Thus, the more clustered the cumulative probability distribution 

values are around log(Dpred / Dexp) = 0, the more accurate are the 

set of predictions. (As experimental values do not correspond 

precisely to the same THF concentrations at which simulation 

predictions were performed, experimental values were 

interpolated from the Vrentas-Duda fit to all data shown in 

Figure 2a and Figure 2b.) Our predicted values can be seen to 

fall well within an order of magnitude of experimental values 

with no apparent bias towards over-prediction or under-

prediction of experimental values. Furthermore, the cumulative 

probability distribution shown in Figure 2c tends to understate 

the predictive accuracy of our simulations, as calculated from 

individual runs at a given concentration, rather than as an 

average over multiple runs. The cumulative probability 

distribution for the predictions of Li et al. is also shown in 

Figure 2c, illustrating a strong bias towards over-prediction of 

diffusion coefficients.  

We now turn to a discussion of the basis for our improved 

diffusivity predictions and offer insight into how to avoid 

inaccuracy in simulation predictions of diffusivity. The 

accuracy of molecular dynamics simulations depends in part on 

how accurately interatomic and intra-molecular potentials 
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represent the forces acting between constituent atoms in a 

simulated system. The choice of force field and its suitability 

for given system is widely recognized as a potential source of 

error. However, other considerations can strongly affect the 

accuracy of calculated system properties. Condensed soft 

matter systems feature complex time-dependent dynamics and 

entropy effects that must be properly treated for meaningful 

simulation results. We have previously demonstrated that 

neglect of intra-molecular configurational entropy and 

molecular flexibility in molecular mechanics based docking 

studies can profoundly impact predicted binding strength 

independent of choice of force field.83 Similarly, we have 

previously shown that simulation of viral ds-DNA genome 

packing into capsids depends upon molecular relaxations within 

the crowded capsid.84 In order to properly predict the 

experimentally observed features of genome packing, 

simulations must utilize constant packing force, rather than 

constant packing velocity to allow for time-dependent 

relaxations to occur. In both cases, the improper treatment of 

system dynamics results in significant error.   

The key insight underlying our greatly improved simulation 

predictions of diffusivity relates to recognizing the fundamental 

difference in diffusive mechanisms of small non-gaseous 

molecular diffusion vs. gaseous diffusion in condensed systems, 

in particular the dependence of small non-gaseous molecule 

diffusion on the constrained dynamics of the molecular matrix 

through which diffusion occurs.  

Numerous simulation studies of diffusion of small gases in 

polymers have suggested that diffusion occurs via activated 

‘hopping’ of gas molecules amongst the existing free volume 

elements within a polymer.54, 85, 86 Hopping is facilitated by 

vibrations and highly-localized segmental motions of polymers 

in the surrounding matrix, which open up momentary pathways 

between existing free volume elements. Because this 

mechanism of diffusion is independent of structural 

relaxations87 and depends only on high frequency highly 

localized dynamics of the polymer matrix, simulations of gas 

diffusion have successfully utilized simulation times as short as 

tens of ps.  

However, experimental work of Mohamed et al.88 and 

simulation work on gas diffusion through polymers54, 87 have 

both demonstrated that even gas diffusion is dependent to some 

extent upon relaxational dynamics of the surrounding polymer 

matrix: for all but the smallest gas molecules, diffusion cannot 

occur when polymer motion is restricted to vibrational 

fluctuations around an equilibrium configuration, but rather 

requires at least some degree of local rearrangement of 

surrounding polymer molecules. This strongly suggests that the 

hopping model is not suitable to describe diffusion of 

molecules larger than gases (e.g., condensable vapors, liquids, 

drugs), which are too large to fit within or to jump between 

existing free volume elements. Rather, diffusion of such 

molecules must be facilitated by larger scale coordinated 

segmental rearrangements, or relaxations, of the surrounding 

molecular matrix, whose characteristic timescales significantly 

exceed those of vibrational motions.  

Thus, despite representing only an incremental increase in 

molecular size over gas molecules, small non-gaseous 

molecules likely diffuse via a fundamentally different 

mechanism reflecting the time-dependent dynamics of the 

surrounding molecular matrix. Molecular displacements will 

exhibit time-dependence related to the timescale over which 

diffusion-enabling relaxations occur in the matrix, which in 

turn depends on the glassiness of the matrix. 

Numerous aspects of our Dpred data provide evidence for the 

relaxation-dependent diffusion mechanism that has been 

hypothesized. First, Dpred values were found to increase when 

the solvent concentration of a given system increases. The 

presence of solvent reduces system glassiness and thus 

diffusivity should increase with increasing THF concentration 

for THF-containing binary systems, (i.e. THF/SIBS and 

THF/TAC). The Dpred values for the THF/TAC and THF/SIBS 

systems in Table I are indeed consistent with this expectation: 

diffusivity values for both THF and TAC increase by roughly 

an order of magnitude with each increment in THF 

concentration (i.e. from 10% to 20% THF, from 20% THF to 

50% THF, and from 50% THF to 75% THF).  

Second, diffusivity of the larger diffusant TAC was found to be 

generally slower than diffusivity of the smaller THF. 

Diffusivity should decrease with increasing diffusant size as 

larger diffusants require larger scale and thus significantly 

slower relaxations to accommodate transport. For TAC/THF 

systems, THF diffusivity is roughly one to one and a half orders 

of magnitude faster than TAC diffusivity at all THF 

concentrations. For the case of diffusion through SIBS, the 

effect of diffusant size is more difficult to isolate, as THF is not 

only smaller than TAC, but also enhances the system fluidity. 

Thus, we point to the 10% THF/ 90% SIBS system, for which 

THF diffusivity is roughly two orders of magnitude faster than 

TAC diffusivity in SIBS. 

Third, Dpred values exhibit time-dependence reflecting the time-

dependence of the diffusion-enabling relaxations of the 

surrounding molecular matrix. To explore the time-dependence 

of Dpred in our simulations, we have iteratively applied Equation 

(1) to determine Dpred for a series of ∆t values ranging from ∆t 

= 20 ps to ∆t = 500 ns in increments of 20 ps. We note that 

Dpred for a given ∆t is determined using Equation (1) by 

ignoring the necessary condition ∆t � ∞. While diffusion 

coefficients are properly time independent, Dpred is expected to 

be time dependent for sufficiently short times that the condition 

∆t � ∞ is not satisfied. Thus, any range of ∆t for which Dpred is 

time-dependent indicates that corresponding Dpred values are 

not proper diffusivities but nonetheless provide a means to 

monitor the convergence of Dpred values to proper diffusivities. 

In Figure 4a, resulting Dpred vs. ∆t values are plotted for each of 

our simulated systems. In terms of the relaxation-based 

hypothesis of transport, we expect time-dependence of Dpred to 

occur at small enough timescales, reflecting the fact that 

diffusivity cannot accurately be determined at timescales less 

than the characteristic relaxation time of the surrounding 

molecular matrix. From Figure 3a, it is apparent that time 
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Figure 4.  Time-dependence of diffusion behavior. Each row corresponds to a specific binary system, identified by the banner on the left, with the diffusing species 

underlined. THF concentrations are color coded as follow: 10% (black), 20% (red), 50% (gold), 75% (blue). For TAC/SIBS system, TAC concentrations are coded by color 

as follow: 5% (red), 25% (gold), 50% (black). (a) Dependence of calculated diffusion constants on simulation duration. (b) Log-log plot of ensemble average mean 

square displacement of diffusing species. The slope of the plot is equal to the exponent a, from the relation <∆r
2
> ~ ∆t

a
. For the diffusive regime, a=1 (dashed line). (c) 

Non-Boltzmann parameter, a measure of non-Gaussian displacements, as a function of simulation duration. 

 

 

 

 

 

dependence of Dpred is most pronounced at short times, 

progressively decreasing with increasing time and eventually 

converging asymptotically. Furthermore, the error in Dpred is 

largest and the time-dependence of Dpred persists over longer 

timescales for glassier systems where relaxations are more 

infrequent. 

For example, for systems with little or no THF content (i.e. 

10% THF / 90% TAC, 10% THF / 90% SIBS, and all SIBS / 

TAC systems), Dpred can be seen to exhibit a remarkable degree 

of time-dependence, decreasing by orders of magnitude over 

many orders of magnitude of time. As THF content is 

progressively increased for THF / TAC and THF / SIBS 
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systems, the magnitude and duration of error in Dpred 

correspondingly decrease. Systems with a high THF content 

and thus higher degree of fluidity exhibit minimal time-

dependence of Dpred.  

The time-dependence of Dpred values provides a simple 

explanation for how the same molecular dynamics simulation 

approach could have successfully been used to predict gaseous 

diffusion yet unsuccessfully applied to predicting small non-

gaseous molecular diffusion. For systems with gaseous 

diffusants, convergence of Dpred occurs within tens of ps of 

simulation time. The typical simulation duration employed by 

Li et al. for predictions of diffusion in polymers was also of the 

order of tens of ps. However, for diffusion in low-solvent 

systems, Figure 3a illustrates that diffusivity is far from 

converged at this timescale. The smallest time considered in 

Figure 3a is 20ps, at which Dpred values are greatly 

overestimated for low-solvent systems. Taken together, the 

time-dependent behavior of Dpred strongly suggests that 

simulations of insufficient duration on glassy systems lead to 

large overestimations of diffusivity. The origin of the time-

dependence of Dpred, and thus likely the source of large error in 

diffusivity predictions, can be traced to individual molecular 

motions, as illustrated in Figure 5, for which the trajectories of 

select THF molecules in simulated THF/SIBS systems are 

shown. Entire µs trajectories of individual molecules are shown 

in Figure 5a, with displacements at 10 ps intervals represented 

by a straight line. Such individual displacements, which are not 

distinguishable in Figure 5a, can be seen in the enlarged regions 

of the molecular trajectories shown in Figure 5b. For systems 

with lower solvent concentration (i.e. 10% THF and 20% THF 

systems), molecular trajectories become localized for extended 

periods, as is particularly evident in Figure 5b. The molecules 

are temporarily entrapped or ‘dynamically caged’ 32, 89 by 

surrounding molecules until surrounding molecular segments 

undergo necessary collective motions to allow the diffusing 

molecule to escape. Individual caging events are terminated by 

brief punctuated bursts of displacement, after which a new 

caging event is initiated.  

Due to the enhanced mobility of the surrounding molecular 

matrix, the dynamic caging phenomenon diminishes 

progressively with increasing THF concentration, as caging 

events gradually become indistinguishable from punctuated 

displacements and the trajectories approach a self-similar 

random walk. We can infer that displacements corresponding to 

caging events are non-Gaussian, as a series of Gaussian 

displacements give rise to a random walk. This relationship is 

illustrated in the rightmost column of Figure 5, where a random 

walk trajectory has been generated by drawing displacements 

from a Gaussian distribution centered at 0. For the rightmost 

column of Figure 5, length is given in units of σ, the standard 

deviation of the Gaussian distribution. The temporary caging of 

diffusing molecules constitutes a classic ‘dynamic 

heterogeneity’ in displacement,80, 90-93 wherein non-Gaussian 

displacements dominate during the characteristic timescale of 

caging and Gaussian displacements predominate over longer 

timescales.91 The dynamic caging exhibited by low THF 

systems in Figure 5b is a hallmark of glassy or ‘sub-diffusive’ 

dynamics, which we previously hypothesized as the physical 

basis of the time dependence of Dpred shown in Figure 4a.  

Step size distribution for THF diffusion in SIBS is shown in 

Figure 5c for a number of different sampling times and 

provides further evidence for the dynamic heterogeneity in 

displacement. For sufficiently small timescales, a single 

displacement peak is evident, centered at approximately 1 Å, 

which corresponds well with the size of the dynamic cages 

distinguishable in Figure 5b. This peak is attributable to the 

‘rattling’ of THF within the dynamic cage. As sampling time 

increases, a smaller secondary peak emerges at larger 

displacement, attributable to less frequent but larger punctuated 

jumps between cages. As the timescale of sampling further 

increases, the peak representing rattling within an individual 

cage diminishes, but does not shift in displacement, while the 

peaks corresponding to inter-cage jumps become more 

pronounced and shifted to larger displacements, indicating that 

only the peaks at larger displacement correspond to diffusive 

motion. 

As expected, THF concentration affects the timescale of the 

transition from predominantly short-range caged motion to 

larger scale Gaussian displacements. The appearance of the 

secondary peak indicates the initiation of diffusive 

displacements and occurs at progressively shorter timescales as 

THF concentration increases for a given system. For example, 

the secondary peak for the 10% THF / 90 % SIBS system is 

nearly indiscernible up until 250 ns. For the 50% THF / 50% 

SIBS systems, the secondary peak is evident by 100 ps. At 250 

ns, intra-cage rattling and inter-cage jumps remain somewhat 

distinct only for the 10% THF / 90% SIBS system.  

This interpretation of step size distribution in terms of onset of 

diffusive motion is consistent with the time-dependence of Dpred 

observed in Figure 4a, where the duration of the time-

dependent sub-diffusive regime of Dpred, attributable to 

localized ‘rattling’ displacements, is shown to decrease with 

increasing THF concentration. We emphasize that non-

Gaussian displacements dominant at short time are inconsistent 

with the assumption ∆t � ∞ required for use of Equation 1 and 

therefore should lead to error in Dpred values for as long as such 

non-Gaussian displacements are dominant. 

We have thus far presented evidence that sub-diffusive 

dynamics are present in our systems and can introduce very 

large in error Dpred values. Furthermore, Figure 4a and Figure 

5c both suggest that sub-diffusive dynamics are present to some 

extent even up to 1 µs of simulation time for some systems. 

Given the derogatory effect of sub-diffusive dynamics on the 

accuracy of diffusivity predictions, we now explore how to 

better identify the extent of sub-diffusive dynamics for a given 

system for a given simulation duration. To do so, we consider 

scaling relationships useful in identifying diffusive and sub-

diffusive regimes.  

For the diffusive regime, displacements are Gaussian and 

satisfy the relation <∆r2> ~ ∆t1. It is common in molecular 

dynamics studies of diffusion for the degree of diffusiveness to 
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Figure 5. Individual molecular trajectories for THF/SIBS system. Each column represents a different THF concentration, indicated above. Random walk trajectories are 

provided at right for comparison. (a) 1 µs trajectories of THF diffusion. Individual molecules are distinguished by color. (b) 10X magnification of µs trajectory from (a), 

with area of detail indicated by blue square. (c) Step size distribution as a function of time step: 10 ps (solid line), 100 ps (dashed line), 1 ns (dotted line), and 250 ns 

(inset).  

 

be assessed based on the quality of the linear regression of 

<∆r2> vs. ∆t. However, it is difficult to distinguish by linear 

regression between the diffusive and the sub-diffusive regime, 

for which <∆r2> ~ ∆ta, where the anomalous diffusion 

exponent, a, is somewhat less unity. The determination of the 

anomalous diffusion exponent, a, can be greatly improved by 

considering square displacement vs. time in log space, i.e. log 

<∆r2> vs. log ∆t, for which the slope is equal to to a. In Figure 

4b, log <∆r2> vs. log ∆t is plotted for each simulated system 

considered in this work. Regression in log space is a more 

rigorous test for convergence to the diffusive regime, as the 

slope must be both constant and equal to unity. A slope of unity 

is included (dashed line) for reference for each binary system in 

Figure 4b. The anomalous diffusion exponent, a, is seen to 

approach unity within a timeframe that is dependent upon the 

specific binary system and concentration. Determination of a 

not only provides a check on whether a given system has 

converged to the diffusive regime, it also provides useful 

information on the time dependence of the approach to 

convergence. While a slope of unity is rapidly attained in 

systems with higher THF concentration, for glassier systems, 

particularly for the SIBS/TAC systems, a can be seen to 

approach, but not attain values of unity. These estimates of a 

corroborate the conclusion previously drawn from analysis of 

the time-dependence of step size distribution that sub-diffusive 

dynamics persists in proportion to the glassiness of a given 

system.  

From Figure 4a and Figure 4b, it is evident that error in Dpred is 

most pronounced when a is far from unity; conversely, as a 

approaches unity, error in Dpred decreases dramatically. In 

principle, it should be possible to determine the relative error in 

Dpred as a function of a. Unfortunately, for our atomistic 

simulations, the mean squared displacement is too noisy to 

make sufficiently accurate determinations of a from the slope 

of log <∆r2> vs. log ∆t at any given time. For this reason, it is 

useful to consider an additional measure of the extent of sub-
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diffusive dynamics, given by the ‘non-Gaussian parameter’, α2, 

i.e. the second cumulant of the ensemble average atomic 

displacement,90,91 α2 quantifies the extent to which 

displacements deviate from Gaussian behavior for a given ∆t. 

α2 is plotted as a function of ∆t for each of our simulated 

systems in Figure 4c. The peak in α2 provides useful 

information on the characteristic time at which dynamics begin 

to transition from the caged to the diffusive regime. As is true 

for Dpred and mean squared displacement, values of α2 are 

subject to noise, likely a consequence of limitations on 

simulation duration and system size that come with 

atomistically detailed molecular dynamics simulations. 

Nonetheless, an approximate peak in α2 can be discerned in 

Figure 4c for each simulated system. Comparing Dpred values in 

Figure 4a to α2 values in Figure 4c for a given system, Dpred 

values appear to converge to within an order of magnitude of 

their final values prior to the ∆t values corresponding to peaks 

in α2. This suggests that order of magnitude or better 

predictions of diffusivity can be obtained for simulations whose 

duration exceeds the ∆t value corresponding to the peak in α2. 

It is thus encouraging to find that the ∆t values corresponding 

to peak values of α2 for TAC diffusion in TAC/ SIBS systems 

are at least an order of magnitude less than the 1 µs of 

simulation time in our work. Although we do not have 

experimental validation for this system, we have shown that 

accuracy of Dpred is dynamics-limited rather than force field 

limited. Thus, the fact that peaks in α2 values for TAC / SIBS 

systems occur at timescales at least an order of magnitude less 

than our simulation duration strongly suggest that Dpred values 

should be within an order of magnitude of their true values.  

We also note that, as Dpred decreases monotonically with 

simulation time, Dpred values for systems incompletely 

converged to the diffusive regime provide upper bounds on the 

true diffusivity. Knowledge of the upper bounds of diffusivity 

in polymer based systems would be particularly useful in the 

regulatory context as it would provide a means to determine the 

maximum patient exposure to a given leachable in a given 

period of time. This maximum potential exposure level could 

then in turn be compared to the established threshold of 

toxicological concern (TTC) level for a given leachable to 

make an informed assessment of the level of risk posed to the 

patient. 

While useful information on diffusion can be obtained prior to 

complete convergence to the diffusive regime, sub-diffusive 

dynamics will continue to make diffusivity determinations slow 

and often prohibitively computationally intensive. Ever-

increasing processing speeds will be helpful in overcoming 

error due to sub-diffusive dynamics, yet it will likely be years 

or decades before diffusivity can be calculated quickly and 

accurately for glassy systems and systems with larger 

diffusants. We conclude by introducing the possibility that 

more rapid simulation determinations of diffusivity may be 

possible with current limitations in processor speed by 

exploiting emerging relationships between fast and slow 

dynamics in systems with constrained dynamics, such as 

polymer/drug systems. 

Work by Cicerone et al.94 on the molecular basis of protein 

preservation in glassy molecular matrices at room temperature 

has demonstrated that protein stability, measured in months to 

years, correlates remarkably well with high frequency β 

relaxations of the matrix, which have a characteristic timescale 

on the order of femptoseconds. Cicerone et al. suggest that 

preservation time is a function of diffusion rate of small 

proteolytic molecules through the glassy matrix. This suggests 

a fundamental link between small molecule diffusion and the 

fast β-relaxation, which is itself closely related to the caging 

phenomenon detailed in our systems. Quantitative 

relationships95 between fast and slow dynamics in glassy 

systems have recently been reported by Simmons et al.89, 96, 97 

and independently by Larini95 and Puosi.98 In particular, we use 

the generalized delocalization model of Simmons et al.,89 which 

relates the segmental relaxation time, τ, to the Debye-Waller 

factor <u2>, 

        

    (7) 

 

<u2> is equal to the square of the characteristic cage size of H-

atoms of a system, τo is a constant prefactor, uo
2 is the critical 

displacement required for cage escape, and γ is related to the 

temperature dependence of cage shape. <u2> has been 

measured using neutron scattering99 and can be determined 

from our simulation, as described below. τ in turn has been 

suggested to be inversely proportional to diffusivity,10 i.e. τ ~ 

D-1. We can thus relate long-time diffusion (D) to fast dynamics 

(<u2>) using the expression 

       

  

        (8) 

 

where τo
* = τo / c and c is a proportionality constant. 

From our simulations, we determine <u2> as the square of the 

displacement corresponding to the minimum of δ(log <∆r2>) / 

δ(log ∆t), i.e. at the ∆t corresponding to maximum caging. In 

Figure 6, Dpred vs. <u2> is plotted for the THF/SIBS and 

THF/TAC systems. Values for fit parameters are as follows. 

For THF/SIBS, τo
* = 639 s / cm2, uo = 27 Å, and γ = 1.0. For 

THF/TAC, τo
* = 0.1 s / cm2, uo = 155 Å, and γ = 0.77. The fits 

are remarkably good, particularly given that the localization 

model of Simmons et al. was intended to apply to a given 

chemical system as a function of temperature, whereas, for our 

system, glassiness is adjusted by changing THF concentration 

at constant temperature. It is intriguing to note that the 

generalized localization model fits data over our entire 

concentration range, as it should be emphasized that the amount 

of simulation time required to converge Dpred values varies 

dramatically over this concentration range: Dpred values in the 

range of (10-6 to 10-7) cm2 / s can be accurately simulated in a 

matter of hours to days, whereas slower diffusivity values can 

takes months or longer to converge. The well-behaved 

relationship between Dpred and <u2> reported herein suggests 

that more rapid assessment of diffusivity under glassier 

conditions relevant to drug and toxin leaching, currently  
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Figure 6.  Predicted THF diffusivities vs. <u

2
> for two systems: (a) THF/TAC; (b) 

THF/SIBS. THF concentrations are color coded consistently with Figure 4: 10% 

THF (black), 20% THF (red), 50% THF (gold), and 75% THF (blue). Individual 

symbols correspond to individual simulation runs for a given THF concentration. 

Dashed line is best fit to data using    

      

        (8).  

requiring highly time-intensive simulations, may be achievable 

by probing dynamics in the less glassy regime, where short 

simulations durations are sufficient to accurately predict 

diffusivity. This approach requires that <u2> can be rapidly 

determined over a wide range of system glassiness, including 

systems for which diffusivity predictions are time intensive. 

Fortuitously, although Dpred predictions are most burdensome 

for glassy systems, the opposite is true for determinations of 

<u2>, which can be rapidly determined in particular for more 

glassy systems, where caging arises most rapidly. We are 

currently developing this rapid assessment approach with 

promising initial results and will report our findings in a future 

manuscript. 

Conclusions 

We have utilized atomistic molecular dynamics simulations to 

predict diffusivity in a model drug eluting stent coating, 

consisting of the drug tetracycline (TAC), the diblock 

copolymer poly(styrene-co-isobutylene-co-styrene) (SIBS), and 

the solvent tetrahydrofuran (THF). We have demonstrated that 

diffusivity can be accurately predicted given sufficient 

simulation duration, but that diffusivity is overestimated for 

simulations of insufficient duration. Such error is attributable to 

the presence of sub-diffusive or glassy dynamics, evidenced by 

non-Gaussian displacement and temporary localization, or 

‘caging’, of the diffusing molecule. For glassier systems, we 

find that over-estimation of diffusivity decays monotonically 

with increasing simulation time. We have shown that sub-

diffusive dynamics can persist to 1 µs of simulation time for 

systems with highly constrained dynamics. Our results suggest 

that for systems similar to ours, i.e. systems in which small to 

medium sized molecules diffuse through a molecular matrix 

displaying time-dependent relaxational dynamics, the main 

obstacle to accurate diffusivity predictions is the lengthy 

simulation duration required to attain diffusive dynamics. On 

the other hand, accurate diffusivity predictions for our solvent 

rich (non-glassy) systems required less than 1 ns of simulation 

duration.  Thus, our results suggest that diffusivity can be 

readily determined for solvent-rich systems, which are of broad 

relevance in controlled drug delivery applications, including 

swellable coatings and hydrogels. 

We have performed vapor sorption analysis measurements of 

THF diffusion into drug/polymer coatings to validate a subset 

of our simulated systems. While vapor sorption measurements 

are limited to low THF concentration, it is precisely the low 

solvent regime for which glassy dynamics are prevalent and 

thus simulation predictions of diffusivity are most challenging. 

Our simulated predictions and vapor sorption measurements of 

diffusivity of THF in TAC and SIBS show remarkable 

agreement, particularly in comparison to previous published 

simulation predictions. We are unaware of previous simulation 

work that has accurately predicted diffusivity in comparable 

systems.  

Finally, we have explored the possibility of more rapidly 

predicting diffusivity in slowly diffusing systems by employing 

a recent quantitative model relating fast and slow dynamics in 

constrained systems. In particular, we have shown that 

diffusivity is a function of the Debye-Waller factor, a quantity 

that can be readily determined by molecular dynamics 

simulation, thus presenting the possibility of making diffusivity 

determinations under rapidly converging conditions to predict 

diffusivity under slower converging conditions. In this work, 

we have outlined an approach for assuring accurate simulation 

predictions of diffusivity and established the foundation for 

making more computationally efficient diffusivity predictions 

in polymers and other systems with constrained dynamics.  
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