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Despite the fact that quantitative experimental data have been available for more than forty years now, nematoacoustics still
poses intriguing theoretical and experimental problems. In this paper, we prove that the main observed features of acoustic wave
propagation through a nematic liquid crystal cell – namely, the frequency-dependent anisotropy of sound velocity and acoustic
attenuation – can be explained by properly accounting for two fundamental features of the nematic response: anisotropy and
relaxation. The latter concept – new in liquid crystal modelling – provides the first theoretical explanation of the structural
relaxation process hypothesised long ago by Mullen and co-workers [Mullen et al., Phys. Rev. Lett., 1972, 28, 799]. We compare
and contrast our proposal with an alternative theory where the liquid crystal is modelled as an anisotropic second-gradient fluid.

1 Introduction

Nematic liquid crystals (NLCs from now on) are anisotropic
elastic fluids whose symmetry axis – the nematic director
– depends on the prevailing molecular orientation. The
quadrupolar character of most NLCs extends their anisotropic
response to the electric and magnetic susceptibilities, making
thus possible to strongly manipulate their orientational pattern
with negligible accompanying deformations. Based on this
observation, the early Oseen-Frank theory1,2 considered the
orientational response of NLCs completely decoupled from
their macroscopic motion. The variational continuum theory
that emerged from it by accounting properly for the nematic
symmetry satisfactorily predicts the equilibrium behaviour of
NLCs – at least far from the nematic-isotropic transition and
away from defects. The best-established dynamical exten-
sion of the Oseen-Frank theory, originally put forward by Er-
icksen3 and fully developed by Leslie4, while allowing for
the (linear) effects of nematic anisotropy on the viscous re-
sponse, does not cover the experimentally observed effects of
the (slight) compressibility of NLCs.

In fact, it has long been recognised that sound waves in-
teract with the orientational order of NCLs, often in a rather
subtle way5. For instance, strong sound waves impinging on
an NLC cell have been observed to induce shear flows which,
in turn, perturb the nematic alignment. But also in the linear
acoustic regime a variety of interesting effects have been de-
tected. A low intensity ultrasonic wave injected into an NLC
cell changes its optical transmission properties, namely, its re-
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fractive index. Even in Fermi liquids the onset of nematic
order dramatically affects the behaviour of sound waves6. Re-
cently, this acousto-optic effect has attracted renewed atten-
tion, due to its potential for application to acoustic imaging7,8.
A different manifestation of the coupling between acoustic
waves and nematic order is the phenomenon of acoustic gen-
eration observed in an NLC cell undergoing Fréedericksz tran-
sitions triggered by an external electric field9.

In the following, we specifically focus on the anisotropic
propagation of acoustic waves through an NLC cell where the
mass density and the nematic field are uniform in the unper-
turbed state. This phenomenon was studied experimentally
more than forty years ago by Mullen, Lüthi and Stephen10.
They found that the speed of sound is maximum when the di-
rection of propagation is along the nematic director and mini-
mum when it is orthogonal to it. The difference is minimal –
a few thousandths of the average sound speed – and exhibits
a peculiar dependence on the sound frequency, while being
roughly independent of temperature in the considered range.

That most remarkable experimental paper provides also
some valuable hints at a plausible theoretical explanation. To
our present purposes, this is the key quote from Ref. 10: ‘The
experimental anisotropy in the sound velocity indicates that at
finite frequencies a liquid crystal has an anisotropic compress-
ibility. This anisotropy can be explained if at these frequencies
a liquid crystal in some respects behaves like a solid∗ . . . How-
ever, the elastic constants must have an important frequency
dependence . . . If this were not the case, it would cost a finite
energy to change the shape of a liquid crystal, the volume be-
ing kept constant. This is not consistent with our present ideas
of the structure of a liquid crystal. The frequency dependence

∗The specific free energy conjectured in Ref. 10, omitted in this introductory
quote, is reported literatim as (B.19) in Appendix B, where it is related to the
one we put forth in Sec.2.
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of the elastic constants could arise out of some structural re-
laxation process in the liquid crystal.’

In this paper, building on the experimental results and the
theoretical conjectures of Mullen, Lüthi and Stephen10, we
construct a complete theory consistent with their observations,
based on two main hypotheses: first, the elastic response to
expansion/rarefaction strains is assumed to be affected by the
nematic order; second, the structural processes characterising
the fluidity of NLCs are modelled by introducing an evolving
relaxed configuration11,12.

To explain the same effects, a different line of thought was
followed by Selinger and co-workers, who postulated that the
sound-speed anisotropy is due to a direct coupling between
the nematic director and the spatial gradient of the mass den-
sity13–16. This idea was subsequently fully developed into a
theory of anisotropic Korteweg-like fluids by Virga17. Be-
cause of mass conservation, the mass density is related to the
determinant of the strain. Therefore, the Selinger-Virga hy-
pothesis establishes a second-gradient theory, i.e., an elas-
tic theory where the strain energy depends also on the sec-
ond derivatives of the displacement. Since higher-gradient
terms compete with the standard first-gradient terms, they typ-
ically represent singular perturbations to the underlying first-
gradient theory. Accordingly, their contribution becomes im-
portant only if and where abrupt density changes take place.
In fact, the original proposal by Korteweg was meant to model
interfacial and capillary forces by resolving density disconti-
nuities into smooth but steep density variations18. It seems
therefore implausible that the mild density undulations oc-
curring in the linear acoustic regime may produce sizeable
second-gradient effects.

This work is organised as follows. Sec. 2 is devoted to the
introduction of an elastic strain energy properly accounting for
nematic anisotropy. In Sec. 2.1 we show preliminarily that the
elastic response included in the early visco-elastic assumption
put forward by Ericksen in his seminal work on anisotropic
fluids3 suffices to produce an anisotropic (frequency indepen-
dent) speed of sound. However, we also prove that such an
assumption is incompatible with anisotropic hyperelasticity.
We then proceed to construct a stored energy density function
capable of representing the elastic behaviour of slightly com-
pressible NLCs (Secs. 2.2 and 2.3). On this basis, in Sec. 2.4
a perturbation analysis is used to obtain a satisfactory depen-
dence of the speed of sound on the angle between the wave
vector and the nematic director. In Sec. 3 we introduce and
exploit the crucial concept of nematic relaxation, a mecha-
nism allowing the shear stress to relax (with a characteristic
time typically much smaller than the director relaxation time).
The equation governing the evolution of the relaxed configu-
ration is given in Sec. 3.1. The frequency dependence of the
speed and attenuation of sound waves is obtained in Sec. 3.2.
Sec. 4 contains a discussion, where our theoretical predictions

are tested against experimental data. The results we obtain
compare well with the experimental findings by Mullen, Lüthi
and Stephen10 and other early authors19. Further develop-
ments are finally pointed out. Two appendices complete the
paper. In Appendix A we prove that Ericksen’s early constitu-
tive assumption for the Cauchy stress in an anisotropic elastic
fluid cannot be hyperelastic. Appendix B, besides collecting
several computational details of our nonlinear nematic hyper-
elastic theory, presents a thorough comparison of its linearised
version and the small-displacement theory hinted at by Mullen
et al.10.

2 Nematic elasticity

Isothermal conditions are assumed in all what follows. More-
over, we assume that the NLC, uniformly aligned in its un-
perturbed state, stays so while traversed by the acoustic wave.
These assumptions reflect the setup of all the cited experimen-
tal studies†. To get an idea of the (small) effects of the removal
of the constraint on the nematic texture, see Refs. 20, 21. To
stress that the director field is uniform and stationary, we shall
denote it by n0 . The nematic degrees of freedom being frozen,
the governing equations reduce to the mass and force balances

ρ̇ +div(ρv) = 0 , divT−ρ
(
v̇+(∇∇∇v)v

)
= 0 . (1)

All fields involved – mass density ρ , translational velocity v,
and Cauchy stress T – are spatial, and dotted quantities are
partial time derivatives.

2.1 Ericksen’s transversely isotropic fluid

The constitutive assumption for the stress put forward by Er-
icksen3 as early as in 1960, when stripped of the viscous terms
and under isothermal conditions, reduces to‡

T =−
(
π(ρ)I+α(ρ)n0⊗n0

)
. (2)

† In the experiments reported in Ref. 10 the temperature was stabilised to within
±0.1◦C or less. Lord and Labes 19 experimented at room temperature. What
was actually measured by both groups was the angle between the propaga-
tion direction and the direction of the uniform magnetic field used to align
the molecules. Lord and Labes 19 applied fields up to 12 kOe, observing no
change in the attenuation beyond 1 kOe. Mullen, Lüthi and Stephen 10 re-
ported no field dependence between 0.5 and 5 kOe. Also the nematoacoustic
analysis by Virga 17 is based on the hypothesis of a uniform and immobile di-
rector field. Lifting this assumption, as done by De Matteis and Virga 20, does
not seem to make much of a difference – at least within the second-gradient
theory developed in Ref. 17.

‡ The tensor product between vectors a,b operates on any vector u as follows:
(a⊗b)u = (b·u)a for all u (i.e., (a⊗b)i j = aib j in any orthonormal basis).
The tensor product between double tensors is defined analogously, so that
(A⊗ I)E = (I·E)A = (trE)A, I being the identity on vectors. The inner
product between double tensors is defined as M·L = tr(M>L). The trace tr
is the unique linear form on double tensors such that tr(a⊗b) = a·b = aibi
(sum over i). We use few fourth-order tensors, denoted by blackboard bold
symbols.
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Both the spherical and the uniaxial component are assumed to
depend only on the mass density. It is worth rewriting (2) as
the sum of a spherical and a deviatoric (i.e., traceless) compo-
nent:

T =−
(
π(ρ)+ 1

3 α(ρ)
)

I−α(ρ)
(
n0⊗n0−

1
3 I
)
, (3)

so as to make apparent that π(ρ) is not the pressure, which
depends also on the anisotropic coefficient α(ρ). Adopting
(2) transforms the force balance (1)2 into

ρ (v̇+(∇∇∇v)v) =−∇∇∇π− (n0⊗n0)∇∇∇α . (4)

Linear acoustic waves are obtained via a regular perturbation
expansion of (1)1 and (4) around the unperturbed state:

ρε = ρ0+ ε ρ1+o(ε) , vε = ε v1+o(ε) (5)

where ε is a smallness parameter. Assumptions (5) entail

π(ρε) = π(ρ0)+ ε π
′(ρ0)ρ1+o(ε) ,

α(ρε) = α(ρ0)+ ε α
′(ρ0)ρ1+o(ε) .

(6)

Since ∇∇∇ρ0 = 0, the O(1) set of equations is trivially satisfied.
The O(ε) set is comprised of the acoustic equations

ρ̇1+ρ0 divv1 = 0 , ρ0 v̇1 =−A0∇∇∇ρ1 , (7)

where the acoustic tensor A0 is given by

A0 = π
′(ρ0)I+α

′(ρ0)n0⊗n0 . (8)

Equations (7) entail the anisotropic wave equation

ρ̈1−div(A0∇∇∇ρ1) = 0 . (9)

A plane wave

ρ1(r, t) = Acos
(
k·r−ω t

)
(10)

with A the wave amplitude, k the wave vector, its modulus |k|
the wave number, and ω the angular frequency, solves (9) if
its phase velocity vs:=ω/|k| solves the quadratic equation

v2
s = π

′(ρ0)+α
′(ρ0)(k·n0/|k|)

2. (11)

It is known from empirical evidence that |α ′(ρ0)| � π ′(ρ0) ,
implying that to a very good approximation

vs =
√

π ′(ρ0)

(
1+

α ′(ρ0)

2π ′(ρ0)
(cosθ)2

)
, (12)

where θ is the angle between k and n0 . As regards the angular
dependence of the sound speed vs, (12) matches perfectly with
the experimental findings reported in Ref. 10 and the predic-
tions provided by the competing second-gradient theory17.

With this being said, there are several good reasons to reject
the simplistic assumption (2). They were hinted at in the In-
troduction, and will be discussed in depth below. In particular,
the bias implicit in (2) causes a conflict between anisotropy
and hyperelasticity. In a later section of the very same paper3

where the constitutive equations leading to (2) were proposed,
after assuming a free-energy density depending only on mass
density and temperature, Ericksen wrote that ‘the form of the
Clausius inequality most often used in irreversible thermody-
namics . . . will lead to some restrictions on the coefficients
occurring in [the above constitutive equations]’ – which he
did not investigate there. In a paper he published soon after22,
the term corresponding to the uniaxial component in (2) was
already dropped.

As a matter of fact, it turns out that the only way to let
(2) satisfy such restrictions is to take α null, which entails a
spherical acoustic tensor. This is proved in Appendix A in
the general context of finite elasticity. A weaker result, i.e.,
that α ′(ρ0) should vanish is readily obtained by linearising
(2) around ρ0 . On account of the fact that ρ1 =−ρ0 trE (with
E the infinitesimal strain), one finds that the elastic tensor C0
equals ρ0A0⊗I, with A0 the acoustic tensor in (8). Therefore,
C0 has the major symmetry if and only if A0 is spherical, i.e.,
if and only if α ′(ρ0) = 0.

2.2 A hyperelastic transversely isotropic material

We now proceed to build up the simplest strain-energy den-
sity fit to describe the anisotropic elastic response of a com-
pressible liquid crystal in its nematic phase. To this aim we
compare its current configuration (characterised by a uniform
director field) with a reference configuration in its isotropic
phase. Consider a small LC sample whose reference shape
is a spherical ball Bε of radius ε . Our strain-energy choice
stems from the assumption, illustrated in Fig. 1, that in the ne-
matic phase the relaxed shape of the formerly spherical ball
becomes an ellipsoid of revolution sharing the same volume.
Therefore, in order to represent the intrinsic anisotropy asso-
ciated with the nematic phase we introduce the asphericity
factor a(ρ) such that the area of the cross section normal to
the symmetry axis equals πε2/(1+a(ρ)). As a consequence,
a prolate (oblate) ellipsoid is obtained whenever a(ρ) is posi-
tive (negative). This factor assumes therefore the role of an or-
der parameter describing the loss of spherical symmetry of the
centre-centre pair correlation function of LC molecules due to
the isotropic-to-nematic phase transition23–26. Since the po-
sitional components of the correlation function vary smoothly
across the transition27, the asphericity factor is expected to
be small. Nonetheless, it may affect significantly the elastic
properties of the nematic phase.
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The above argument motivates the introduction of the fol-
lowing stored energy density (with respect to mass):

σ(F,n0) = σ̂(ρ,n0 , B̊) :=

σiso(ρ)+
1
2 µ(ρ) tr

(
ΨΨΨ(ρ,n0)

−1B̊− I
)
,

(13)

where F is the deformation gradient, ρ is related to it through
mass conservation: ρ = ρ0/J, with J := detF, B̊ := F̊ F̊> is the
left Cauchy-Green strain tensor associated with the isochoric
component of the deformation gradient F̊ :=J−1/3 F, and

ΨΨΨ(ρ,n) :=
(
1+a(ρ)

)2 n⊗n +
(
1+a(ρ)

)−1(I−n⊗n
)

(14)

is a shape tensor, emboding information on the symmetry-
breaking nematic direction and the asphericity factor associ-
ated with the transformation illustrated in Fig. 1.

(a) (b)

n0

Fig. 1 Molecular cartoon illustrating two isovolumic shear-stress
free configurations of a small blob of liquid crystal, respectively in
the isotropic (a) and in the nematic phase (b). Bounding boxes help
visualising the action of the isochoric deformation gradient F from
(a) to (b). Cube (a) is the image under the inverse deformation
gradient F−1 of parallelepiped (b), whose long axis is aligned with
the nematic director n0 .

The first term on the right side of (13) accounts for the ef-
fects of non-volume-preserving deformations. It is the domi-
nant term in the strain-energy density – indeed, the only one
for standard elastic fluids. The second term is the simplest
frame-indifferent, positive-definite, symmetry-allowed func-
tion of the pair (F̊,n0) vanishing if (and only if) B̊ = ΨΨΨ(ρ,n0).
Its dependence on the left strain tensor B̊, rather than on the
right strain C̊ := F̊> F̊, reflects the essential fact that the direc-
tor field n is a spatial field independent of (though dynami-
cally coupled to) the translational motion. This term is for-
mally analogous to the representation given by DeSimone and
Teresi28 of the trace formula originally proposed by Warner,
Terentjev and co-workers29–31 to model the soft elastic re-
sponse of nematic elastomers. What is specific to the present
theory is the crucial dependence of the shape tensor on the
density via the asphericity factor, as established by (14). We

allow also the (strictly positive) modulus µ(ρ) to be density-
dependent, but this is inessential.

As we prove in Appendix B, the hyperelastic theory stem-
ming from (13)–(14) provides the simplest extension to fi-
nite elasticity of the small-displacement theory intimated by
Mullen et al.10 to make sense of their experimental results.

Assumptions (13)–(14) entail the following prescription for
the Cauchy stress (cf. Appendix B):

T(ρ,n0 , B̊) = − p̂(ρ,n0 , B̊)I

+ρ µ(ρ)dev
(
ΨΨΨ(ρ,n0)

−1B̊
)
,

(15)

where the product ρµ(ρ) appears to be a shear modulus, dev
is the deviatoric projector: devL = L− 1

3 (trL)I, and

p̂(ρ,n0 , B̊) := ρ
2×(

σ
′
iso(ρ)+

1
2 µ
′(ρ) tr

(
ΨΨΨ(ρ,n0)

−1B̊− I
)

(16)

− 3a′(ρ)
2
(
1+a(ρ)

) µ(ρ)
(

dev(n0⊗n0)
)
·
(
ΨΨΨ(ρ,n0)

−1B̊
))
.

Consistently with the result stated in Sec. 2.1, (2) and (15) do
not match. In a sense, however, (15) does not depart too much
from (2) in the regime of interest, as we shall see below.

The unperturbed state of the NLC is characterised by a den-
sity equal to ρ0 and a spherical stress tensor T0 :

devT0 = 0 . (17)

Equations (15) and (17) imply that the equilibrium strain B̊0
equals the shape tensor:

B̊0 = ΨΨΨ(ρ0 ,n0) . (18)

Then, (16) yields the equilibrium pressure

p0 := p̂(ρ0 ,n0 , B̊0) = ρ
2
0

σ
′
iso(ρ0) (19)

and (15) the equilibrium stress

T0 :=T(ρ0 ,n0 , B̊0) =− p0I . (20)

Coherently, the reference configuration (B̊= I) is not shear-
stress free in the nematic phase, unless a0 :=a(ρ0) = 0:

T(ρ0 ,n0 ,I) =− p̂(ρ0 ,n0 ,I)I

−
3+3a0+a2

0

(1+a0)
2 a0ρ0 µ0dev

(
n0⊗n0

)
(21)

with

p̂(ρ0 ,n0 ,I) = p0 +
3+3a0+a2

0

(1+a0)
3 a0ρ

2
0

a′(ρ0)µ0

+
3+2a0

2(1+a0)
2 a2

0
ρ

2
0

µ
′(ρ0) . (22)
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2.3 A slightly compressible anisotropic fluid

The theory we put forward in the preceding section is fairly
general. Formally, it applies to any trasversely isotropic ma-
terial, for finite deformations of any amplitude. The applica-
tion we have in mind is, on the contrary, quite specific: the
linear acoustic – i.e., quasi-equilibrium – response of a quasi-
incompressible and slightly anisotropic NLCs, which – as all
liquids – are hard to compress: tiny density variations should
imply fairly large pressure changes. In addition, their faint
anisotropic compressibility, however small, should be quite
sensitive to small changes in density, in order to account for
the angular dependence of the sound speed (cf. (12)).

The perturbative setting fit to represent the asymptotic
regime of interest will now be identified, by introducing the
scaled density variation

ξ :=ρ/ρ0 −1 (23)

and the isotropic pressure function

ρ 7→ piso(ρ) = ρ
2
σ
′
iso(ρ), (24)

and positing

piso
(
ρ0(1+ξ )

)
= p0+ρ0 p1ξ +o(ξ ) . (25)

Quasi-incompressibility implies the (positive) bulk modulus
ρ0 p1 to be much larger than the (positive) unperturbed pres-
sure p0 . This, in turn, is much larger than the pressure pertur-
bation envisaged in the linear acoustic regime:

ρ0 p1� p0� ρ0 p1 |ξ | . (26)

Next, we formalise the hypothesis that the asphericity factor
a(ρ) is uniformly small near ρ0 by positing

a
(
ρ0(1+ξ )

)
= a0+a1ξ +o(ξ ) (27)

and assuming
|a0 | � 1 . (28)

In contrast to a0 , the sensitivity coefficient a1= ρ0a′(ρ0) is
not required to be small, since assumption (26) ensures that
|ξ |�1. This fact will play a key role in our further consider-
ations. Henceforth, the shape tensor (14) will be treated as a
small perturbation of the identity. In this approximation, (18),
(21) and (22) simplify respectively to

B̊0 = I+3a0dev
(
n0⊗n0

)
+o(a0) , (29a)

T(ρ0 ,n0 ,I) =− p̂(ρ0 ,n0 ,I)I

−3a0 ρ0 µ0 dev
(
n0⊗n0

)
+o(a0) , (29b)

p̂(ρ0 ,n0 ,I) = p0 +3a1a0ρ0 µ0 +o(a0) . (29c)

Finally, we implement the hypothesis that the stored energy
density (13) is dominated by its first term by positing

µ
(
ρ0(1+ξ )

)
= µ0+µ1ξ +o(ξ ) (30)

and assuming the shear modulus ρ0 µ0 to be much smaller than
the bulk modulus ρ0 p1 :

µ0 = η p1 , with η � 1 . (31)

2.4 Angular dependence of the sound speed

We now look for travelling plane waves of the form

uε(r, t) = ε u(r, t) = ε Re
(
w(r, t)

)
, (32a)

w(r, t) = exp
(
i
(
k·r−ω t

))
a , (32b)

where uε is a small-amplitude displacement field, charac-
terised by the non-dimensional smallness parameter ε , the
vector amplitude a, the wave vector k= k e (with |e|=1 and
wave number k > 0), and the angular frequency ω . All of
the above quantities are real. The complex exponential form
in (32b) will turn out especially useful in Sec. 3.2, where the
wave vector itself will be complexified, in order to represent
possibly attenuated waves.

To avoid inessential complications, we will neglect terms
of order O(a0) and o(ε). Within these approximations, ansatz
(32) implies

v̇ =−ε ρ0ω
2 Re(w) , (33a)

F = I− ε Im(w⊗k) , (33b)

ξ = ε Im(w·k) , (33c)

B̊ = I− ε Im
(
dev(w⊗k+k⊗w)

)
, (33d)

ΨΨΨ= I+3ε a1 Im(w·k)dev(n0⊗n0) . (33e)

Equation (33c) establishes that the scaled density variation is
O(ε), as expected. Substituting (33c), (33d) and (33e) into
(15), one computes T = T0+ ε T1+o(ε), where

T1 =−ρ0 p1 Im(w·k)I

−ρ0 µ0 Im
{

3a2
1
(w·k)I+dev(w⊗k+k⊗w) (34)

+3a1

(
(dev(w⊗k))·(n0⊗n0)I+(w·k)dev(n0⊗n0)

)}
,

whose divergence reads

divT1 =−ρ0Re
(

p1(k⊗k)w+µ0Mw
)
, (35)

where all anisotropic information is encoded in the symmetric
tensor

M :=(k·k)I+(1/3+3a2
1
)(k⊗k)

+3a1

(
(n0·k)(k⊗n0+n0⊗k)− 2

3 k⊗k
)
.

(36)
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Substituting (33a) and (35) into (1)2 leads to the eigenvalue
problem (

p1(k⊗k)+µ0 M
)

a = ω
2 a . (37)

Expanding the wavelength λ = 2π/k and the wave amplitude
vector a in terms of the small parameter η (cf. (31)) gives

λη = λ0 +η λ1+o(η) , (38a)
a

η
= a0+η a1+o(η) . (38b)

The O(1) solution to (37) yields a longitudinal wave vector a0
and an isotropic sound speed v0 , as expected:

a0 = A0e with A0 > 0 , v0 =
ω

2π
λ0 =

√
p1 . (39)

The O(η) problem reads

−2(λ1/λ0)A0e+(λ0/2π)2A0M0e = (I− e⊗e)a1 , (40)

with

(λ0/2π)2 M0e =
(
4/3−2a1+3a2

1
+3a1(cosθ)2)e

+3a1(cosθ)n0 , (41)

where θ is the angle between e and n0 . The solubility condi-
tion of (40) yields the O(η) anisotropic correction to the speed
of sound:

vs/v0 = 1+η
(
2/3−a1+3a2

1
/2+3a1(cosθ)2) . (42)

Then, solving (40) (in the subspace orthogonal to e) delivers
the O(η) correction to the wave amplitude vector:

e×a1 = 3a1A0(cosθ)e×n0 . (43)

Solution (43) exhibits the existence of an O(η) transversely
polarised component in the plane spanned by n0 and e, whose
amplitude is maximal when θ = π/4:

a1 =
3
2 a1A0(sin2θ)t , (44)

with t the unit vector orthogonal to e in span{n0 ,e} such that
t · n0 > 0. The wave amplitude vector a is slightly tilted to-
wards the nematic director if a1 > 0, away from it if a1 < 0.
As far as the angular dependence of the sound speed is con-
cerned, (42) is completely satisfactory. However, the underly-
ing model is obviously unable to account for the important fre-
quency dependence and the related attenuation systematically
observed in experiments10,19,32,33. This issue will be attacked
in Sec. 3.

A more accurate calculation would add insignificant terms
of order O(a0) to the coefficient of η in (42), changing it into

2/3−a1+3a2
1
/2+O(a0)+(3+O(a0))a1(cosθ)2. (45)

We conclude that, while the precise value of the asphericity
factor is immaterial (as long as it is small), what really mat-
ters is the value of its derivative. In particular, the speed of
sound is maximal or minimal when the direction of propa-
gation is along the nematic director, depending on whether
the asphericity factor increases or decreases with increasing
density. The experimental evidence reported in Refs. 10, 19
points to a positive value of a1 .

3 Nematic relaxation

The hyperelastic theory set up in Sec. 2.2 misses the effects
of molecular rearrangements which, while not affecting the
macroscopic deformation of the NLC, do make the ensuing
shear stress relax to zero whenever its macroscopic evolution
is sufficiently slow. Roughly speaking, these microscopic re-
arrangements drive the liquid to lower energy states. A con-
venient caricature of their macroscopic effects is obtained by
postulating that the relaxed configuration evolves on a charac-
teristic time scale, steering towards a moving target, the actual
configuration. This establishes a competition between the re-
laxation and the loading dynamics, which is at the origin of
the frequency dependence of effective elastic moduli. Inter-
estingly, a similar idea is already outlined in the last section
of the seventh volume of the Course of Theoretical Physics by
Landau and Lifshitz34.

reference

relaxed

actual
F

G Fe:=FG−1

Fig. 2 Instantaneous decomposition of the deformation gradient F
into a relaxing and an effective component. Disarrangements in the
lower cartoon are meant to illustrate the fact that, contrary to F, the
relaxing tensor field G and the effective deformation field Fe need
not be gradients.

We are thus motivated to split the deformation gradient F
into the product of a relaxing deformation G and an effective
deformation Fe (cf. Fig. 2):

F = FeG . (46)

This decomposition is at the heart of a continuum theory such
as ours, which models the (typically inelastic) dynamics of
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materials undergoing both macroscopic deformation and mi-
croscopic relaxation with no resort to memory functionals. It
formalises the idea that their response results from two dis-
tinct, intertwined processes. At each time, the current relax-
ing deformation maps the (conventional) reference configura-
tion to the current relaxed configuration, while the effective
deformation gauges the difference between the actual config-
uration and the current relaxed state. Therefore, it is sensible
to assume that the stored energy density depends on F only
through Fe (hence its label effective).

The relaxing deformation G is a time-dependent tensor
field, taking values in the proper special linear group SL+ (the
Lie group of double tensors whose determinant equals +1).
This modelling choice is prompted by the fact that no molec-
ular reshuffling can accommodate the effects of a volume
change and, as a consequence, only the deviatoric component
of the stress may relax to zero. Since the relaxed configura-
tion is defined only elementwise11, in (46) the only gradient
is F: the tensor field G need not be a gradient, and the effec-
tive deformation Fe has to compensate its integrability defect
(cf. Fig. 2).

After introducing the inverse relaxing strain

H :=
(
G>G

)−1 (47)

and the isochoric effective left Cauchy-Green strain

B̊e := F̊eF̊>e = F̊HF̊>, (48)

we just substitute B̊ with B̊e in (13), obtaining the stored en-
ergy density

σ̃(F,n0 ;H) := σ̂(ρ,n0 , B̊e) =

σiso(ρ)+
1
2 µ(ρ) tr

(
ΨΨΨ(ρ,n0)

−1B̊e− I
)
,

(49)

where ρ =ρ0/J=ρ0/(detFe). Since the relaxing deformation
G enters (49) only through the corresponding strain H, we are
naturally led to introduce the manifold R of inverse relaxing
strains as the intersection of the proper special linear group
SL+ and the space of symmetric double tensors Sym:

R := SL+∩Sym . (50)

The Cauchy stress is still given by (15), provided that B̊ is
substituted by B̊e:

T(ρ,n0 , B̊e) = − p̂(ρ,n0 , B̊e)I

+ρ µ(ρ)dev
(
ΨΨΨ(ρ,n0)

−1B̊e
)
.

(51)

Of course, balance equations (1), supplemented with the con-
stitutive prescription (51), need to be complemented by an
evolution equation along R governing the relaxational degrees
of freedom.

3.1 Relaxation dynamics

Inspired by ideas presented by Rajagopal and Srinivasa35 and
by DiCarlo and co-workers11,36,37, we hypothesise a viscous-
like dynamics for the inverse relaxing strain, described by a
steepest-descent equation on the relaxing strain manifold R:

γ Ḣ =−ρ0PH

∂ σ̃

∂H
. (52)

The scalar coefficient γ >0 is a viscosity modulus, and PH is
the orthogonal projector from the space of double tensors onto
the subspace THR tangent to R at H:

PH = sym−H−1⊗H−1

‖H−1‖2 , (53)

with sym the orthogonal projector onto Sym. Equation (53)
is an easy consequence of the formula for the derivative of the
determinant

det(H+ε L) = (detH)(1+ ε H−>·L)+o(ε) (54)

(= 1+ ε H−1 ·L+ o(ε), since H∈R ), implying that the unit
normal to THR is H−1/‖H−1‖.

The evolution equation (52) is consistent with the dissipa-
tion principle establishing that the power dissipated – defined
as the difference between the power expended and the time
derivative of the free energy – should be non-negative for all
body-parts at all times. This condition localises into

S·Ḟ−ρ0
˙̃σ ≥ 0 , (55)

with S the Piola stress. Since S=ρ0(∂ σ̃/∂F) (cf. Appendix
B), (55) reduces to

ρ0

∂ σ̃

∂H
·Ḣ≤ 0 . (56)

Hypothesis (52) – sometimes justified by the heuristic crite-
rion of maximum rate of dissipation35 – satisfies requirement
(56) in the simplest possible way.

On account of (49) and (48), we obtain explicitly

∂ σ̃

∂H
= 1

2 µ(ρ)F̊>ΨΨΨ(ρ)−1F̊ ∈ Sym (57)

which, substituted into (52), yields

2γ

ρ0 µ(ρ)
Ḣ−

ΨΨΨ(ρ)−1·
(
B̊ B̊−1

e B̊
)

‖H−1‖2 H−1

=− F̊>ΨΨΨ(ρ)−1F̊ .

(58)
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3.2 Frequency-dependent anisotropic sound speed

We return to the problem studied in Sec. 2.4, looking now for
attenuated plane waves. We keep (32a) as is, but we change
(32b) into

w(r, t) = exp
(
i
(
k̂·r−ω t

))
a , (59)

where
k̂ :=k+ i l (k, l real) (60)

is a complex wave vector, whose real part k parametrises
the propagation direction and the wavelength, exactly as
in Sec. 2.4, while its imaginary part l determines how fast
the longitudinal and transverse components of the wave get
damped. This viscous effect is the upshot of the relaxation
dynamics introduced in Sec. 3.1.

As in Sec. 2.4, we shall neglect terms of order O(a0) and
o(ε). The deformation gradient F, the scaled density variation
ξ and the shape tensor ΨΨΨ are still represented by (33b), (33c)
and (33e), respectively, provided that k is substituted by k̂ and
(32b) by (59).

At equilibrium, the inverse relaxing strain H equals the
identity I. After positing

H=I+ ε H1 with H1 ∈ TIR (61)

(i.e., symmetric and traceless), we linearise (58) accordingly.
We obtain

τ Ḣ1+H1 = Im(K+3a1N) , (62)

after introducing the relaxation time

τ :=
2γ

ρ0 µ0

(63)

and positing

K := dev(w⊗k̂+ k̂⊗w) , (64a)

N := (w·k̂)dev(n0⊗n0) . (64b)

Modulo an exponentially decaying transient, (62) is solved by

H1 = Im
(
(1− iωτ)−1(K+3a1N)

)
. (65)

Consequently, from (61), (48) and (51) we get the effective
isochoric strain

B̊e = I+ ε
(
H1− Im(K)

)
= I+ ε Im

(
(1− iωτ)−1(iωτK+3a1N)

) (66)

and the O(ε) increment of the Cauchy stress

T1 =−ρ0 p1 Im(w·k̂)I

+ρ0 µ0 Im
{

iωτ (1− iωτ)−1(3a2
1
(w·k̂)I+K (67)

+3a1

(
(dev(w⊗k̂))·(n0⊗n0)I +N

)}
,

whose divergence reads

divT1 =−ρ0Re
(

p1(k̂⊗k̂)w− iωτ

1− iωτ
µ0Mw

)
, (68)

where the symmetric tensor M is still defined as in (36), pro-
vided that k is substituted by k̂. In the asymptotic limit
ωτ → ∞ , the solid-like elastic response analysed in Sec. 2.4
is recovered: H1 tends to zero, and (66), (67) and (68) tend to
(33d), (34) and (35), respectively.

In complete analogy with the procedure in Sec. 2.4, we sub-
stitute (33a) and (68) into (1)2 and obtain the complex eigen-
value problem(

k̂⊗k̂− iωτ

1− iωτ
η M

)
a =

ω2

p1

a , (69)

where η is the small non-dimensional parameter introduced in
(31). After supplementing expansions (38) with

l
η
= l0+η l1+o(η) , (70)

we perform a perturbation analysis of (69), split into its real
and imaginary parts. At order O(1), we obtain l0 =0 and re-
cover the same wave vector and isotropic sound speed given
in (39). The real O(η) problem reads

2
λ1

λ0

A0e−
(

λ0

2π

)2
A0Re

(
iωτ

1− iωτ

)
M0e

= (I− e⊗e)a1 ,

(71)

with M0e given by (41). The solubility condition of (71) yields
the O(η) frequency-dependent, anisotropic correction to the
speed of sound:

vs

v0

= 1+η f (ωτ)
(

2
3 −a1+

3
2 a2

1
+3a1(cosθ)2

)
, (72)

with

f (x) :=
x2

1+ x2 (x≥ 0) . (73)

The modulating function f behaves like x 7→ x2 for x→ 0 and
like x 7→ 1−(1/x)2 for x→ ∞ . More interestingly, it is well
approximated by the linear function x 7→ x/2 in a rather large
neighbourhood of x= 1 (cf. Fig. 3). As we shall discuss in
depth in Sec. 4, this appears to be the regime relevant to the
experiments motivating our modelling effort10,19. The same
modulation affects also the O(η) correction to the wave am-
plitude vector:

a1 =
3
2 a1A0 f (ωτ)(sin2θ)t , (74)

where t is the unit vector normal to e introduced in (44). Fi-
nally, solving the imaginary O(η) problem

(I+ e⊗e)l1 =
λ0

2π
Im
(

iωτ

1− iωτ

)
M0e , (75)
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0

0.5

1

0 1 2 3x

f

Fig. 3 Plot of the modulating function (73) in the range [0,3]. The
affine approximation to f at x=1 is also plotted. Note that this is in
fact linear, since its plot passes through the origin (0,0).

delivers the attenuation vector

l = η Im
(

iωτ

1− iωτ

)
λ0

2π

(
I− 1

2 e⊗e
)
M0e

= η
ωτ

1+(ωτ)2
2π

λ0

× (76)(( 2
3 −a1+

3
2 a2

1
+3a1(cosθ)2)e+ 3

2 a1(sin2θ)t
)
.

It is noteworthy that the longitudinal and the transverse com-
ponent of the attenuation vector depend on the angle θ exactly
as the sound speed (cf. (72)) and the amplitude of the trans-
verse wave (cf. (74)), respectively. Since Lord and Labes19

give attenuation data in decibels per unit flight time rather than
distance travelled, it is apposite to transform (76) accordingly,
by multiplying the attenuation vector by the isotropic sound
speed (39)2:

v0 l =(η/τ) f (ωτ)× (77)(( 2
3 −a1+

3
2 a2

1
+3a1(cosθ)2)e+ 3

2 a1(sin2θ)t
)
,

with f the modulating function (73). These and the previous
results will be interpreted and compared with the cited exper-
imental data in Sec. 4.

4 Discussion

After offering scattered comments on the qualitative agree-
ment of our results with the experimental evidence published
in the early seventies10,19,32,33, we now proceed to a quan-
titative comparison between the predictions of our theory
with the data by Lord and Labes19 and Mullen et al.10. Both
groups experimented on the same LC molecule, namely, N-
(4-methoxybenzylidene)-4-butylaniline (MBBA)§. Since their

§ Lieberman et al.32 and Kemp and Letcher 33 worked with LC molecules dif-
ferent from MBBA: both groups with para-azoxyanisole (PAA), the second

data have been used also by De Matteis and Virga20 to
estimate the phenomenological parameters of their second-
gradient theory, this will facilitate the comparison between our
theory and theirs.

Our retrodictions, encapsulated in (72) and (77), depend on
a handful of parameters: the unperturbed mass density ρ0 , the
bulk modulus ρ0 p1 , the shear modulus ρ0 µ0 , the anisotropic
sensitivity coefficient a1 , and the relaxation time τ . The mass
density is a standard material property: we take

ρ0 = 103 kg/m3. (78)

Lord and Labes19 report that ‘background attenuation var-
ied from 2.18 dB/µs at 6 MHz to 0.37 dB/µs at 2 MHz.’ After
identifying their ‘background attenuation’ with the modulus
of the attenuation (77) averaged over θ , this information trans-
lates into an equation independent of a1 and η :

f (12 ·106 π τ)

f (4 ·106 π τ)
=

2.18
0.37

(79)

(with f the modulating function (73) and τ in seconds), whose
solution yields the relaxation time

τ = 2.11·10−8 s . (80)

Remarkably, this value coincides with the one (2 ·10−8 s) es-
timated on different grounds by Mullen et al.10. Differently
from them, we do not assume as a hypothesis that ωτ ≈ 1,
but find as a result that all of the experiments reported in
Refs. 10, 19 fall in the interval

0.265≤ ωτ ≤ 1.86. (81)

We consider therefore our estimate (80) decidedly robust.
Next, to estimate the stiffness ratio η and the anisotropic

sensitivity coefficient a1 , we combine the cited data on the
background attenuation from Lord and Labes19 with the data
on the angular dependence of sound velocity provided by
Mullen et al.10, whose Fig. 2 shows that, at 21◦C and 10 MHz,

one also with p-azoxyphenetole (PAP). For this reason, their attenuation data
– neither of them detected an anisotropic sound velocity – will not be used
here. Moreover, the experimental findings of Kemp and Letcher 33 seem to
indicate that, in the temperature and frequency range they explored (138–
155 ◦C and 5–18 MHz for PAA, 116–129 ◦C and 3–15 MHz for PAP), the
attenuation due to a ‘hysteresis effect [of the] type [that] has been observed in
very viscous liquids, glasses and metals’ – as put by Lord and Labes 19 – was
overshadowed by a qualitatively different dissipation mechanism. In fact, the
attenuation data measured by Kemp and Letcher (in decibels per unit distance
traveled) are in good agreement with the theory by Forster et al.38, which
dictates a quadratic dependence on frequency – in the same way as Leslie’s
theory does, when extended to compressible LCs 17,39. At variance with that,
the anisotropic attenuation measured by Lord and Labes in decibels per unit
flight time depends linearly on frequency. The data reported by Lieberman et
al.32 are of no help in this respect, having being taken for only one frequency
(1.83 MHz). This issue will be considered in a companion paper.
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the experimentally measured difference between the speed of
sound in the direction at an angle θ with respect to n0 and
that in the direction normal to n0 is nicely interpolated by
1.25 ·10−3(cosθ)2 times the average sound speed. As for this
last quantity, we may use the value 1.54 ·103 m/s measured by
Mullen et al.10 for 2 MHz at 22 ◦C, since scaling it to 10 MHz
according to (72) affects it far beyond the third significant
digit. The above pieces of information, plugged respectively
into (77) and (72), provide the estimates¶

η = 1.99 ·10−2 , (82a)

a1 = 3.27 ·10−2 . (82b)

Finally, using (72) and (39)2 yields

p1 = 2.37 ·106 m2/s2, (83)

which, combined with (78), (82a) and (31), delivers the fol-
lowing estimates for the bulk and shear moduli:

ρ0 p1 = 2.37GPa , (84a)
ρ0 µ0 = 48.6MPa . (84b)

Note as a consistency check that all of the above estimates
comply with the hypotheses introduced in Sec. 2.3.

A direct quantitative comparison between our results and
experimental data from Refs. 10,19 is provided in Fig. 4. Their
less-than-perfect agreement is more than satisfactory, on ac-
count of the fact that our theoretical curve, far from being
fitted to the eight experimental points in the figure, depends
on only five parameters – two of which standard – identi-
fied on the basis of experimental information from the same
sources10,19, but independent of the data gathered in Fig. 4.
Besides, a better agreement should not be expected since our
model ignores all dissipation mechanisms different from the
relaxation dynamics introduced in Sec. 3.1. In particular, it
lacks the contribution of the Leslie-Ericksen viscous stress
tensor, extended to compressible LCs39 – which, contrariwise,
is the only source of dissipation in the competing second-
gradient theory17,20. This points to the need of extending the
present model and to the interest of studying how the Leslie-
Ericksen viscosities interact with the anisotropic compress-
ibility peculiar to our theory. This would likely introduce at
least one more relaxation time. But even in its present state,
our model provides the first quantitatively based explanation
of the structural relaxation process hypothesised long ago by
Mullen et al.10.

Also the constraint on the nematic director should be lifted,
adding an Oseen-Frank term to the stored energy density, as

¶ The simplistic assumption that the background attenuation is mimicked by
suppressing the a1 terms in (77) allows the stiffness ratio to be identified
straightforwardly from this equation alone as η = 2.05 ·10−2. Then, the
anisotropic sensitivity coefficient is obtained from (72) as a1 = 3.19 ·10−2.
Note that these estimates agree with those in (82) to two significant digits.
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Fig. 4 Frequency dependence of the velocity anisotropy (left
y-axis) and the attenuation anisotropy, defined as the difference
between the attenuation along n0 and the attenuation in the direction
normal to it (right y-axis). Circles with error bars represent
experimental values of the velocity anisotropy taken from Fig. 3 of
Ref. 10 (at a temperature of 27◦C). Diamonds reproduce the
attenuation data from Fig. 2 of Ref. 19. The full line is the
retrodiction of our theory for both velocity and attenuation
anisotropy.

sketched in Appendix B. However, one of us has already
proved21 that director oscillations do not affect significantly
the present results.

Finally, we point out that the present theory could be readily
generalised to encompass temperature-dependent effects, in-
cluding the critical behaviour close to the isotropic-to-nematic
phase transition. To this end, one should first replace the ne-
matic director with de Gennes’ nematic order tensor Q. This
may be done simply by substituting the n⊗n terms in (14)
with Q+ 1

3 I, and adding the usual Landau-de Gennes thermo-
dynamic potential to the free energy. Such a generalisation,
however, should be handled with care, since the coefficients
of the thermodynamic potential depend critically on density.
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A Ericksen’s elastic fluid is hyperelastic only if
isotropic

Ericksen’s constitutive assumption (2) for the Cauchy stress translates into the
following prescription for the Piola stress (cf. Appendix B):

S = ϕ(J)F−>+ψ(J)n0⊗
(
F−1n0

)
, (A.1)

where J := detF (= ρ0/ρ due to mass conservation) and

ϕ(J) :=−Jπ(ρ0/J) , ψ(J) :=−Jα(ρ0/J) . (A.2)

Since the power expended per unit reference volume is equal to S · Ḟ, prescrip-
tion (A.1) is hyperelastic if and only if the derivative D(F) :=∂S/∂F has the
major symmetry for all invertible F:(

D(F)L
)
·M =

(
D(F)M

)
·L (A.3)

for all double tensors L,M. To prove that no anisotropic choice – i.e., α 6=
0 ⇔ ψ 6=0 – is hyperelastic, it suffices to check condition (A.3) on F = λ I
for all λ > 0, which greatly simplifies calculations. On spherical stretches
(A.3) reduces to

λ
3

ψ
′(λ 3)

(
(trL)M− (trM)L

)
·(n0⊗n0 )

+ψ(λ 3)
(
LM−ML

)
·(n0⊗n0 ) = 0 .

(A.4)

The constitutive map ϕ – and hence π – drops out of (A.4), as expected.
We now pick L = M>= n0⊗m , with m a unit vector orthogonal to n0 :
|m|= 1 & m·n0 = 0, i.e., two simple shears in the plane spanned by {m,n0},
L along n0 and M along m. Since both are traceless and their two products
are respectively equal and orthogonal to n0⊗n0 , (A.4) boils down to

ψ(λ 3) = 0 for all λ > 0 ⇐⇒ α =0 . (A.5)

That α =0 is also sufficient for hyperelasticity is obvious.

B Nematic hyperelasticity, old and new
In all part P of a hyperelastic body the power expended equals the time
derivative of the stored energy:∫

P
T·(∇∇∇v)dV =

∫
P

(ρ σ dV )···, (B.1)

where T is the Cauchy stress, v the spatial velocity field, ρ the current mass
density, σ the stored energy density with respect to mass, and the integration
is done with respect to the current volume. Since J := detF=dV/dV0 and the
reference volume V0 does not depend on time, equality (B.1) translates into∫

P

(
J TF−>

)
· ḞdV0 =

∫
P
(Jρ σ)··· dV0 , (B.2)

where use has been made of the differential relation linking the spatial velocity
field with the deformation gradient: ∇∇∇v = ḞF−1 . Mass conservation implies
(Jρ)···= 0. Hence, (B.2) localises into

S·Ḟ = ρ0 σ̇ , (B.3)

where ρ0 =Jρ is the reference mass density and

S :=J TF−> (B.4)

is the Piola stress. Since σ̇ =(∂σ/∂F)·Ḟ, a necessary and sufficient condition
for (B.1) to be satisfied along all motions is that

S = ρ0

∂σ

∂F
. (B.5)

On this basis, we now consider the specific constitutive assumption (13)–
(14) and, using (54), compute the derivatives

∂σiso

∂F
=−ρ σ

′
isoF−>, (B.6a)

∂ (ΨΨΨ−1 ·B̊)
∂F

= 2dev(ΨΨΨ−1 B̊)F−> (B.6b)

− 3
2 (a
′/a)(ρ/J)dev(n0⊗n0 )·(ΨΨΨ

−1 B̊)F−>.
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Summing up all contributions to (B.5) and inverting (B.4) – i.e., calculating
T = J−1SF> – yields (15)–(16).

To extend the theory founded on (13)–(14) to cover the case when the
constraint on the nematic texture is lifted and the director is set free to rotate,
the stored energy density should be augmented (at least) as follows 21:

σ+(F,n,∇∇∇n) = σ̂(ρ,n, B̊)+σOF(ρ,n,∇∇∇n) , (B.7)

with σOF the Oseen-Frank free-energy density function.
The study of small-amplitude plane waves as done in Secs. 2.4 and 3.2

only depends on the linearised features of the theory. Therefore we find it ap-
propriate to provide an explicit expression of the free-energy density function
(13)–(14) – specialised to a slightly compressible anisotropic fluid as defined
in Sec. 2.3 – when truncated after O(ε2) terms, with ε the smallness parameter
reducing the amplitude of the displacement field u in (32a).

Let F = I+ ε∇u . Then, the Taylor expansion of the determinant close to
the identity yields

J = detF = det(I+ ε∇u) (B.8)

= 1+ ε tr∇u+ 1
2 ε

2((tr∇u)2− tr
(
(∇u)2))+o(ε2)

= 1+ ε trE+ 1
2 ε

2
(
(trE)2−

(
∇u
)
·
(
∇u>

))
+o(ε2) ,

where E := sym∇u is the infinitesimal deformation. Notably, the differential
identity 40 (

∇u
)
·
(
∇u>

)
= div

(
(∇u)u− (divu)u

)
+(trE)2 (B.9)

cancels all second-order terms in (B.8) to within the null Lagrangian −ε2n,
with

n := 1
2 div

(
(∇u)u− (divu)u

)
. (B.10)

Therefore, the scaled density variation (23) expands as

ξ = J−1−1 =−ε trE+ ε
2(trE)2 + ε

2n+o(ε2) . (B.11)

Finally, on account of (24), (25) and (26), the contribution of the isotropic
term σiso to the elastic energy per unit reference volume reads

ρ0 σiso=−ε p0 trE+ 1
2 ε

2
ρ0 p1(trE)2+o(ε2) , (B.12)

after pruning the ineffective terms, namely, the constant ρ0 σiso(ρ0 ) and the
null Lagrangian ε2 p0 n . Also the contribution of the equilibrium pressure p0
to the second-order term has been dropped, being negligible compared to that
of ρ0 p1 (cf. (26)).

The isochoric component of the deformation gradient reads

F̊ = J−1/3 F = I+ εD

− 1
3 ε

2
(
(trE)D+ 1

6 (trE)2I+ 1
2 (ΘΘΘ·ΘΘΘ−E·E)I

)
+o(ε2) ,

(B.13)

where
ΘΘΘ := skw∇u , D := dev∇u = devE+ΘΘΘ , (B.14)

with skw∇u the skew-symmetric part of ∇u. The left Cauchy-Green strain
tensor associated with F̊ is

B̊ = F̊ F̊>= I+2ε devE

+ ε
2
(
− 2

3 (trE)devE− 1
9 (trE)2I+ 1

3 (E·E−ΘΘΘ·ΘΘΘ)I

+(devE+ΘΘΘ)(devE−ΘΘΘ)
)
+o(ε2) .

(B.15)

We now expand the inverse of the shape tensor (14) by using (B.11) and (27)
extended to second order:

a = 1+a0+a1 ξ + 1
2 a2 ξ

2 +o(ξ 2) . (B.16)

As in Secs. 2.4 and 3.2, we will neglect terms of order O(a0 ), seen to be
insignificant (cf. the last paragraph of Sec. 2.4), obtaining

ΨΨΨ
−1 = I−3a1 ξ dev(n0⊗n0 )+3a2

1
ξ

2n0⊗n0

− 3
2 a2 ξ

2 dev(n0⊗n0 )+o(ξ 2)

= I+3ε a1(trE)dev(n0⊗n0 )+3ε
2a2

1
(trE)2n0⊗n0

−3ε
2
(

a1n+(a1+
1
2 a2 )(trE)2

)
dev(n0⊗n0 )+o(ε2).

(B.17)

From (B.15) and (B.17) we finally get the contribution of the anisotropic term
in (13) to the elastic energy per unit reference volume:

1
2 ρ0 µ tr

(
ΨΨΨ
−1B̊−I

)
= ρ0 µ0 ε

2
(
(devE)·(devE)

+ 9
2 a2

1
(trE)2 +3a1 (trE)(devE)·(n0⊗n0 )

)
+o(ε2) .

(B.18)

Note that all the second-order terms in ΨΨΨ
−1B̊−I affected by either the null

Lagrangian n or the infinitesimal rotation ΘΘΘ or the second-order coefficient of
the asphericity factor a2 are traceless and hence disappear from (B.18).

At this point it is appropriate to consider the quadratic free energy sur-
mised by Mullen, Lüthi and Stephen 10, which we alluded to in Sec. 1: ‘The
experimental anisotropy in the sound velocity . . . can be explained if at [fi-
nite] frequencies a liquid crystal in some respects behaves like a solid and the
free energy contains terms like

F = 1
2 k1(uxx+uyy)

2 + k2 (uxx+uyy)uzz +
1
2 k3 u2

zz , (B.19)

where the k’s are elastic constants, and the ui j are the elastic strains. We have
chosen the z axis to be along the director.’ Translated into our component-free
notation, (B.19) reads

F = 1
2 k1(tr⊥E)2 + k2 (tr⊥E)εn +

1
2 k3 ε

2
n , (B.20)

with
εn:=E·(n0⊗n0 ) , tr⊥E := trE− εn . (B.21)

On the other hand, the sum of the quadratic terms in (B.12) and (B.18) involv-
ing the trace of E may be reorganised as follows:

1
2 ρ0 p1

(
1+ηa1(9a1−2)

)
(tr⊥E)2 +

ρ0 p1

(
1+ηa1(9a1+1)

)
(tr⊥E)εn +

1
2 ρ0 p1

(
1+ηa1(9a1+4)

)
ε

2
n

(B.22)

where η is the small parameter introduced in (31). Therefore, we identify the
elastic constants in (B.19) as small perturbations of the bulk modulus ρ0 p1 ,
parametrised by the product of the shear modulus ρ0 µ0 and the sensitivity
coefficient a1 . What matters is the slight differences between them, namely,

k3− k2 = k2− k1 = 3ρ0 µ0 a1+o(η) . (B.23)

Note that (B.23) implies k2
2
= k1 k3+o(η), a condition – postulated in Ref. 10

– that eliminates propagating shear modes at order O(η). However, (B.18)
contains also a term quadratic in devE of order O(η), which sustains such
waves.
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We show that elastic anisotropy and relaxation are at the origin of
the main experimental features of nematoacoustics.
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