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Interface Deformations Affect the Orientation Transition of Magnetic
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Manufacturing new soft materials with specific optical, mechanical and magnetic properties is a significant
challenge. Assembling and manipulating colloidal particles at fluid interfaces is a promising way to make such
materials. We use lattice-Boltzmann simulations to investigate the response of magnetic ellipsoidal particles
adsorbed at liquid-liquid interfaces to external magnetic fields. We provide further evidence for the first-
order orientation phase transition predicted by Bresme and Faraudo [Journal of Physics: Condensed Matter
19 (2007), 375110]. We show that capillary interface deformations around the ellipsoidal particle significantly
affect the tilt-angle of the particle for a given dipole-field strength, altering the properties of the orientation
transition. We propose scaling laws governing this transition, and suggest how to use these deformations to

facilitate particle assembly at fluid-fluid interfaces.

PACS numbers: 68.05.-n, 47.11.-j, 47.55.Kf, 77.84.Nh

I. INTRODUCTION

Colloidal particles adsorb strongly at fluid-fluid inter-
faces. Detachment energies of spherical particles can be
orders of magnitude greater than the thermal energy,
kgT.12 This means that colloidal particles can attach
irreversibly to interfaces, and hence stabilize emulsions
better than surfactants, which are usually able to freely
adsorb and desorb from an interface.! The shape and con-
tact angle of the particle dictate how strongly it attaches
for a given particle size: shapes that occupy smaller in-
terface areas detach more easily than those occupying
larger areas.®”"

Particles migrate to the interface to replace some fluid-
fluid surface area with particle-fluid surface-area, reduc-
ing the free energy, F, = 5% 4 VdA, where v is the sur-
face tension and 0A the interface area. Although surfac-
tants adsorb to interfaces in a similar manner to particles
and also lower the free energy by reducing the surface
tension, surfactant stabilised emulsions and particle sta-
bilised emulsions can behave very differently.

Once colloidal particles adsorb at a fluid-fluid inter-
face, particle-particle interactions caused by competing
hydrodynamic, electromagnetic and capillary forces can
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lead to particles self-assembling into materials with spe-
cific mechanical, optical, or magnetic properties.®® Cap-
illary interactions arise when particles deform the fluid
interface. These interface deformations can be induced
by external forces and torques such as gravity, or even
by particle shape alone.'® Capillary interactions have at-
tracted much interest in recent years for their role in,
for example, the self assembly of anisotropic particles at
fluid interfaces,?19° 13 the suppression of the coffee ring
effect'* and the Cheerios effect.!®

Advances in materials science have enabled the pro-
duction of anisotropic particles with precise shapes,
sizes, and electromagnetic properties.'® Particles can
also be manufactured with embedded ferromagnetic'” or
(super)-paramagnetic dipoles!®1? so that they are able to
interact with external magnetic fields. This combination
of particle shape and particle functionality, facilitated by
the embedded dipoles, opens up a whole range of new
ways to control particle self-assembly at fluid-fluid inter-
faces into two-dimensional structures.

Bresme and Faraudo?° investigated the behaviour of
magnetic prolate spheroidal particles adsorbed at fluid-
fluid interfaces under the influence of a homogeneous
external magnetic field acting parallel to the interface
normal, showing a very rich phenomenology.*2° In their
analytical model, particles interact with the field via an
embedded dipole moment directed along the particle long
axis. Using classical capillarity theory and Monte-Carlo
simulations, they found that the particle long axis aligns
with the field but that the alignment is not continuous:
The model predicts that for a critical dipole-field strength
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FIG. 1. (Color online) A particle with an embedded dipole,
w, under the influence of an external magnetic field, H, di-
rected parallel to the interface normal. The angle between the
particle dipole axis and the magnetic field, ¢, is related to the
angle between the dipole axis and the undeformed interface
(dashed blue line), 9, by ¥ = 7/2 — ¢, which we call the tilt
angle. R, and R are the particle radii perpendicular and
parallel to the particle symmetry axis, respectively. n is the
interface normal vector. A,,. is the area removed from the
interface by the presence of the particle (Eq. (3)).

the particle flips from a tilted orientation to a vertical
one, with respect to the interface. Monte-Carlo simula-
tions showed good agreement with theory, but identifying
the orientation transition was difficult given the presence
of thermal fluctuations at small scales and the low ac-
tivation free energy associated with the transition when
the particles are small (nanometre range).?%-2!

Our article builds on this idea, and explores the physi-
cal behaviour arising from the interplay of external mag-
netic fields and capillary interactions induced by parti-
cle anisotropy. We employ a multi-component lattice-
Boltzmann model???? with immersed rigid particles®* 33
to simulate prolate spheroidal particles with embedded
dipoles adsorbed at a liquid-liquid interface under the
influence of a magnetic field acting parallel to the inter-
face normal. We confirm that the predicted first order
orientation transition exists and propose scaling laws gov-
erning this transition. We show that in the continuum
limit, where colloidal particles are much larger than sol-
vent particles, interface deformations around the particle
play a significant role in the orientation of the particle at
the interface

Finally, we show that these deformations are dipolar
in nature and may lead to capillary interactions between
particles when many particles are adsorbed at a fluid-
fluid interface, with potential implications for the con-
trolled assembly of particles at fluid-fluid interfaces.

Our paper is organised as follows. Section II discusses
previous theoretical models describing magnetic particles
adsorbed at fluid-fluid interfaces under the influence of
an external magnetic field. Section III details our simu-
lation model and methods. We present the main results
in section IV and conclude the article in section V.
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Il. THEORY

We consider the free energy of a prolate spheroidal par-
ticle with short and long axes R, and R, respectively,
adsorbed at a fluid-fluid interface under the influence of
an applied external magnetic field, H (Fig. 1). In the ab-
sence of interface deformations around the particle and
neglecting line tension effects, the free energy can be writ-
ten agh2021

AFint = 7’712Arm + ('7217 - ’Ylp)AQp — B cos ¢ (1)

where B = |u||H| represents the dipole-field strength, ¢
is the angle between p and H (Fig. 1), 7,5 is the surface-
tension of the interface between phases 1 and 2 where
1,7 = {1: fluid 1, 2: fluid 2, p: particle}. A, is the area
of the fluid-fluid interface removed by the presence of an
adsorbed particle; A;, and A, are the contact areas of
the particle with fluid 1 and 2, respectively, and are re-
lated to the total particle surface area A, = A1, + Asp =
47 R% G(a), where G(a) = 1 +1 =z arcsin V1 — a2
is a geometric aspect factor.

The free energy AF;,,; above is calculated with respect
to the free energy of the particle immersed in bulk phase
]., 1.6.7 Aant = Fint — Fpl; where Fpl = 7121412 + ’YlpApa
and Aj, is the total area of the unperturbed fluid-fluid
interface.

For a neutrally wetting particle, 72, = v1p, and the
free energy difference, henceforth referred to simply as
the free energy, reduces to

AFint = _712A'rm — Bcos ¢7 (2)

where A,., is given by20-2!

TR R

Apm =
\/RQL cos? ¢ + R sin® ¢

(3)

The tilt angle, ¥, between the particle dipole-axis and
the undisturbed interface is related to the dipole angle ¢
by ¢ =7/2 — ¢ (Fig. 1).

Substituting Eq. (3) into Eq. (2) gives the free energy,
here made dimensionless by dividing by 4,712, as a func-
tion of the tilt angle, 1, and the dipole-field strength,
BS20

_ AF;, B 2—
ARy = St Beos(n/2 = 9) (1)
Apria Apria

N 1
"~ 4G(a) \/C082<’(/J> + a2 sin®(y))

where o = R||/R_ is the particle aspect ratio.

This thermodynamic model predicts that particles
should experience a first-order orientation phase tran-
sition once a critical dipole-field strength, B., is
reached.?%2! The model also predicts that the tilt an-
gle, ¥, corresponding to a given dipole-field strength, B,
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depends on the aspect ratio, «. Firstly, particles with
larger aspect ratios require a larger dipole-field strength
to transition from a tilted to a vertical state, with respect
to the interface. Secondly, those particles transition at
a smaller critical tilt angle, ., which is defined as the
critical tilt angle corresponding to the critical dipole-field
strength, B., at which the particle discontinuously tran-
sitions from a tilted to a vertical state.

As the particle anisotropy tends to that of a spherical
particle, & — 1, the first-order orientation phase transi-
tion disappears altogether. We reiterate that the model
presented above in Eq. (4) assumes that the interface re-
mains planar upon tilting, and therefore does not account
for interface deformations around the particle.

In the case of anisotropic particles such as ellipsoids,
the particle curvature changes along the long particle axis
and the three-phase contact-line must undulate around
the particle in order for the contact-angle to remain con-
stant, satisfying Young’s equation. Lattice Boltzmann
(LB) simulations allow one to achieve a clear scale separa-
tion whereby the colloidal particle is much larger than the
surrounding fluid solvent particles, approaching the con-
tinuum limit. Hence, LB simulations provide a promising
approach to quantify the three-phase contact-line defor-
mations as well as the impact of these deformations on
the tilt angles and orientation transitions of the particles.
We discuss our LB simulation approach in the following
section.

. SIMULATION MODEL AND METHODS

We employ the lattice-Boltzmann method on a
D3Q19 lattice®® with the Shan-Chen multi-component
model?*?8 for the binary liquid part of the system. Sus-
pended particles are implemented following the pioneer-
ing work of Ladd and Aidun.?*?%27:31 The LB method
can be considered an alternative to traditional Navier-
Stokes solvers for fluids and due to its local nature is
well suited for implementation on supercomputers. We
use the LB3D lattice Boltzmann code,®® in which the
above mentioned model is implemented. While elabo-
rate descriptions of the model implementation have been
published previously,?' 33 we revise some relevant details
for the present work in the following.

In the LB algorithm, each fluid component ¢ obeys the
dynamical equation

Fix+ At t+ At) = fE(x,1) + Q,(x, 1) (5)

where ¢ = 1,...,19 so that f7(x,t) represents the particle
distribution function in direction ¢; at lattice coordinate
x and time ¢. €2;(x,?) is a generic collision operator: We
use the Bhatnagar-Gross-Krook (BGK) operator3®:37

Q= 2L o (6)

T

which has the effect of relaxing the system towards a
local equilibrium distribution function fi® on a time

3
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FIG. 2. (Colour online) Comparison of 1(B) as obtained
from the thermodynamic model in Eq. (4) (lines) and our
numerical simulations (symbols) for various aspect ratios, a.
The dipole-field strength is made dimensionless by dividing
by Apyi2. Although the numerical data qualitatively confirm
the model predictions, in particular that the discontinuous
transition exists, there are quantitative deviations.

scale given by 7. The equilibrium distribution is a suit-
ably chosen function of the fluid densities and velocities.
Apart from the common choice Az = At = 1, i.e. the
introduction of “lattice units”, we set 7 = 1 which leads
to a numerical kinematic viscosity v = é in lattice units.

To simulate two immiscible fluids, we define two fluid
components ¢ = 1,2 with densities p(!) and p®. We also
define an order parameter ¢(x,t) = p(l)(x, 1) — p(2)(x, t)
which we call the “colour” of the fluid at a particular lat-
tice site, x. We allow the fluids to interact via a mean-
field force, the so called Shan-Chen approach.??

To include immersed rigid particles, we use the method
introduced by Ladd?*~2% where particles are discretised
on the lattice, and lattice sites occupied by a particle are
treated as solid wall nodes in which bounce-back bound-
ary conditions®® are applied. For a more detailed de-
scription of how immersed rigid particles are handled in
our simulations, we refer the reader to the relevant liter-
ature. 24267283133 A noteworthy point is that our algo-
rithm neglects thermal fluctuations.

To investigate the response of magnetic ellipsoidal par-
ticles adsorbed at liquid-liquid interfaces to external mag-
netic fields, we first place a particle at a liquid-liquid
interface with surface tension ;5 = 0.06634 in lattice
units and allow the system to equilibrate. During equi-
libration, the interface diffuses to ~ 5 lattice sites wide.
After equilibration, we apply a torque T = p x H to the
particle, where H is a magnetic field acting parallel to
the interface normal, n (Fig. 1).
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IV. RESULTS

In Fig. 2 we compare our simulation results with the
predictions of the theoretical model in Eq. (4).2° The
LB simulations reproduce the theoretical predictions,
namely, we find a discontinuous transition of the tilt angle
when the dipole-field strength is increased past a critical
value, B.. We also find that increasing « leads to a de-
crease of the tilt angle for a given dipole-field strength.
Additionally, the critical dipole field strength and criti-
cal tilt-angle increases and decreases, respectively, as the
aspect ratio is increased.

The LB simulations feature quantitative differences
with the theoretical model in Eq. (4) that increase with
the particle aspect ratio. The LB tilt angle is larger than
the thermodynamic prediction, while the critical dipole-
field strength becomes progressively smaller than the
theoretical result as the aspect ratio increases (Fig. 2).
These deviations are in contrast with the results obtained
using atomistic Monte Carlo simulations of ellipsoidal
particles adsorbed at fluid-fluid interfaces.?°2' In those
simulations, the agreement between theory and simula-
tion was quantitative for small aspect ratios, a = 1.2,
and low dipole-field strengths.?%:2!

Interestingly, for larger particle aspect ratios, o = 1.5
and 2 the atomistic simulations?®?' featured systematic
deviations from the theory, similar to those observed in
our LB simulations, although the simulated angles are
much closer to the theoretical predictions than in our LB
simulations. The particles investigated in the atomistic
simulations were small, typically 5-10 times larger than
the solvent particle diameter, approximately 1-3 nm. At
this nanometre scale the granularity of the solvent is rel-
evant, in contrast with our LB simulations, where the
solvent particles approach the continuum limit.

We first rule out the effect of the LB discretization as a
possible explanation for the observed deviations between
LB simulation and atomistic simulations by performing
a grid refinement study, shown in Fig. 3. By increas-
ing the ratio of particle radius to interface width, R, /A
(where A =~ 5 is the constant interface width3?) for a
particle with aspect ratio a = 2, we show that the ratio
R, /A = 1.6 is suflicient as the result for B /A = 2.2
does not improve the agreement. This is consistent with
previously published results.?! We ensured that the ratio
R, /A was at least 1.6 in all our simulations.

In the following, we consider the physical origin of
the higher tilt angles predicted by LB as compared with
the thermodynamic theory and Monte Carlo simula-
tions.?2! For ellipsoidal particles that do not feature
a constant curvature along the three-phase contact-line,
Young’s equation dictates that the three-phase contact
line should undulate around the particle. The surround-
ing fluid interface will be deformed as a consequence. We
find that as a response to the external field and parti-
cle rotation, the interface deforms in an anti-symmetric,
dipolar fashion: The particle depresses the interface on
one side and raises it on the other, as presented in Fig. 4a
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FIG. 3. (Colour online) Convergence study. Numerical data
(symbols) are compared with theoretical predictions (solid
black line) for @ = 2. The ratio of the particle radius or-
thogonal to the symmetry axis, R, (Fig. 1), to the interface
width, A, is varied. A ratio of 1.6 is enough to ensure numer-
ical convergence.

and sketched in Fig. 4b. Since the particles are neutrally
wetting, quadrupolar interface deformations are absent.

The contribution of the interface deformation to the
free energy may be included by rewriting Eq. (2) as

AFint a(¥) = —m12 (A12 — A12.4(1)) — Bcos (g - qp)
(M)

where A12 4(1) is the total deformed fluid-fluid interface
area when a particle is adsorbed at the interface. A,p, 4 =
A1z — Aqa 4 is the area removed by the particle when it
absorbs at the interface, including the effect of interface
deformations. Ay, g converges to Ay, (Eq. (3)) in the
flat interface limit, i.e. ¥ = 0° or 90°, and Eq. (4) is
therefore recovered. The equilibrium tilt angle for a given
dipole-field strength can then be obtained by minimizing
Al g with respect to 9.

Figs. 4a and 4b show that the interface deformation re-
moves more interface area than the planar approximation
(see dashed lines in Fig. 4b), which lowers the free energy.
At the same time, more interface area is generated as a
result of the curvature of the deformed interface around
the particle (see solid lines in Fig. 4b), which increases the
free energy. It is the balance between these effects that
determines the observed interface profile. However, the
net effect is a decrease in total interface area. In order to
assess the impact of the removed interface area observed
in our simulations, Aymq = A12 — A12,4, Wwe computed
A q by fixing the particle orientation (and hence its tilt-
angle) and integrating the area of the deformed interface
when the particle is adsorbed at the interface. Aq24 in-
cludes the contributions of both the increased interface
area due to curvature around the particle and decreased
interface area due to the contact-line re-arrangement, as
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(a) Simulation visualisation

(b) Schematic illustration

FIG. 4. (Colour online) (a) Simulation with aspect ratio a = 3
under the influence of a dipole-field B/Apv12 = 0.25. We see
a repositioning of the three-phase contact line compared with
a flat interface. (b) Schematic showing the difference between
the theoretically predicted area removed, Ay, (blue dashed),
and interface profile (blue solid), compared with the observed
area removed, A, qa (red dashed) and interface profile (red
solid).
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FIG. 5. (Colour online) The difference between the predicted
lines, AA = Ay (¢ = 0) — Ay (¢) and simulated symbols,
AA = Arpma(yp = 0) — Arma(t), is denoted by the grey
shaded region in Fig. 4b. For 4 = 0° and 90°, there is no
particle induced interface deformation and so the symbols and
lines match.

described above. Therefore, Ay, 4 is the area removed by
the particle including the additional curvature-induced
interface area.

In Fig. 5, we plot AA(W) = A a(¥ =0) — Arpm a(¥))
obtained from our simulations (symbols) and compare
with AA(W) = A (¥ = 0) — Ap(¥) calculated from
the theoretical model in Eq. (3) (lines). The difference
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FIG. 6. (Colour online) Prediction of the particle tilt-angle, 1,
including the effect of interface deformations. The lines rep-
resent the equilibrium angle corresponding to the minimum
in the free energy presented in Eq. (7). The good agreement
between the model (lines) and the data (symbols) suggests
that interface deformations are the sole cause of the devia-
tions observed in Fig. 2.

between these two curves is denoted by the grey shaded
region in Fig. 4b.

We see that the degree of interface deformation in-
creases with particle aspect ratio. At small particle as-
pect ratios, o = 1.5, where the particle is nearly spher-
ical, the increased area due to the deformation of the
interface is small. In this case, we expect that the devi-
ations between the LB results and the analytical model
are smaller. This conclusion is consistent with the de-
pendence of the tilt angles reported in Fig. 2.

We also find that the deformed interface area with the
particle adsorbed, Ais 4, is smaller than predicted by
the theoretical model in Eq. (3) for a given dipole-field
strength, B. This smaller total interface area implies a
lower free energy and hence a higher tilt-angle for a given
dipole-field strength, which is also in agreement with the
tilt angles reported in Fig. 2. For ¢ = 0° and 90°, the
curves converge, since for these tilt-angles there is no in-
terface deformation for neutrally wetting particles.

The interface area removed by the particle that we
observed in our simulations, Ay, 4, can be used to
recalculate the equilibrium tilt angle. We note how-
ever that there is not a simple analytical expression for
Arm.a, hence, we fitted our numerical areas to a function
c+ wab?

\/a2 cos?2 +b2 sin? v
parameters. We chose this functional form, taking inspi-
ration from Eq. (3), since it captures the phenomenol-
ogy of the observed discontinuous orientation transition.
Using this fitted area, we then minimized Eq. (7) with
respect to the tilt-angle 4 to obtain a new estimate of
the tilt angles as a function of the dipole-field strength,
B, shown in Fig 6.

Armd = , where a, b, and c are free
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FIG. 7. (Colour online) Tilt angle, ©a, vs. reduced dipole-
field strength, B/Apyi2¢c. Using this scaling, we observe a
full collapse of the simulated data to a single master curve.

Fig 6 shows that when the interface area removed by
the particle that includes interface deformations, Ay, 4,
is taken into account, the tilt-angles observed in our LB
simulations are reproduced well. We note that we were
unable to obtain a fit for @ = 1.5, and that the critical
dipole-field strength, B., is extremely sensitive to the fit-
ting parameters: an adjustment of the fitting parameters
by just 1%, which is smaller than errors in the measure-
ments of A, 4, produces a 10% difference in the critical
dipole-field strength. Hence, our model in Eq. (7), when
combined with our numerical estimate of the area, is not
accurate enough to predict the exact critical dipole-field
strength. We estimate the error in the theoretical pre-
dictions of the dipole-field strength, B,, shown in Fig 6
to be at least 20%. However, for dipole-field strengths
less than the critical dipole-field strength, B < B., the
tilt-angle is robust to larger changes in the fitting param-
eters and the model in Eq. (7) describes our simulation
data well.

Considering the evidence presented in Fig. 5 and Fig. 6,
we conclude that the observed differences between theo-
retical predictions and our simulation data in Fig. 2 can
be accounted for purely by considering the interface de-
formations that arise due to the particle’s reorientation
in response to the external field.

We have shown above that the tilt angle induced by
the magnetic field features a distinctive variation with
the particle aspect ratio, a. We find that, before the
first-order transition, all these data collapse into a single
curve when the dipole-field strength and the tilt angle
are normalized and multiplied by «, respectively (Fig. 7).
Interestingly, we did not find an « scaling law in the the-
oretical model presented in Eq. (4), and so a convincing
physical explanation of this observation is still lacking.

The interface deformations that arise due to the parti-
cle reorienting with respect to the external field are dipo-
lar in nature, as shown from the side in Fig. 4 and from
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FIG. 8. (Colour Online) Particle (white) reorientation, due to
the magnetic field, deforms the interface in a dipolar fashion.
The colours represent the relative height of the interface: the
interface is depressed on one tip of the particle (black) and
raised on the other (yellow). The interface is flat in the or-
ange/red regions. These dipolar interface deformations, called
capillary charges, lead to capillary interactions between many
particles at an interface, providing a route to assemble parti-
cles at fluid-fluid interfaces.

above in Fig. 8. These interface deformations are called
capillary charges.?® If there is more than one particle ad-
sorbed at an interface under the influence of an external
magnetic field, the capillary charges will interact, lead-
ing to attractive and repulsive forces as well as torques,
causing the particles to aggregate and order, giving rise
to novel interface structures.

V. CONCLUSIONS

We simulated ellipsoidal particles adsorbed at a liquid-
liquid interface influenced by an external magnetic field
using lattice Boltzmann (LB) simulations, which include
the effect of interface deformations arising from the local
fulfilment of Young’s equation around the particle. These
deformations arise in the continuum limit, where the col-
loidal particle adsorbed at the liquid-liquid interface is
much larger than the surrounding fluid solvent particles.

LB simulations provide further evidence that first-
order orientation transition predicted by Bresme and Fa-
raudo ?° exists and confirm the qualitative predictions of
the model, namely, that the transition depends on the
particle aspect ratio, ae. However, we found quantitative
differences between the tilt angles predicted by the ther-
modynamic model and our numerical LB simulations.
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These differences are in contrast with the good agreement
found in atomistic simulations of small nanoparticles.?!

We showed that interface deformation significantly
contributes to the observed tilt angle for a given dipole-
field strength and accounts for the observed deviations
between LB simulations and the planar interface approx-
imation adopted by Bresme and Faraudo.?° Interestingly,
the latter approximation is in quantitative agreement
with results obtained for small particles using Monte-
Carlo simulations,???! suggesting that these deforma-
tions become less relevant for nanoparticles.?%-2! Our
work thus uncovers a rich physical behaviour where the
influence of interface deformation depends on particle
size. In the large particle limit these deformations must
be considered explicitly in order to obtain quantitative
predictions of tilt angles.

We have discovered a scaling law that reproduces the
orientation behaviour of ellipsoidal particles under the in-
fluence of an external magnetic field. Renormalization of
the data by the particle aspect ratio enables us to repre-
sent all the results for tilt angles vs. dipole-field strength
with a single master curve. This result is of particular
relevance to future theoretical and experimental work, as
it is possible to map the orientation response of particles
of different aspect-ratios into a single measurement of a
particular system.

Finally, we showed that the particle tilting deforms the
interface in a dipolar manner, creating capillary charges
which lead to capillary interactions between particles.
These capillary interactions should be relevant for the
self-assembly of many-particles adsorbed at fluid-fluid
interfaces, which could find applications in e.g. colloid-
liquid crystal mixtures?® and photonics.*! We will ad-
dress this effect in a forthcoming work. We hope that
our paper will motivate new experiments to investigate
the physical behaviour of anisotropic magnetic particles
at fluid-fluid interfaces.
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