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In this paper we present a theoretical study on how surface tension affects fracture of soft 

solids.  In classical fracture theory, the resistance to fracture is partly attributed to the energy 

required to create new surfaces.  Thus, the energy released to the crack tip must overcome the 

surface energy in order to propagate a crack.   In soft materials, however, surface tension can 

cause significant deformation and can reduce the energy release rate for crack propagation by 

resisting the stretch of crack surfaces. We quantify this effect by studying the inflation of a 

penny-shaped crack in an infinite elastic body with applied pressure. To avoid numerical 

difficulty caused by singular fields near the crack tip, we derived an expression for the energy 

release rate which depends on the applied pressure, the surface tension, the inflated crack 

volume and the deformed crack area. This expression is evaluated using a newly developed 

finite element method with surface tension elements. Our calculation shows that, when the 

elasto-capillary number   / Ea  is sufficiently large, where   is the isotropic surface 

tension, E is the small strain Young’s modulus and a   is the initial crack radius, both the 

energy release rate and the crack opening displacement of an incompressible neo-Hookean 

solid are significantly reduced by surface tension. For sufficiently high elasto-capillary 

number, the energy release rate can be negative for applied pressure less than a critical amount, 

suggesting that surface tension can cause crack healing in soft elastic materials.    

 

1. Introduction 

 Understanding how surface tension affects the energy 

release rate of cracks in soft materials is fundamental to many 

problems related to material processing, such as adhesion and 

contact mechanics. For example, when an elastic sphere is in 

adhesive contact to a flat rigid substrate, the contact radius is 

determined by a balance of surface energy and the energy 

release rate of the interface crack exterior to the contact zone, 

as shown by Johnson-Kendall-Roberts (JKR) theory1. Recent 

experimental and theoretical works by Xu et al2 and Style et al3 

has demonstrated that JKR  theory breaks down for very soft 

elastic substrates. However, these new experimental results are 

consistent with a theory that accounts for the effect of surface 

tension on the energy release rate of the interface crack.    

 The characteristic length scale that describes the 

deformation of a solid due to its surface tension   is given by 

the ratio between the surface tension and its Young’s modulus 

E.  For engineering materials such as metals and ceramics, this 

“elasto-capillary” length is smaller than atomic dimensions. 

However, in the past decade, new applications such as replica 

molding and drug delivery drove the synthesis of soft materials 

such as hydrogels and elastomers with Young’s modulus 

ranging from 102 to 106 Pa. The elasto-capillary length of these 

soft materials ranges from tens of nm to hundreds of m ; as a 

result, the role of surface tension in driving shape change and 

deformation of solids can be considerable, as demonstrated by 

recent experiments and simulations4-10.    

     For most liquids, surface tension is isotropic and is 

numerically equal to surface energy. The problem is far more 

complex for solids since surface stress is not necessary 

isotropic11. In addition, surface stress and surface energy are 

different physical quantities which need not be numerically 

equal, even if surface stress is isotropic. In 1975, Gurtin and 

Murdoch12 proposed a continuum formulation of surface stress 

where surface stress can be decomposed into a residual stress 

component and a surface strain dependent component. For soft 

material such as elastomer or hydrogel, which is the primary 

interest of this work, it is reasonable to assume that surface 

stress is isotropic. As a first-order approximation, in the 

following we shall assume that the surface tension   is a 

material constant independent of surface strain.   

 There are few studies examining the role of surface stress in 

fracture since actual measurements of surface stresses are very 

difficult to make. In 1986, a theoretical analysis of the elastic 

fracture behavior under the influence of surface stresses was 

carried out by Thomson et al13 in which the surface tension was 

modeled as line forces acting on the crack tip. More relevant to 
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this present work is the paper by Wu (1999)14 and Kim et al 

(2010, 2012) 15, 16. Wu’s paper in 1999 suggested that the stress 

intensity factor at the crack tip is reduced by surface stresses.  

However, the numerical solution of Kim et al in 201016 showed 

that for a plane strain crack loaded in Mode I and Mode II, the 

near tip stress field is bounded, irrespective of the magnitude of 

the surface stress (as long as it is not exactly zero). In a later 

paper, Kim et al (2012)15 reexamined their numerical solution 

in greater details and showed that the near tip stress field for a 

Mode I crack has a logarithmic singularity. In both cases their 

numerical results suggested that the stress intensity factor near 

the crack tip (or the local stress intensity factor local A STK K K 

) is exactly zero. In other words, the applied stress intensity 

factor AK  is cancelled by the negative stress intensity factor 

STK  due to surface stresses. Since a zero local stress intensity 

factor implies that local energy release rate is also zero, there 

seems to be a discrepancy between the results of Wu’s 14 and 

Kim et al’s15, 16. However, in Wu’s analysis 14, a finite tip radius 

was introduced to remove the negative stress intensity factor 

induced by surface tension.    This finite tip radius approach 

was also used in later works of Fu et al17, Wang et al18 and 

Wang and Li19.   

 The use of a finite tip radius however, is only one way of 

dealing with the unbounded negative stress intensity factor due 

to surface tension. A simple way to understand how this occurs 

is to consider a plane strain Mode I crack lying on the negative 

x axis, with the crack tip at x = 0. Without loss in generality, we 

assume surface stress   to be isotropic, that is,   

where   is the surface tension (force/length). For this case, the 

Laplace pressure Lp   resisting the opening of the crack (see 

Fig. 1) is directly proportional to the curvature   which can be 

written as 

 

 
3/2

2

v

1 v





 
 

  (1) 

where v is the crack opening displacement and a prime denotes 

differentiation with respect to x.   In the analyses of Wu 14 and 

Kim et al 16, they assumed that v  is small everywhere and the 

curvature   is approximated by v . Due to this 

approximation, the governing equation describing the crack tip 

field is linear and the full machinery of analytic function theory 

can be used to formulate the crack problem.    

 We can now understand why Klocal had to be zero in these 

analyses, that is, the local stress field near the crack tip cannot 

have an inverse square root singularity.  Indeed, assuming Klocal 

is positive, the crack opening displacement near the crack tip 

must have the form: 

 localv ,          0K x x     (2) 

Since v  ,  

 
3/2

local ,          0K x x
     (3) 

Thus, the Laplace pressure induced by the deformed crack has a 

non-integrable singularity. It can be shown that such a singular 

pressure field will induce an infinite negative stress intensity 

factor at the crack tip, which means that Klocal goes to negative 

infinity.  This is a contradiction to the original assumption that 

Klocal is positive so the only possibility is local 0K  , which 

means either that the stress is bounded or has a weaker 

singularity.   On the other hand, if v  is retained, then  

 

   
3/2 3

2

v v
,          0

v1 v

x  
  

 
 

  (4) 

Note that v  and  
3

v  has exactly the same singularity, so that 

  is bounded at the crack tip.  As a result, it is possible for the 

local stress intensity factor to be non-zero. Therefore, it is not 

necessary to introduce a finite tip radius for the undeformed 

crack if one is willing to deal with a nonlinear boundary 

condition (i.e., using the full expression for radius of 

curvature).        

 The above discussion and analysis illustrates one of the 

difficulties of using small strain theory to study fracture. The 

problem arises since the strains and displacement gradient are 

no longer small near the crack tip, but the linear elasticity 

theory assumes that these quantities are small and this 

assumption can result in paradoxes like the one noted above.   

A more consistent way to approach the fracture problem is to 

use large deformation theory. We emphasize that our primary 

objective in this work is to study fracture in soft materials 

where large deformation cannot be avoided.    

 
Fig. 1 Surface tension on crack face 

  

 The analysis in this work is based on the fully nonlinear 

equilibrium theory of incompressible hyperelastic solid which 

allows for arbitrary large deformation. The surface stress is 

assumed to be isotropic and constant. A newly developed 

surface tension element4 is used in conjunction with a 

commercial finite element code ABAQUS to evaluate the 

energy release rate. The plan of this paper is as follows. The 

energy argument for the calculation of energy release rate is 

established in section 2. Section 3 introduces the mesh and 

basic procedures used in our finite element calculation. Results 

are shown in section 4 and section 5 gives an approximated 

expression for energy release rate. Discussion and summary is 

given in section 6. 

 

2. Geometry and derivation of Energy Release Rate 

 Our goal is to determine the energy release rate G of a 

penny-shaped or circular crack with undeformed radius a. The 

crack lies in the interior of an infinite block of incompressible 

hyperelastic solid where the strain energy density W has the 

form 

  x 

v 

Crack 
v(x) 

Crack surface : 

 

 
 
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  1W E I   (5a) 

where E is the small strain Young’s modulus and 1I  is the trace 

of the Cauchy-Green tensor.  The function  1I  is assumed to 

be smooth and obeys20  

    1 13 0 3 0I , I       (5b) 

The crack is loaded by imposing an internal pressure P on the 

crack faces. For incompressible solids, this is equivalent to 

applying a remote hydrostatic tensile stress with magnitude P 

while keeping the crack surface free of loading except surface 

tension.    

 A classical way to calculate G is to use a virtual crack 

extension method (VCEM). However, this method requires an 

accurate solution of the stress and strain fields21. Due to large 

deformation, the mesh near the crack tip is highly distorted, so 

the local stress and deformation fields near the crack tip 

determined by FEM are much less accurate than global 

quantities such as the deformed crack volume V. In the 

following, we derive a simple expression for the energy release 

rate in terms of P, V and the deformed crack area A. This 

expression allows us to evaluate G accurately even though the 

mesh near the crack tip is highly distorted.   

 The initial configuration is a traction free crack in a stress 

free solid with no surface tension, and the crack area in this 

configuration is 2

0 2A a . It is convenient to “load” the crack 

in two steps. In the first step, surface tension is increased 

gradually to its full value   at zero pressure. At the end of this 

step, the original flat crack will deform and reduce its area to 

sA , with a volume given by sV . This step is followed by 

inflating the deformed crack by a hydrostatic pressure P,  for 

example by pushing an incompressible fluid into the crack 

cavity (see Fig. 2).   Let V be the volume of the deformed crack 

when the applied pressure is P. Since the solid is elastic, the 

deformation and energy of the system should be independent of 

loading history and depends only on the final state. In other 

words, the order of application of surface tension and pressure 

will not affect our results. 

P

Solid

Incompressible 
fluid

Undeformed 
Crack

Deformed 
Crack

a

 
Fig. 2 Schematic of the mechanical loading process.  

 

 In the process of turning on the surface tension at zero 

pressure, the work done by surface tension on the elastic body 

is  

  
0

( 0,A)
sA

A

P dA   (6)  

Note that the surface tension in this stage is not a constant as it 

increases from zero to its final value  . At the end of this step, 

the potential energy of the surface is  sA and the elastic energy 

of the body is given by Eq. (6).   Note that since 0sA A , this 

energy is positive.   

 In the second step, the crack is pressurized, the work done 

by the pressure is 

 
* *( )

s

V

V

P V dV   (7) 

This work is used to increase the strain energy of the solid as 

well as stretching the surface. The potential energy of the 

pressure load is given by  

 PV   (8) 

where V is the volume of the crack at the end of the second 

step. To understand this term, one can imagine that the pressure 

is applied by a stack of weights. Thus, the system consists of 

the weights, the elastic solid and its surface. As fluid is forced 

into the crack, the weight drops and the system lost mechanical 

potential energy which is given by Eq. (8).   

 Adding all the energies, the total potential energy of the 

system PE is:  

 
0

0

s

s

*

A

A V

*

s

V

PE (P ,A)dA P V dV V AP          (9) 

After integration by parts, Eq. (9) is simplified as 

    
0 0

0*

P

* * *PE V P dP A P , d



        (10) 

Dimensional analysis implies that  

      3 2V a V , , A aP P=0, A=    (11a) 

where V and A   are dimensionless functions and 

 ,   P=P/E
Ea


   , (11b) 

are the elasto-capillary number and normalized pressure 

respectively.  Substituting Eq. (11a) and Eq. (11b) into Eq. (10) 

gives: 

   3

0 0

P

* * * *PE Ea V P , dP dA



  
 

   
 
 
    (12) 

The energy release rate G is, by definition,  

    33

0 0

1

2

2

3
2

* * *

P

p

*A

PE
G

a a

E
a V P , dP a d

a a

Ea







 



 





 



 
  

   

 
   

   

 (13a) 

where 

     
0 0

p

* * * *, V , dP A dP P



         (13b) 
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It is convenient to define a normalized energy release rate   

by 

 
 

 
      

1
/ 3

2
G Ea   (14) 

If surface tension is neglected, then the normalized energy 

release rate is a function of pressure only, and reduces to an 

earlier expression derived by Lin and Hui 22.    

 

3. Finite Element Method 

 We used a commercial FEM software, ABAQUS, to 

calculate the displacement field of the crack corresponding to 

different P  and elastocapillary number  . All numerical 

calculations are carried out by assuming that the elastic solid is 

incompressible and neo-Hookean, i.e., 

   1 3
6

E
W I   (15) 

The built-in hyperelastic function in ABAQUS was used to 

model the incompressible neo-Hookean material. Symmetry 

allows us to mesh only the upper half of the elastic solid (see 

Fig. 3).  All lengths are normalized by the undeformed crack 

radius a.  The built-in axisymmetric quadrilateral elements 

(CAX4RH) are used, and on the crack face, a user subroutine 

(UEL) written in FORTRAN is used to enforce a uniform 

tension along the crack face. Details about implementation of 

surface tension element can be found in Xu et al4. Eq. (14) is 

used to evaluate the energy release rate in our FEM.   

Specifically, in the FEM, the applied pressure and surface 

tension are changed incrementally from zero.  At each step, the 

deformed crack volume and deformed crack faces area are 

obtained from the computed crack opening displacement.  

Using Eq. (13b),  can be calculated by numerical integration 

and   is evaluated using numerical differentiation.  Unlike 

stress fields, the total crack volume V and the crack face area A 

are relatively insensitive to the distortion of elements near the 

crack tip, hence the energy release rate calculated using Eq. 

(14) is expected to be much more accurate than VCEM.  When 

the elements are too distorted, a re-mesh program is used to 

ensure convergence and accuracy. A typical mesh used in our 

simulation is shown in Fig. 4. 

 
Fig. 3: The geometry and boundary conditions used in our finite 

element calculation. All lengths are normalized by initial crack 

radius a. The right and upper boundaries are traction free. 

Symmetry boundary conditions are applied on the left and 

lower boundaries. Internal pressure and surface tension are 

applied on crack faces. 

               
                 (a)                                                     (b) 

 
(c) 

Fig. 4 Mesh used in our FEM calculation: (a) mesh of the full 

model. (b) zoom-in view of the original coarse mesh near the 

crack tip. (c) Re-mesh on deformed configuration. 

 

   

 

4. Results 

 The elasto-capillary number is the only material parameter 

that controls our solution. We give an order of estimate for the 

elasto-capillary number   for a soft material with a small 

crack. If the crack radius is 1mm and the surface tension is 

0.1J/m2, then
2 310 ( J / m ) / E  . For a very soft gel with 

modulus on the order of tens of pascals,   is of order unity. 

For rubbers, where the modulus is on the order of 610 Pa , 

410  . Fig. 5 (a) plots the normalized crack volume  ,V p  

versus the elasto-capillary number   for three different values 

of applied pressure. It shows that for soft materials, the 

reduction of crack volume due to surface tension can be 

significant. 

 

(a) 
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(b) 

Fig. 5 (a) Normalized crack volume versus elasto-capillary 

number    for different pressures. (b) Crack opening 

displacements for different elasto-capillary numbers when 

0.5p E   

 

 Fig.5(b) shows the crack opening profile for different 

elasto-capillary number when the applied pressure is 0.5E .  

Note that as   increases, the crack shrinks both in the 

horizontal and vertical directions. The results shown above are 

for reasonably large pressures.  For low pressures, for example, 

0.02P E , the results are shown in Fig. 6(a,b). For the case of 

no surface tension, 0  (point A), the crack is opened by the 

pressure. As   is increased from A to B, the crack shrinks in 

both directions as shown in Fig.6 (b). In this regime, the inward 

Laplace pressure caused by the surface tension resist crack 

opening. From B to C, the crack continues to shrink in 

horizontal direction but opens more in the middle. After the 

crack volume reaches its maximum at C, the crack opening 

displacement continues to increase until   reaches D . After 

D, the crack starts to shrink in both directions again and 

eventually the crack volume approaches zero as   increases. 

Thus, for a fixed pressure, our results suggest that the crack 

volume will go to zero in the limit of infinite surface tension or 

     .     

 

 (a) 

 

 (b) 

Fig.6 (a) Normalized crack volume versus elasto-capillary 

number   for 0.02P E . (b) Crack opening displacements for 

different elasto-capillary numbers when 0.02P E  

 

Fig. 7 Change of normalized energy release rate with respect to 

normalized pressure for different elasto-capillary number 

 

 

Fig. 8 Change of normalized energy release rate with respect to 

elasto-capillary number for different normalized pressure 
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 Fig. 7 plots the normalized energy release rate versus 

normalized pressure for three different elasto-capillary 

numbers. For zero surface tension, the energy release rate is 

always positive and increases with pressure. This result is 

identical to the previous work of Lin and Hui22. For 

0.1 and 0.2   , the energy release rate is negative when 

pressure is below some critical value. Physically, this means 

that the crack will have a tendency to heal since the potential 

energy of the system will decrease when the crack heals. 

 The dependence of   on   for fixed normalized pressures 

is shown in Fig. 8. This result suggests that, for any fixed 

applied pressure, the energy release rate is a monotonic 

decreasing function of   so that in the liquid limit, the crack 

will be closed under a constant pressure load. One may imagine 

that in the liquid limit, the crack would deform into a sphere 

with a finite radius, but a straight forward analysis of the 

potential energy of spherical solution in this limit shows that 

this solution is unstable under pressure control and thus the 

sphere will collapse. 

 

5. Approximation for energy release rate 

 In this section, we give an approximate linearized formula 

for energy release rate in the limit of very small / Ea  . 

 Let  0 , 0   P  denote the normalized energy release 

rate for the case with no surface tension.  As shown in Fig. 9, 

the 0  versus P curve of our FEM result can be fitted very well 

by the expression: 
3 2

2

0

1.021 0.3 1.333

0.72

0747
exp

P P P
P

P

 




 
 
 

 (16) 

Note Eq. (16) agrees with the energy release rate in the small 

strain limit, where 

 
2

0
/ 3,          1P P     (17) 

In the previous work of Lin and Hui22, it was found numerically 

that the energy release rate tends to diverge at a finite value of 

0.72P .  This feature is also included in Eq. (16). However, it 

must be noted that this divergence is restricted to neo-Hookean 

solid which underestimates the amount of strain hardening 

effect. Lin and Hui22 has shown that the energy release rate 

does not diverge for materials that exhibit high strain 

hardening.   

 

 

Fig. 9 Normalized energy release rate versus normalized 

pressure P , when 0  . 

 

 The numerical result in Fig. 8 suggests that the normalized 

energy release rate can be approximated by a linear function of 

  when   is sufficiently small, that is, 

 
0 ,      (  )  1  Ps        (18) 

where s is the slope of the    curve when 0  , which 

depends on the normalized pressure P .  The region of validity 

of Eq. (18) depends on the normalized pressure, as can be seen 

in Fig. 8.  The dependence of s on P  is shown in Fig. 10.   

 

 

Fig. 10  
0




  s /P  versus normalized pressure P . 

 

 A fit for the s versus P  curve is   

 
3 2

2 4.109
1.885 exp

0.7

5.328 2.045
( ) 5.123

2
s

P P P
P P

P

  
 


  

 
 (19) 

Eq. (19), combined with the Eq. (16), allow us to find an 

approximate expression for the energy release rate in the limit 

of small / Ea  , that is, 

3 2

2

2

3 2

1.021 0.0747

1.885 5.123

3

e

1.333

x

72

p

0.

4.109

0.72

5.328 2.045

P P P
exp

P

P
P P P

P

P




 
 

 





 



 
 
 

  
  

  

(20) 

which provides a good fit to our numerical results in Fig. 8 in 

the small   limit.  

 

6. Summary and Discussion 

 The effect of surface tension on the energy release rate of a 

penny-shaped crack under internal pressure is determined by 

the dimensionless elasto-capillary number / Ea  . A simple 

expression of the energy release rate which involves only the 

deformed crack volume, deformed crack area, elasto-capillary 

number and the applied pressure is derived.  For a neo-Hookean 

solid, our finite element results show that the energy release 

rate is significantly reduced due to surface tension. For pressure 

lower than a critical value which depends on the elasto-

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 7  

capillary number, the energy release rate is negative which 

means the crack has a tendency to heal.  This is a nonlinear 

phenomenon that cannot be captured by the linearized theory. 

For small  , an approximated linear function to evaluate the 

normalized energy release rate  is given by 

 
0
( / ) ( / )   P E s P E  , (21) 

where 0  is the energy release rate without surface tension and 

is given by Eq. (16), and s  is a dimensionless function that 

depends on the normalized applied pressure.   

 Surface energy also plays an important role in fracture 

energy. For ideally brittle elastic solids, the fracture energy or 

fracture toughness is twice the surface energy. However, this is 

rarely the case for most materials because of additional 

dissipation mechanism. For materials relevant to this work, 

such as elastomers, the fracture energy is found to be much 

greater than surface energy, which can be estimated by taking 

the energy required to break a carbon-carbon bond and 

multiplying it by the number of bonds crossing a unit area of 

the fracture plane24. Lake and Thomas 24 suggested that most of 

the energy stored in the chains up to the point of bond rupture is 

dissipated, so fracture energy in elastomers is amplified by the 

number of bonds per chain. In this paper, we show that for soft 

materials, although surface energy is not the dominant factor in 

setting the fracture energy, surface tension can significantly 

affect the material deformation and stress field and thus reduces 

the energy release rate.   This is a new and interesting way in 

which surfaces resist fracture.  

 Finally, our work assumes that the surface tension is 

positive but it can be negative11.  We did not investigate this 

possibility since a compressive surface stress may cause a 

buckling instability of the crack faces, which will lead to 

complications in our numerical method. Whether a negative 

surface tension will increase the energy release rate is an 

interesting question subjected to further investigation.  
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