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Abstract

The statistics of (equilibrium) living polymers including both linear
chains and rings are considered theoretically. Particular attention is ad-
dressed to directional polymers characterized by an arrow along the back-
bone defined by its chemical structure. Thermodynamic and correlation
properties of living polymers are studied both in the mean-field and in the
critical scaling regimes. It is shown that living polymers with no rings, clas-
sical living polymers with rings, and directional living polymers with rings
form three distinct classes characterized by different critical exponents and
qualitatively different long-range correlation functions.

Typeset using REVTEX



Soft Matter

1. Introduction

In contrast to classical polymers, the molecular weight of living (or equilibrium)
polymers is not fixed: their polymerization is reversible.! Living polymers include

34 reversibly poly-
59

wormlike surfactant micelles,?2 columnar structures of discotics,

including
10-12

merizing organic chains, various dynamic and supramolecular polymers,
biological fibrillar structures of peptides and proteins (like tubulin filaments).
Unlike classical polymers involving only permanent, covalent chemical bonds along
their backbone, living chains often involve reversible bonds based on metal-ligand
coordination or multiple H-bonds, imine bonds, © — 7 stacking interactions, etc.®78
As a result, living polymers can grow or disassemble spontaneously responding to
external triggers.

In many cases living polymers can also form competing cyclic structures along
with linear chains.!® The rings proved to be of importance for both equilibrium
and dynamic properties of living polymer systems.!*® In particular, Petschek,
Pfeuty and Wheeler?® have shown that the presence of rings qualitatively affects
the equilibrium behavior of the system (osmotic pressure, chain length) near the
polymerization transition.

The structure of simple polymer chains like polyethylene or polystyrene does not
distinguish between forward and backward direction along the polymer backbone.
However, polymers with more complicated structure of a repeat unit permit to
distinguish between the two opposite senses of direction along the chain. Important
examples are provided by proteins, and by their simpler analogs, homopeptides
(Fig. 1). In fact, an arrow along the backbone (from, say, CO to NH group)
is inherent in the peptide structure: peptide chains are always directional. Be-
sides, peptides and proteins can form cyclic structures (peptide rings). However,
polypeptides are not living chain structures. Polymer structures that are both liv-
ing (reversible) and directional can be found among supramolecular polymers.®®8?2!
In general, any head-to-tail reversible self-assembly of asymmetric units gives a
directional structure (Fig. 2). A more specific example of an asymmetric unit for
directional supramolecular self-assembly based on triple H-bond manifolds is shown
in Fig. 3. Other examples of such structures involving 3-fold intermolecular H-
bonds, including helical columns of benzene trisamides with uni-directional hydrogen
bonding, can be found in ref.?! (see Fig. 23 there).

There exist many more examples of supramolecular directional chains. An
interesting example is provided by the so-called supramolecular daisy chains???%3
based on ‘topological’ guest-host complex between a rod-shaped ‘tail’ of one
molecular unit and a ring-shaped cavity of another identical unit. The recognition
between the tail and the ring is hinged on H-bonds augmented by 7 — 7 stacking
interactions.?* Another important class of directional living chains is provided by
protein biopolymers. While proteins themselves are not living (reversible) structures,
the folded proteins can aggregate forming supramolecular polymers. This ability of
proteins to self-assemble is widely exploited in nature to create various subcellular
structures. The most important protein polymers are bacterial flagella, microtubules
and F-actin.’® All these biological supramolecular polymers exhibit directional chain
structure: their two ends are physically different, and their building blocks (protein
unimers) are polar. Notably, F-actin, often shows circular (ring-like) structures in
addition to linear filaments.?®
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Equilibrium polymerization (self-assembly of living chains) can be described as
a smeared second-order phase transition.?$272010 The transition width is related
to the length of living chains: the longer are the chains, the more narrow is
the transition. In turn, the chain length N is defined by the energy penalty for
the chain end (end-cap energy E): the equilibrium chains grow very long if this
energy is high. In the limit N — oo the system near the polymerization transition
exhibits strong concentration fluctuations and other properties typical for critical
phenomena associated with a second-order transition (diverging scattering functions,
2878027 Such a behavior is typical for equilibrium
polymerization both with and without rings.3%272® However, the critical exponents
are different in the two cases.??

In this paper we analyze equilibrium properties of living polymers, in particular,
for the case of directional living polymers allowing ring formation, which was
virtually not considered before. It is revealed that, according to their correlation
properties, these systems are qualitatively different from the classical living polymer
(with or without rings) both near and far beyond the polymerization transition
threshold.

The model and its mean-field behavior are considered in the next two sections.
Polymer correlation functions (including correlations of the total concentration) are
considered in the mean-field regime in sections 3 and 4. It is shown that,

compressibility, heat capacity)

unlike classical living polymers with rings, directional polymers are characterized
by long-range correlation effects, including polymer-induced interactions at distances
well beyond the classical correlation length ¢ corresponding to the Flory-Edwards
screening. Such behavior resembles that inherent in systems of permanent polymer
chains®®2, The nature of these effects is further highlighted in the last section
(Conclusions) and in Appendix A. The properties of the living polymers in the
critical regime near the polymerization transitions are considered in section 5. The
ensemble of the results (the basic scaling laws, correlation functions, chain-length
distributions) are further generalized and summarized in section 6.

2. The model and the polymer-magnetic analogy.

In this section we specify the general model of living polymers and establish a
convenient analogy between the polymer model and the O(n) model of magnetism.
The mapping we use is akin to, but different from, that was considered in the
previous works.2°

We adopt the following lattice model of living polymers (Fig. 4): Each chain
is a sequence of units connected by bonds. The units occupy different sites on
a cubic lattice {r;}. The statistical weight of a bond between sites r;, r; is
K;; = K,, where s =r;; =7, —r;. The function K, is localized within the typical
bond length b: |s| <b; it is normalized for simplicity:

S K, =1

)

Thus, the statistical weight of a linear chain occupying sites ry, 7y, ..ry is Z; =
h2ﬂNK1,2K2,3..KN_1,N, where h is the statistical weight of an end unit and g is the
activity of any other monomer unit. If a chain forms a ring its statistical weight
becomes Z, = nﬁNKme..KN_LNKN,l, where n is the weight factor attributed to

3
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each cycling chains. The grand canonical partition function of the living polymer
system 1is

Z2(B8,h)= Y. BN RNC, (N, NN (1)

Nm:Nl:Nr

where Cp (N, N1, N,) is the K-weighted number of different configurations of self-
avoiding polymers involving A, monomer units forming N linear chains and N,
cycles (double occupancy of sites is not allowed).

This model generalizes the lattice polymer models used before3:2° as it allows
for arbitrary bonds not necessarily connecting the nearest-neighboring sites. In
this case the model can be made continuous by reducing the lattice spacing while
keeping the bond length b.

Obviously, the case m =0 describes the system of just linear living chains with
scission energy 2E such that e 2! = h? (here and below kpT is considered as
the energy unit). Further, n =1 corresponds to classical living polymers including
rings, while the directional polymers correspond to h? =2e72F and n =2 (here the
prefactor ‘2’ accounts for two distinct directions along the chain).

To establish the analogy with O(n) magnetic systems we first note, following
refs.®173% the exact formal relation

= Z(B,h) (2)

$=0

9 B o HIy]
11 (1 T g T2 azbaiazbai) ‘

7

where Z is defined in eq. (1), ¥ = {Ya, @ =1,..n} is the auxiliary n-component
vector field,

Bl = 53 Kigthaites

and summation over repeated a is always assumed. 1
Next we recall the Stratonovich-Hubbard transformation:

/e‘p"/’_H"[‘p]D [p] = const eA¥] (3)

where ¢ = {@ai, @ = 1,..n} is another auxiliary n-vector field, ¢ -9 =3, Qaitai,
1 _
Hy [90] = §ZKi,j190ai90aj
%,
and K~! is the matrix inverse to K. On using eqs. (2), (3) we get® 2
Z(B,h) = Zn(B, k)] Zm(0,0), (4)
where the magnetic partition function is

!Chains of 1 unit are not allowed. Chains of two units (dimers) are special: they can be
considered as linear chains and as minimal cycles. Accordingly, the total statistical weight of a
dimer (i, ) is /32 (h?Ki,j T gng).

Page 4 of 60



Page 5 of 60

Soft Matter

Do = / e D[]

Halel= Folel+ File), Hilel=— Y0 (14 8o+ Spuu) )

Thus, for the magnetic system (eq. (5)) B plays the role of the interaction
parameter, and h corresponds to the magnetic field.

Several notes are relevant here. First, eq. (3) implies that the matrix K must
be positively defined demanding that K;; = Ko > 0. More precisely, the magnetic
function Z,, is defined for positive and sufficiently large Ko. By contrast, it is
convenient to set Ko =0 for the polymer model. This does not make a problem:
we simply consider the analytical continuation of the function on the r.h.s. of
eq. (4) for small Ko (down to Ko = 0). This continuation is unique: indeed,
based on eq. (2), it can be shown that a change of Ky is equivalent to a simple
renormalization of B: 1/8 — 1/8+ nKy/2. Therefore, we formally set Ko =0 in
what follows.

Second, the magnetic Hamiltonian (5) may seem to be non-local. The problem,
however, is easily removed by the substitution

Pai = Z Kij - 0aj (6)
2,7

where o can be viewed as the m-vector field of spins. Then, H,, in terms of o is
explicitly local 2 and, moreover, is equivalent at large length-scales to the classical
n-component spin model described by the Ginzburg-Landau Hamiltonian. As for
the field ¢, it can be physically viewed as the molecular magnetic field due to the
spins. 3

The magnetic model defined above is significantly different from those used
in refs.203 The polymer-magnetic analogy described above is both simple and
exact, it allows to study both mean-field and critical fluctuation regimes for living
polymers within a well-defined common framework. In the next section we first
demonstrate that our model provides correct statistical description of living polymer
systems at the mean-field level, in agreement with the classical results®¢ %', This
part is followed by an analysis of the weight concentration of rings, and of the
correlation properties of living polymers in the mean-field regime.

3. Mean-field free energy, chain length, fraction of rings, and
correlation functions

3.1. Free energy

Let us calculate the grand thermodynamic potential (per site), F = —%IHZ,
of the living polymer model described above (N is the total number of sites).

2Note that the Hamiltonian H,,, when expressed in terms of &, does not involve K ~!. For
example, Hy = %Ei,j K; ;04:i04;.

3Note that there is little difference between ¢ and o at length-scales > b.
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Eq. (4) implies that F(8,h) = Fn(8,h) — Fn(0,0), where F,, = —%anm. To find
F,, we follow the mean-field approach,®:* which is valid if the number of ways
each site can be bonded with its neighbors is large. It is convenient to define the
effective number of neighbors

“=(gn) e

Note that z* ~ . The mean-field approximation, which is applicable for z* > 1,
can be reduced to minimization of H,,:

Fn(B,h) ~ %minHm(ﬁ,h)

The minimum corresponds to a uniform field3!:34

Yai = Mby1. The result for h =10
is simple:

m=0, F=FuB,0)—F,0,00=0 for 8<1,

m=+/2(1-1/8), F=1-1/—Ing for B>1 (7)

Note that the result is independent of the weight of rings (i.e., of n), as anyway
the rings are asymptotically rare in the mean-field regime (their probability is
~ 1/2*). Thus, 8 =1 is the critical mean-field threshold for the magnetization
transition, which corresponds to the onset of the polymerization for the living
polymer system. Indeed, as follows directly from eq. (1), the fraction of sites
occupied by monomer units is

OF

¢ENm/N:—81nﬂ (8)

On using eqs. (7) we get

These mean-field results can be verified by direct calculation of the polymer
configuration function C,(Ny,) = e NH(@®) 4 To calculate the free energy fo(@) per
monomer unit of the system of infinite linear chains (finite linear chains are not
allowed for h =10), we note that the conformational contribution in f, is just zero
since the statistical weight per bond, >, K, = 1, while the ideal-gas free energy
also vanishes since the chains are infinite. Hence

“There are no rings in the basic mean-field approximation: the volume concentration of rings
¢» = 0. A more precise result, ¢, ~ 1/z* (a unit volume is attributed to a monomer unit), comes
as a fluctuation correction (cf. eq. (32) below). Therefore, the total concentration ¢ = ¢, + ¢y,
where ¢; is the volume concentration of linear chains, does not vanish at the polymerization
transition point § = % ~ 1: it is ¢; = 0 at 8 = B*. So, it is appropriate to replace ¢
with ¢; and B with 8/8* in egs. (9). Note that a fluctuation correction also applies to §*:
B* — 1~ ¢, ~ 1/z*. The total concentration is still ¢ ~ 1 —1/8 for B > f* as a result of some
compensation of the corrections.
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fr=90+(1—-¢)In(l-¢) (10)

which is the lattice-gas interaction energy per site. The above equation is based
on the mean-field approximation; it is valid if*34*

¢ > 1)z (11)

(note that the monomer excluded volume is vey = 1, and ve/6® ~ 1/z*). In the
macroscopic limit the grand polymer thermodynamic potential (corresponding to

Z =, BNmCy(Nm)) can be found as
F=min[-¢lnf + f,()]
giving
p=1—1/8 and F=1-1/8—Inp

in agreement with eq. (7).
So far we assumed that h=0. For small A >0 we get

F:1_%_mﬁ_mhu_1m% hel, B>1 (12)

instead of eq. (7), and:

p~1— h<l, B>1

1 h
BN

The h-correction to ¢ (and ¢;) is thus increasing near the transition point (8 =1).
Demanding that the correction is smaller than ¢; we get the additional condition
h< ¢

3.2. Chain length

As follows from eq. (1), the mean number of linear chains is (N;) = % nZ, and
their concentration is
1 OF
S 1
4T T2 9mA (13)

Eq. (12) and the mean-field result, ¢, ~1—1/8 for S > 1, then lead to ¢ =~ hy/¢i/2

for h < 1. Therefore, the mean polymerlzatlon index of linear chains is

Nuw = d1fcr 201 /h, h < 1 (14)

Thus, we recover the classical \/¢; law for the chain length.
The length distribution of linear chains is nearly exponential ® in the mean-field
regime (the Flory distribution*?):

5Tt reflects strong screening of excluded-volume interactions in concentrated polymer solutions
and melts.
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a(N)/e ~ §e V¢ (15)

where § ~ 1/N,,.
Replacing F with F,, in eq. (13) we get the general expression for ¢ in
magnetic terms

_ ¥1
cz_h<2/,8+2hcp1+cp2> (16)

where @1 = ¢1; and @? = Qaipa: for any site 7. Similarly, using eq. (8) we get the
total monomer concentration

_ ¢’ .
¢'_<2/5+2hgol+go2>+2’ (17)

The two terms in the r.h.s. are the concentrations of internal and end monomers,
respectively. The second term, 2¢;, is subdominant for N,, > 1.

3.3. Fraction of rings

In the general case both linear chains and rings are present in the system:

¢:¢l+¢r

where ¢, = N, /N is number concentration of all monomers belonging to linear
chains, and ¢, = N,,,/N is the similar quantity for rings (N, is the total number
of all monomers in the rings, N, = Npi + Npe).  To find ¢,, we modify the

magnetic Hamiltonian H,,, following ref.?°, introducing the magnetic anisotropy.
To this end, we replace ggoaigoai in eq. (5) with g(goaigoai (1 — L) + %go%i).

n—1
The corresponding modification of the polymer partition function, eq. (1),
is  simple: the weight of each ring, 28N, is now replaced by

N
1+gN+(n-1) (1 — nng) ] BY = nBN (1 +0O(g?)), which is the same to O(g).
By contrast, each internal monomer belonging to a linear chain now brings the
factor B(1+g) instead of 8. The number of such internal monomers is N —2M.

The additional factor 14 g(Nm — 2M;) + O(g?) should be introduced in the r.h.s.
of eq. (1) as a result. Therefore

OIn 2109, = (Nowt — 23)

A similar relation coming from the magnetic partition function is

N 71902 - 902
00 Zin 891y = — (OHm/09) gm0 = | — <2/ﬂ o T 9 >
g=0

As InZ = InZ, + const, the above equations provide the total concentration of

internal monomers of linear chains:

902 _ 902
¢)l - 20[ = - aFm/ag|g:0: <2//8 _|_12h9012_|_ 902 > (18)

where ¢, is a transverse component. The term 2¢ in the above equation can
be neglected: ¢ < ¢ for N, > 1 as always assumed in what follows. On using
eq. (17) we get concentration of units in the rings ¢, = ¢ — ¢r:

. 3
¢ = <2/5 + 2her + @2 > (19)
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3.4. Fluctuation corrections and magnetic correlation functions
The fluctuation corrections to the mean-field results of the previous section can

be found in a standard way by doing the quadratic expansion of H,, [p] near the
minimum (near the mean-field solution ¢}, = mé,1) and using Fourier transforms of

the fields:
1 —ig-r;
Po,g = W Z Pai€ "

so, for example,

Z K7(q) [adl” (20)
with ©

=) K,e'?®
3

Note that K(0) = 1 and [ K(q)* = 1/z*, where [ = f(%s) = + Y, hence the

function K(gq) is concentrated in a rather narrow region ¢* < 1/z*. Thus we get

H, [90] + Zjl |6901q| + Z ‘]2 |590aq| (21)

q aFl

where dp = ¢ — ¢~ J1(Q):ﬁ—l—1—%, Ja(q) = K() —1, B>1, and Ji(q) = J2(q) =
ﬁ — B, B<1 (for h=0). The polymer grand potential per site is
F = Fu(B) = Fu(0) = Fing + Fp,

where F,; is defined in eq. (7), and
1
is the main fluctuation correction with

L= / In(Ji(q)K (), L= / In (J2(q) K (g))

Both I; and I, are generally small in the mean-field regime: Iy ~ I ~1/z* < 1.
Let us turn to correlation functions of the field ¢. Above the transition, g > 1
(p~1—1/8>0) we distinguish longitudinal and transverse fluctuations:

$1(@) = (leral®),  Sa(q) = (lp2al®)
The mean-field correlation functions can be easily obtained using eq. (21):

6We assume that the function K, is nearly isotropic; therefore, K(g) depends only on the
magnitude of ¢.
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1 K(q) . 1 K

Si(q) ~ 7h(a) = I+ (1-2/8K(q)’ Sa(q) =~ J(q)  1-K(q)

for ¢ < 1, since 1 — K(q) ~ a’¢® for ¢ < 1/b. Here

, B>1 (23)

In particular, Si(g) ~

2 _ b —
a®= g5, d=3, and

2<;5+t12a2

= Z K£§2 (24)

The real-space correlation functions, Gi(r), Ga(r), are defined by Fourier trans-
forms of the above expressions. The longitudinal function

Gi(r) = {1(0)er(r)) — {e1)* (25)
(here ¢1(r;) = ¢1;). Hence
1

dma?r

Gi(r) ~ e "¢ (26)

for 7> b and 1/2*2 <« ¢ < 1, with the correlation length
£~ a/\/29 (27)
In a similar way, one finds that the transverse correlations are long-range:
1
Ga(r) = (p2(0)pe(r)) ~ —, r>b (28)
Interestingly, for 8 =2 (that is ¢ = 0.5) Si(¢) = K(g) hence Gi(s) = K, < 1/z*. This
result illustrates the general feature: the fluctuations are weak in the mean-field

regime, Gqa(r) < 1/2%
So far we assumed that h=0. For small Ao >0 and 8 >1 we get

Fong _1—%—11&5 h/2(1-1/8), h<1

instead of F in eq. (7), and

Sa0) = e, S= R 1/B), A< (20)

leading to

Ga(r) ~ ——

—r/ém b 30
471'(127'6 ) T (30)

with finite transverse correlation length

za/\/gza\/E, Nm:\/ﬁ/h (31)

Obviously, K(q) ~ 1 for ¢ < 1/b, so by virtue of eq. (6) ¢, ~ o4 in this regime.
Therefore, long-range parts of the spin correlation functions must nearly coincide
with the analogous correlation functions of the field ¢: (04i08;) >~ (paips;) for
[rijl > b.

10
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We are now in a position to calculate the number of rings. On using eq. (1)
we get (N,) = gllii, so the concentration of rings ¢, = N, /N = —%. Further using
eq. (22):

e ~ —(n2)], ~ —(n/2)/qln (1-FK(q))

where B~ g for B <1, B~1—6 for 8> 1 (here § is defined in eq. (29), h < 1).

The total concentration of all units in the rings is (see eq. (19))
K(g)

1 —BK(q)

Thus, both ¢, and ¢, increase with 8 for 8 < 1, while ¢,, ¢, =~ const ~ 1/z* for
B >1 and h=0 in the mean-field regime.

b gﬁ (¢3) = gﬁ/q Sa(gq) = gﬁ/q (32)

3.5. Polymer correlation functions

The connection between polymer and magnetic correlation functions had been
established long ago by De Gennes, Des Cloizeaux and others*4®32  This analogy
is particularly general and transparent for the model we consider.

Concentration of polymer units

Let us consider first the correlation function of concentration fluctuations. To
assess it, we generalize eq. (5) introducing the field §; = e instead of the constant
B. Then Z,[u] = [e HnleHD[yp], giving the general thermodynamic relations like

olnZ, <8Hm> Iz, <(‘3Hm BHm> <(‘3Hm> <(‘3Hm> < 0’H,, > (33)
O Opi |7 Opidp; Op; Op; O Op; OpiOp;

A similar relation can be applied to the polymer partition function Z (eq. (1)),

where BVm should be generalized as g2 Hidi (here ¢; =1 if the site ¢ is occupied

by a monomer unit and ¢; = 0 otherwise). Noting also that InZ = InZ, + const
(see eq. (4)), one finds (for A =0 and uniform system, 3; = 3)

N ] ¢ ?;
¢’—<¢’z>—<2/5_|_%2>’ <¢’¢’J>_<2/ﬂ+so?2/ﬂ+90§>

where ¢? = paipai- The correlation function of concentration

Gp(r; — ;) = (did5) — (¢s) (¢;) (34)

can be thus written as:

e e N\ .
Gp(r)_<2/ﬂ+so(0)2 2/5+90(£)2> & r>0 (3)

where ¢(r;) = ¢;.  Obviously, G,(0) = ¢(1 — ¢) in the general case. Taking into

account that @-fluctuations are weak, we can write 2/;4(-2;)2 ~ ¢+ %5901(7') with
dp1(r) = p1(r) —m, m = (p1). Hence

Gp(r) >~ 2¢(1 — ¢)2Gy(r), T #0 (36)

11
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or

for 7> b (see eq. (26)).

The polymer structure factor

Spla) = [ Gylr)eomder
is then given by
Spla) = 29(1 — $)*51(g) + #(1 — 9)
where Si(q) is defined in eq. (23) (here we also use that Gy(0) ~1/z* < 1), i.e.

1+ K(q)
14 (29— 1)K(q)

Note that S,(0) =~ 1—¢ obeys the general relation S,(0) = 1/v*, where v* = 8%f,/0¢*
(see eq. (10)). Moreover, S,(q) satisfies the basic RPA relation*®*”

1/5,(q) = 1/[¢F(q)] + 07,

Sp(q) 2 ¢(1 — ¢) (38)

where

1+ K(q)

F(Q)—w

is the formfactor of the ideal infinite chain (recall that for A =0 all linear chains
are infinite, and their statistics is nearly ideal in the mean-field regime).
Correlation functions of chain ends.
Two correlation functions are associated with the chain ends: Ge(r) is the
excess probability that both sites 0 and r are occupied by chain ends,

Ge(r) = {ce(0)ee(r)) — ¢ (39)

where c.(r) is the local concentration of chain ends, and ¢, = 2¢; is its mean value.
Demanding in addition that the two ends belong to the same chain, we get the
end-to-end correlation function

F.(r) = c.P(r) (40)

where P(r) is the probability density for the end-to-end vector r of a linear chain.
The function Ge(r) (for 7 > 0) can be defined in magnetic terms considering
slightly inhomogeneous magnetic field A — h;. Thus

_ 2 2¢1(0) 21 (r) —cl
Gelr) = <2/ﬂ + 2hp1(0) + ¢(0)2 2/B + 2hpi(r) + p(r)? > ) .

To get the second correlation function, Fe(r), we consider magnetic field with
slightly inhomogeneous direction replacing hey; in eq. (5) with hei; + haipa;. The
polymer partition function (see eq. (1)) changes as a result: each linear chain with

12
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ends at sites ¢ and j brings an additional statistical factor 1—|—h2ih2j/h2. On using
relations like eqs. (33) and setting hy — 0, we find for r >0

g 2i(0) 2p2(r)
Felr) =» <2/,8 + 2hp1(0) + (0)2 2/ + 2k (7) + o(r)? >

The above results can be significantly simplified for A < 1 and 2z* > 1:

G.(r) ~ A%Gy(r), F.(r) ~ A’Gy(r), c.~Am (42)
where the magnetic functions G;, G, are defined in eqgs. (25), (28), and

A= Bh/ (14 Bm?/2) :{ﬂhh ’, %211 (43)

Here we take into account that m ~ \/2¢;, ¢y ~ 1 —1/8 in the mean-field regime
(¢ > 1/2"%, see eq. (11)), and that m = 0 below the transition, 8 < 8* ~ 1. Note

that eqs. (42), (43) are valid for any B including the critical transition region
around @ ~ 1. Thus (see eq. (30))

B2
F.(r) ~ B*Gy(r) ~

~ —r/ém b 44
471'(127'6 T (44)

where ¢, is defined in eq. (31). Alternatively, the same function can be obtained
as Fe(r) = c.P(r). By virtue of the Flory distribution for the chain length N (see
eq. (15)) and the Gaussian statistics for the end-to-end vector r of an N-chain
having the distribution®®

P(r,N) = (4Na?) """ r (45)
7, = (47 Na exp INa?
we get
P(r) ~ /Oo 5€_N6P(7' N)dN = Le"‘/&”
0 ’ 4ma?r

leading to F.(r) = ccP(r) which coincides with eq. (44). Obviously, the terminal
length &,, there has the meaning of the typical chain size: &, = a\/Np,.

4. Long-range concentration fluctuations

In this section we show that concentration fluctuations in living polymer systems
are generally characterized by a long length-scale > ¢. This property is associated
with the long-range character of the magnetic correlation function Ga(r) as was
revealed for the model with n = 0.3132 For simplicity, we consider here the mean-field
regime, eq. (11), although this condition is unimportant and is lifted later.

13
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4.1. Correlation function G,(r)

Let us start with A — 0 (N, — oo). For z* > 1 the function G,(r) is
defined in eq. (35). It is approximated in eq. (36) providing the mean-field result,
eq. (37), with correlation length ¢ ~ a/\/¢. Note that eq. (36) was derived
neglecting transverse fluctuations, ¢s(r). Indeed, it seems that these fluctuations
do not affect much ¢(r)?. It is important, however, that the transverse correlation
function is singular at large length-scales, Si(q) o< 1/¢* for ¢ < 1/b, hence its effect
generates an important long-range correlation term G (r), as shown below. To
account for the transverse effect directly one would have to calculate many higher
order correlation functions involving transverse and longitudinal fields, ¢;, ¢1. To
avoid this, it is better to change variables as demonstrated below for n =2 (the
generalization of this approach to any n is straightforward).

The magnetic Hamiltonian H,, is defined in eqs. (5), (20). As we are interested
in the long-range effects, we can assume ¢ < 1/b, so 1/K(q) ~ 1+ g¢*a®>. Thus, we
get

H,y ~ % [ ¢+ a (Vo) —2n(1 + 8g?/2)] & (46)

where ¢ = ¢(r). Let us define new variables: u = ?/2 and 6, the polar
angle in the 1,05 plane (tané = ps/p1). The Jacobian of the transformation is
O(u,0)/0(p1,p2) = 1. The Hamiltonian then becomes:

- / lfm(u) ‘Z(V;) +a2u(v9)2] d3r

where fn(u) =wu—In(14Bu). The minimum of f,, corresponds to u = u* = 1—%
(u) ~ w*. Expanding H, in 7 =u—u* we get (omitting constant term) H,p,

H, + Hs, where

~ 4,

2

H, = / l% n Z—¢ (V) + a2¢>(V9)2] d2r

2

Zq: {‘nq [1 + W] + 2‘?5‘12‘]2 \9q\2}

[\D[r—l

is the quadratic term, and Hj includes the cubic and higher order terms:

H; = / l—n3/3 + a?n (VO)? — %7] (Vn)® + ] d®r (47)
Using eq. (35) we get
1 1 ,
6or) = (g 1 gy )= (0~ O O(r)), 7 0 (49

where index ‘¢’ means cumulant average. To calculate G,(r) it suffice to find

Sa(q) = <|77q|2>, where 7, is the Fourier transform of n(r). Using the quadratic

14



Page 15 of 60

Soft Matter

approximation, H =~ H,, we get <|77q|2>H2 = W and recover the mean-field
result for Gp:

20 1 e

Gplr) 2 Gig(r) = (1= 6" [ (If") 1, 7 = (1 =0 55 (19)

coinciding with eq. (37) (here ¢ = a/\/2¢). Taking into account the effect of Hj
leads to

Sn(@) = (Ina*e™™®) /(™) = (Indl*),,, + ASn(q)

An analysis shows that the dominant long-range contributions to the correction
term AS,(g) are generated by the second term in Hs, eq. (47):

88(0) = 205 (1)) (Ve (V) )y (V) (V0 ), 5D

where V = N is the total volume of the system, and the summations over
w,v = 1..d (d is the space dimension, d =3 was assumed before) and over ¢ under
the condition ¢'+¢" = ¢ are assumed. As we are interested in the long-range effect,

1/g > ¢, the factor <|77q|2>H2 in this sum can be approximated as 1. Hence, the
sum can be rewritten as

2q*
ASy(g) ~ v Z 909,909, S20(4)S20(q"), (51)

where ¢ +¢" = ¢, and

Suala) = (I6al*),, = 53

2a%pq?

The corresponding real-space correlation function is
-1
Gao(r) = (6(0)8(r)) = [2(d — 2)Saag| 7

where Sy = 27%/2/T(d/2) is the area of unit sphere in the d-dimensional space.
The concentration correlation function is thus

Gp(r) = Gmg(r) + Gun(r) (52)

where the short-range contribution Gpz(r) is defined in eq. (49), and
G (r) = / AS,(q)er

Using eq. (51) gives

Glr (T‘) ~ 2(1 — ¢>)2a4 Z vwvaw(T)vwvaw(T) (53)

Thus, the long-range part of G,(r) is

15
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1 —2d

Glr(’f') ~ OdwT (54:)
where Cyq =0.5d(d—1)/S3 and v* =1/(1—¢). This result can be further generalized
for any m which can be treated in a similar way (the general substitution involves
uw = ¢"/n and n —1 angular variables). The result coincides with eq. (54), but
with additional factor n» — 1:

n—1 p—2d
(v°6)*

Eq. (55) is valid generally, and not only in the mean-field regime, if we replace
v*¢ by x = $0p/0¢, where p =Inf is the monomer chemical potential, and ¢
is volume concentration of linear chains (¢, = ¢ in the mean-field approximation,

hence v*¢p = ¢0u/0¢;):

G (r) ~ Oy (55)

G (r) ~ Cg(n — 1)%_27'_2d (56)

Note that s ~ ¢ for ¢ < 1. For d =3, h =0 we thus have Gj(r) ~ 3(n-1),.-6

NI
Eq. (56) is in agreement with the results of refs."? where the case n(: 0) (no
polymer rings) was considered.

For h > 0 the correlation function Gag(r) decays exponentially at r = . Its
Fourier image Sag(q) o< Sa(q) o< 1/(¢® + &.%). The exact result for d =3 is simple
(cf. eqgs. (30), (C12) noting that Gag(r) x G(r)):

1

Gzo(r) X Ee_r/‘fm

where

b = "/ Ny (57)

is the terminal coil size (v/6a* is the polymer chain statistical segment, which is
renormalized by fluctuations in the general case; a* ~ a in the mean-field regime).
Then, on using eq. (53) we get for d=3, A >0, r> ¢

3n—1) 4 _, r 5¢2 293 194
Go(r) = D07 ) pmeg=2rfen J 9 T 0T 2T 0T 58
e T Tse Tie Toa (58)

For arbitrary d, h, the long-range part of the correlation function of polymer
concentration, Gi.(r), is defined in eq. (56) for € < r < &,, and

Gi(r) ~ (n — 1)%_27‘_2‘16_2?/&", r > ¢ (59)

Thus, we considered the long-range effect of transverse modes exhibited in the poly-
mer concentration correlation function Gp(r) and found that the genuine (terminal)
decay length for concentration correlations is &, if n # 1.

For » > 0 the correlation function Gp(r) has to be modified also at short
r, where eq. (49) becomes invalid. Formally, within the magnetic model, this
breakdown is related to strong fluctuations of ¢ in this regime: the typical
amplitude, &p, at the length-scale r is §¢" ~ /G1(r) with Gi(r) ~ 1/ (a2rd_2).
Hence §¢" becomes larger than m ~ /¢ for r» <7, where 7472 ~ 1/(#a?). The

16



Page 17 of 60 Soft Matter

modified short-range contribution, Gps(r) (cf. eq. (52)) can be obtained directly
based on the quadratic part of the magnetic Hamiltonian, eq. (46) (cf. eq. (21)).
Eq. (35) gives

6ptr) = E2E ((pt07 =) (ptr? — )

Obviously ¢(r)? —m? = 2m8p;(r) + (6p(r))?. Taking into account that fluctuations,
dp(r), are nearly Gaussian at r < ¢, we find

Gms(r) =~ 20Gy(r) + Gl(r)2/2 + (n — 1)G2(r)2/2

Here we omitted the factor (1 — ¢)? assuming that ¢ < 1. Obviously, the first
term in the above equation agrees with eq. (49). For r < ¢ the two magnetic
functions nearly coincide:

Gi(r) ~ Ga(r) ~ Ag/ (azrd_z)
where Ag = T'(d/2 — 1)7~%?/4. Hence
Gy (r) = 24:Gh(r) + SCa(r)?, 7 < ¢ (60)

As shown in Appendix D, the new term (the second term proportional to n) is due
to the effect of rings. Hence, for n > 0, G,(r) o 74724 for » <7 ~ (¢la2)1/(2_d) (the
ring dominance regime) and G, o< 727? for 7 <r < ¢ (the linear chain dominance
regime). 7 In particular, for d =3 eqs. (60), (49) give:

Gmyg(r) ~ ( 201 + g( ! )2) et < ¢ (61)

dma?r dma?r

The total correlation function is defined in eq. (52) as a sum of the short-range
(egs. (60), (61)), and the long-range (eqs. (58), (59)) contributions.

4.2. Polymer-induced interaction

Now we briefly consider interaction between two solid surfaces in a living
polymer solution. Within the polymer-magnetic analogy, the long-range interaction
at the separation D > ¢ is generated by the soft transverse modes of spin
fluctuations.®3? The separation D between the surfaces defines the lowest ¢ = /D
for these transverse fluctuations. The long-range interaction energy is essentially
proportional to the number of soft modes, that is, to n —1. As a result we get
the following polymer-induced interaction energy per unit area (we consider the

case h =0 corresponding to infinite linear chains):332

W = const + (1 —n)By/D*', D> ¢

where By = T'(d/2)¢(d)/(2/7)%, Bs =((3)/(167). In the case of directional polymers
(n =2) in 3d space we thus predict a long-range attraction: W ~ —1/D?.

"Note that 7 is comparable with the size of the concentration blob for linear chains: such blobs
nearly tightly fill the whole volume, so the linear chains form a sort of polymer melt of the blobs.
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5. The critical fluctuation region

5.1. The basic scaling laws, chain-length distributions and correlation
functions of chain ends

Both magnetic and polymer systems show critical behavior near the transition
point 8 = B*. The critical polymer exponents were identified based on the general
polymer-magnetic relations (cf. eqs. (13), (17), (18), (35), (42)) following the basic
ideas introduced in refs.?2°. In this section we reconsider the critical properties of
living polymers focusing, where appropriate, on the polymer aspect of the problem.
The relevant properties of magnetic systems are summarized in the Appendix B.

We start with the case h = 0 (infinitely long linear chains). The living
polymerization then occurs as a phase transition at 8 = 8* (recall that g* ~1 for
z*> 1), so 7 =1In(B/B*) is the relevant parameter corresponding to the reduced
temperature in magnetic systems (see Appendix B). The total concentration of
monomer units is (cf. eqs. (8), (17))

¢ — 0
qﬁ <2/ 2> (62)
On using eqgs. (B8), (B6):

¢ = ¢ + const |7|* ! sgn(r) (63)

where ¢* corresponds to the transition point. The osmotic compressibility x, =
0¢/0T = Sp(0) is analogous to heat capacity for magnetic systems, and its singular

part is (cf. eq. (BT))

= |r|™= (64)

dv—2
Xp ~ |7
Note that « is positive for n =1, but it is slightly negative for m» = 2: a weak
critical behavior of x, is thus predicted for directional polymers, n = 2.

Now, let us turn to the living polymer system exactly at the transition point
h =0, 7=0. There are only finite rings of different sizes in the system. To
establish their size distribution let us consider the statistics of an added tracer
linear chain of N wunits. One can think about effective interactions between its
segments defining the statistics. These interactions are partially screened by the
presence of the rings, hence the tracer chain swelling can be weaker than for a
self-avoiding chain.?® A distinct scaling law for the tracer chain size, R(N), is thus
expected:

R(N) ~ N* (65)

where v, may be different from the classical Flory exponent (b ~ 1 is assumed
here for simplicity).

The (grand) partition function of the tracer chain (its statistical weight) Z;(N)
can be also written in analogy with the self-avoiding polymers:

Zy(N) ~ ZN Nt (66)

where 4, in another unknown exponent, and Z; is the statistical weight per unit
including the factor S involved in eq. (1). It is easy to argue that Z; =1 at
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7 =0. In fact, with Z; > 1 very long linear chain would gain exponentially large
statistical weight which is impossible. Therefore Z; < 1. On the other hand,
Z1 < 1 means that the statistical weight of very long chains is exponentially small
even for certain 7 > 0, so the polymerization transition could not occur at 7 =0.

The size of the closed tracer chain with zero end-to-end distance is still defined
by eq. (65), while its statistical weight is related to R(N):*®

Z,(N) ~ ZNR(N)™@ ~ N~ 1 =0
The concentration ¢,(N) of N-rings is proportional to Z,(N):

e (N) = gZ,,(N) JN ~ N4 7= (67)
where the factor 1/N accounts for equivalence of all units in a ring, the factor
n/2 accounts for 2 directions along the ring (which are equivalent for » =1, but
not for m = 2 corresponding to directional polymers). Eq. (67) defines the size
distribution of the rings at the critical point.

For h > 0 some linear chains must be present in the system. Their fraction is
very small for 7 =0 and h — 0. In this regime, the partition function of a linear
chain is simply proportional to Z;(N) for the tracer chain. The concentration
c(N) of linear chains with exactly N units therefore is:

a(N) = h*Z(N) ~ h* N 1e=®N (68)

where h? is the statistical weight due to the two chain ends, and e =2, § =0
for h — 0.

It remains to find the exponents v, and ~4,. To this end we turn to the regime
7 >0, h — 0, where some infinite linear chains are formed, their volume concen-
tration is ¢ > 0. Obviously Z; =1 in this regime like for 7 =0. Eqs. (65), (66)
remain valid for short enough tracer chains (N < N*) that do not interact with
the linear chain component. The latter condition can be clarified using the blob
concept®®. Consider each linear chain as a sequence of chain segments of N units
each (N-blobs). The size of each blob is still defined by eq. (65). Therefore, the
fraction of the volume occupied by the blobs is ¢, = (¢/N)R(N)? ~ ¢ N*»4=1. The
tracer chain nearly does mnot interact with linear chains if ¢, < 1. Hence, the
condition N <« N* comes from ¢, < 1, that is

N7~ gD (69)

For N > N* the N-segments of linear chains are strongly overlapping, so their
statistics must change: in fact, as verified below (see eq. (78)), the chains are
nearly Gaussian®*® at such long length scales (beyond R(N*)~ (N*)*). According
to the self-similarity hypothesis (which is well-established for magnetic systems*®),
the system near the critical point is characterized by a single essential length
¢ (for h =0, as long as we are interested in length-scales much exceeding the
atomic size). Therefore, R(N*) must be identified with this correlation length:
R(N*) ~ &~ 17" (cf. eq. (Bl4)),

(N7~ (70)

The fraction ¢; can be found using eqs. (B11), (18):
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by ~ T % (71)

Eqgs. (69), (70), (71) together lead to the following relation between the exponents:
(v/vp)(vpd — 1) = vd — ¢4, hence

vp = v/, N* ~ 7%

in full agreement with the results obtained in refs.?°. The numerical values of v,
for d =3 are shown in Table 1.

To find another polymer exponent, ~,, let us consider the end-correlation function
F.(r) for h — 0. It is related to the magnetic function Gy(r) by eq. (42):

F.(r) ~ h*Gy(r)
which gives in the scaling regime (see eq. (B17)):
F(r) x v e 8 (72)

On the other hand, F.(r) for » > 0 is related to the length distribution function
c(N) of linear chains (cf. eq. (40)):

Fi(r) =2 [ a(N)p(r, N)AN (73)

where p(r, N) is the distribution function of the end-to-end vector. The above
integral is dominated by N ~ N,, where R(N,)~r: p(r,N) is exponentially small
for short N with R(N) < r, while for large N > N, the integrand decreases
sufficiently fast: ¢ (N)p(r,N) o< Z,(N) ~ N™*? v,d > 1. Obviously, p(r,N) ~ 1/r¢
for N ~ N,. Therefore, F,(r) ~ ¢;(N,)N,/r? oc N*[rd ~ p@/*»=d (note that § — 0
for h — 0). Comparing it with eq. (72) we find 4,/v, = v/v, hence

Yo = 7/ bg

The numerical values of v, are also given in Table 1.

We are now in a position to consider the chain length distribution ¢(N) and
correlations of chain ends in more detail for 0 <7 < 1, h — 0. Eq. (68) remains
valid for short enough chains, N < N*, that virtually do not overlap (do not
interact) with the surrounding linear chains. For N > N* the excluded-volume
interactions are screened, so the mean-field result (cf. eq. (15)) is applicable:
c(N) o< e (this exponential distribution is verified below, see eq. (77)). Thus
CZ(N) = hZZl(N) with

N'yp—le—Né , N 5 N*

ZI(N) ~ { (N*)’Yp—l e—N& , N Z N* (74)

Eq. (74) allows to calculate the number concentration ¢ of linear chains and their
volume fraction ¢:

o= /c,(N)sz hz/Zl(N)dN, é = /c,(N)NdN (75)

We still consider the regime of low h, where N,, =1/§ > N*. Therefore, only the
second line of eq. (74) is relevant for ¢, ¢, and we get
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a~h (N Nn, & ~h (N N? (76)

On the other hand, ¢ ~ hm ~ hr(@=0/2 (cf. eqs. (16), (B3)) and ¢ is defined
in eq. (71). Thus, eqs. (76) provide two ways to find N, (based on ¢ and ¢).
The results are identical:

Ny ~ b irrdtn)/2=¢g (77)

This agreement supports the validity of the exponential distribution of chain length
for N > N*; the second line in eq. (74) is thus verified.
Let us return to the correlation function for the ends of the same chain

(cf. eq. (72)). For small h it is defined in eqs. (42), (B17):

hZT'y/u—l T <<€

h2£7/u—d(7,/€)2—de—r/§m T >>£ (78)

Fu(r) ~ h2Ga(r) ~ {

where &, ~ h705r(@+N/4=v (cf  eq. (B16)). Obviously, ¢, must be associated with
the terminal size R(N,,) of linear chains. Recalling that R(N*) ~ ¢ and assuming
a power law, R o N® in the range N* < N < N,,, we find & = 0.5 pointing again
to the Gaussian chain statistics in this regime. Thus, the typical end-to-end size

of a linear N-chain is (cf. eq. (65))

N . N < N*

More precisely, the second line can be written as
R(N) ~bV/N, N> N*
where b* = \/2da* is the effective statistical segment,
a* ~ g%/ () (79)

Moreover, the second line in eq. (78) can be made quantitative based on the
Gaussian statistics of long chains, N > N*. To this end we use eq. (73) noting
that

a(N) = %e‘N/Nm, N> N-

(cf. eq. (74)) and that p(r,N) is Gaussian (cf. eq. (45)):

~ *2 —d/2 T2
p('f’, N) ~ (471'.7\7(1 ) exp (—W) (80)
yielding an asymptotically exact result:
2¢l 1 —p EWL
F.(r) ~ N T fem d=3, r>¢ (81)

where ¢2, = Npa*®. The above equation agrees with eq. (CIl) (obtained in
Appendix C using the magnetic analogy) and with the second line of eq. (78).
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Let us now turn to the correlation function for ends of different chains, @e(r),
defined as the probability that both sites 0 and r are occupied by end units of
two chains. Obviously G.(occ) =2, and (cf. eq. (39))

ge(r) = Gulr)/Ge(o0) = [Glr) = Fufr]/eL + 1

The function ge(r) characterizes the effective interaction between the chain ends.
Using eq. (42) we get

ge(r) — L~ [Gi(r) — Ga(r)] /m” (82)

where m = (p1). Applying eqs. (B15), (B17) we then get ®

gelr) = 1~ (/&> (e = 1), r 2 ¢ (83)

This result shows that g.(r) decreases down to ge ~ 0.5 at r ~ ¢, pointing to a
significant effective repulsion of chain ends at distances r» < €. In other words,
the blobs of size € (concentration blobs of N* units) significantly repel each other.
This conclusion is in line with the basic idea®
concentration blobs. As follows from eq. (83),

of just marginal penetration of

ge(r) == 1 — const (r/§)2_d, r> ¢ (84)

On the other hand, for »r < ¢ we get nothing from eq. (82) as the leading terms
in G; and G cancel each other in this regime. Instead, the dependence g.(r) for
short r, 1 < r < €, can be deduced by a standard scaling argument, assuming a
power-law, ge(r) o< r®, in this regime. It is useful to note that the case r ~ 1
means that 2 chains (N; and N,) meet end-to-end effectively forming a longer

chain (Ny + N,). Therefore
ge ~ Zi(N1 + N2}/ [Z1(N1) Zi(Na)], v~ 1

Taking into account that the chains are typically long, N > N* and using eq. (74)
we find ge(1) ~ (N*)'™ ~ ¢0-m)/ The scaling law is then obtained on recalling
that ge(¢) ~ 0.5:

ge(r) ~ (r/0r I p < ¢ (85)

Eq. (84) can be understood in a simple way using the ansatz that the linear
chains follow the Gaussian statistics at large length-scales, r > £.%5. Suppose the
site at the origin is occupied by an end of a long chain (which is considered as
labelled). By virtue of the Gaussian statistics, the number of labelled units in a
region V, of radius r > ¢ is g ~ N*(r/¢)®. As the polymer density is constant at
r > €, the total number I of units belonging to other linear chains is somewhat
depleted in V, ~r% N~ ¢V, —g. The relative depletion is therefore given by the
factor 1 — const #. Nearly the same depletion factor applies to the concentration
of ends, so

8For n # 1 the exponential term e~"/¢ in brackets should be replaced by (r/£)2~%, cf. eq. (134).
This change, however, does not affect the argument presented here.
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ge(r) ~ 1 — const Ld ~ 1 — const (r/f)Z_d, r> ¢
1T
which coincides with eq. (84).
The above treatment is valid as long as N,, > N*, that is for

h < h* ~ T(ud-}—'y)/Z

For h > h* (cf. Appendix B) we have &, ~ ¢ and N, ~ N* with ¢ ~ p=2/(d+7)
(cf. eq. (B14)) and N* ~ ¢Yvr ~ p=2¢s/(vd+y) - Go

c(N) ~ hEN"LeN/Nm = p > p (86)
(cf. eq. (74)). Using eqs. (75) we obtain

e~ h2—2’y/(ud—|—’y), ¢’l ~ h2(ud—¢>g)/(ud—|—'y), b Z h* (87)

The above result for ¢ is in agreement with ¢ ~ hm (cf. eq. (B4)) and with
the hyperscaling relation ¢¢? ~ 1 corresponding to the picture?® of marginally
overlapping blobs (linear chain segments of size £). Further, eq. (87) for ¢ agrees
with eqgs. (B13), (18). These agreements provide an additional justification of the
approach we take. The behavior of the total polymer concentration ¢ for large h
can be obtained using eq. (62) and the scaling properties for the singular part of

the magnetic free energy (see Appendix B):
¢) N ¢)* ~ hZ(du—l)/(du—I-'y), h > B (88)

The length distribution of rings for A < 1, 7 < 1 can be obtained on the similar
grounds. The result for h < h* is (cf. eq. (67) valid for 7 =h =0):

N N-—vpd-1 , N SN~ 39
Cr( ) ~ (N*)_Vpd_l (N/N*)—d/Z—l e_N/Nm , N Z N* ( )
where N, is defined in eq. (77). For high h>> h* we get
¢r(N) ~ N1 e=N/Nm (90)
with
Ny ~ ™2/ @v47) = > p (91)

The properties of the system just before the polymerization transition, 7 < 0, can
be established in exactly the same way. For h < h* the linear chains are rare. Their
total concentration ¢; and number concentration ¢ are (cf. eqs. (B12), (18), (B5)):

G~ R g~ R, R <R
Thus, the mean (the terminal) length of linear chains is
Nuw=difci~|7|%, B <h (92)

The chains do not overlap in this regime, hence their size R(N) ~ N*» for N < Ny,
and their length distribution is defined by the first line in eq. (74):
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c(N) ~ B2NWw= e N/Nm — p < p

The same distribution is valid for h > h*, however, with a different N, defined in
eq. (91). The concentrations ¢ and ¢ for h > h* are still defined in eqs. (87).
Note that the correlation length ¢ is defined in eq. (B14), hence for 7 < 0 we
always have ¢ ~ R(Np,) ~ N¥r, that is € ~ ¢, and N* ~ N,,.

The length distribution of ring polymers for 7 < 0 is formally defined by
eq. (90) with the same N,, as for linear chains (cf. eq. (92) for A < h*, eq. (91)
for h = h*).

We are now in a position to identify the whole 7-dependence of ¢; and ¢, = ¢—¢;
for a given h < 1. Note that ¢ is defined in eq. (63) for A < A* and in eq. (88)

for h 2 h*. Using the results obtained just above we find:

h? \T\?-"’g , T<0, |r| 27
G~ () | S (93)
rvi=bs T2>T"

where 7* ~ B%/(#+7) and

— |7t - hj 7| e <0, |7 2 T
b — @" ~ — (r)ris , ST (94)
—gvd—dy , T2>T"

Note two competing terms in the first line of eq. (94): one term increases and the
other decreases with |r|. The maximum of ¢, is thus achieved below the critical
point (8 < B%) at 7 =1y <0, |rm| ~ (r7)FHNEEIFED i phe exponent ¢y > 1 for
n > 0, hence 7, must be well outside the region |r| ~ 7%, where the properties of
living polymers are defined mainly by the parameter h rather than r.

Thus, the volume concentration of rings for 7 < 7, is given by

$r— "~ —|r[" (95)

This is an interesting and counter-intuitive behavior: Recall that

& = / Ne, (N)AN
where
¢»(N) ~ const N—vpd=1o=N/Nm (96)

and N, ~ |T|_¢g. As |r| increases, say, by a factor of 2, the cut-off length N,
decreases by a similar factor, leading to a decrease of ¢, by Aip, ~ NZc,(Np) ~
I7[*4"% due to the cut-off ‘tail’ of the ring length-distribution. As ¢, > 1, the
obtained A, is much larger than the actual change A¢, = ¢.(7) — ¢.(27) ~ |7'|yd_1
defined in eq. (95). Therefore, what is lost at the tail, must be compensated
somewhere in the middle. ® This condition points to the universal distribution

¢.(N) of the following form

9The compensation can not come just from the prefactor ‘const’ in eq. (96): this prefactor

defines the concentration of small rings which must be an analytical function of both ¢ and 7,

vd—1

hence its change can not exceed ~ |7 , and thus it cannot balance A;¢,.
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&r(N) ~ N~ £, (N/N,)

where f,(z) must show a mazimum at some z~ 1 (i.e., N ~ N,,). '

5.2. The concentration correlation functions

The correlation function of concentration, G,(r), is defined in eq. (34). Let us
analyze this function starting with the case 7> 7 ~ A7) By virtue of the
fluctuation theorem, we have (see eq. (64))

/Gp(r)ddr = xp = 0¢/07 ~ |7|% 72 (97)

As can be verified (based on eqs. (103), (104) below), the main contribution to
the above integral comes from r ~ ¢ ~ 777, hence

Gp(€) ~ 72077 (98)

Note that G,(€) < ¢? ~ 7%42%s; this feature reflects the significant screening of
concentration fluctuations associated with ‘blobs’ of linear chains (the screening is
provided by the rings of size < §).

The function Gp(r) can be also defined in magnetic terms (see eq. (35)):
Go(r) ~ (0(0)20(T)2) — (@)%, As (1) = m, it is tempting to write @?—(p?) ~ 2msp;,
where §¢; = @1 —m and the terms ~ 8p? are neglected. This would lead to
Gp(r) >~ 4m*Gy(r), and

Gy(£) ~ m* (99)

since G1(¢) ~ m? (eq. (B15) shows that the fluctuations of the spin field ;(r)
at the length-scale ~ ¢ are comparable with the average magnetization). The
same result, eq. (99), could be also obtained including the neglected terms
(~ 8p?), but assuming Gaussian statistics of the field &p(r). It turns out,
however, that eq. (99) is a dramatic overestimation: in fact eq. (98) says that
m* ~ 127 s G (€) ~ 72471 gince 7 < 1 and 4 > 1. This feature is due to
strongly non-Gaussian character of fluctuations of ¢(r) at length scales < ¢.

For m» > 0 the short-range concentration fluctuations are dominated by short
rings whose volume fraction is finite at the critical point, so Gp(1) ~ 1. Taking this

into account and assuming the scaling law, Gp(r) oc ™ in the range 1 < r < &,
we find z =2/v — 2d:

Gp(r) ~ P22 ] <« r <€ n>0 (100)

Note that the exponent here is significantly different from the analogous exponent
for Gi(r)?, eq. (B15). Eq. (100) remains valid in the whole fluctuation regime
(and not only for 7> 7*) with £ defined in eq. (B14): ™

10Tt comes from the formal condition [;° 2 *?~122d [f,(2)] = 0 on recalling that f.(0) is finite,
while f.(z) ~ e™® for 2 > 1.

1Note the general fluctuation relation: x, ~ £2/¥~%, coming from egs. (63), (88).
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.
“{” || H%

For m =0 there are no rings, so Gp(1) ~ ¢ ~ %! (as ¢, =1 for n =0), so
Gp(r) ~ gri/vd 1 < r <¢E n=0

The behavior of G,(r) for longer r also crucially depends on n. If n # 1,
Gp(r) does not decay exponentially at r 2> £, rather it shows a power-law decay,
Gp(r)ocr™ for > ¢ h=0, 7>0 (cf. eq. (56)). For h >0 this decay is cut-off
at the terminal length-scale ¢, corresponding to the size of the longest polymers
with ~ Np, units, &, > € for 7> 1* (cf. eq. (59):

Gp(r) ~ (n — 1)7'_27'_2‘16_2’"/&”, r>¢ n#l (101)
where & ~ h7087(@+N/4=v for 1> 7% and €, ~ € otherwise (cf. eq. (B16).
More precisely, using eq. (58) and noting that s = ¢,07/0¢; ~ 7/(vd — ¢,), we
get the quantitative prediction of G,(r) for d =3, r > ¢
2

3(n—1 5r A
Gp(r) = W( - ¢’g)2 TApOe/m {1 + 25 + §£—2 + gg + 85_4} (102)

The obtained short-range (eq. (100)) and long-range (eqs. (101), (102)) asymptotics
of Gp(r) smoothly cross over at r ~ ¢ giving Gp(¢) defined in eq. (98). Remarkably,
Gp(r) is non-monotonic for » =0: it is positive for r < { and negative for r > ¢,
having a knot at » ~ & It also shows the negative absolute minimum (anti-
correlation shell) in the same region, r ~ £, as discussed in refs.332. By contrast,
Gp(r) is always positive and is monotonically decaying for n > 1.

For n =1 the magnetic Hamiltonian H,, [¢] does not generate any soft modes
whose correlation length ¢, diverges as h — 0 (the transverse modes are absent).
Hence, the system for 7 >0 and h >0 is still characterized by the only essential
length scale ¢. For r > ¢ the fluctuations are small, so the correlation functions
Gi(r), Ge(r), Gp(r) (see eqs. (25), (41), (35)) follow essentially the mean-field

laws, albeit with the fluctuation-renormalized parameters (cf. eq. (B15)):
Ge(r) o< G1(r) ox Gp(r) x 727 4e™/¢ v > ¢ n=1

The revealed behavior of the concentration correlation function can be summa-
rized as follows:

Go(r) ~ € =2g (r/€ n,d) for 7> 7" and r < &y, (103)
where g,(z,n,d) is a universal function,
gp(wvnvd) ~ wZ/V_Zdv <L 1

and

(n—1z72 n£l, z>1
gp(2,m, d) { 2?7 n=1, z>1

The long-range power-law regime, G, o 7724 becomes irrelevant for 7 < 7* and for

(104)

7 < 0 since the two length-scales ¢ and ¢, are nearly the same in this region.

Thus, the function G,(r) for n #1 and 7> 7* is characterized by two correlation
lengths, & and &, > ¢ This feature reflects the coupling of ¢* (cf. eq. (35))
with both longitudinal (¢1) modes and with much softer transverse (¢3) modes,
associated with length-scales, ¢ and &,,, respectively.
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5.3. Correlation function of linear chain concentration

We denote this function Gp(r) = (¢1(0)di(r)) — ¢7, where ¢(r) is the local
concentration of units belonging to linear chains. Obviously Gp(r) = Gp(r) for
n = 0 as there are no rings in this case. Let us turn to living systems with
rings, n > 0. Surprisingly, as we show below, the two functions, Gp and G,, are
dramatically different in the latter case. As before, we focus on the regime 7> 7*
(i.e., h < h*).

To calculate Gp(r) let consider the real-space polymer system and label all units
of linear chains by black colour, all other units (belonging to rings) being labelled
as ‘white’. The correlation function Gu(r) = $16(r)+ digp(r) —¢7, where gu(r) is the
conditional probability to have a black unit at r provided that another black unit
is located at the origin. For r <« ¢ the concentration of black units at r, cy(r),
is dominated by the units of the very same chain that pass through the origin
(in fact, in this regime c¢y(r) is much higher than ¢;, while the contribution of
units belonging to other chains is much smaller than ¢, cf. eq. (85)). Therefore
gpi(r) ~ /= for r < € where 7" is about the number of units in a chain
segment (blob) of size r, so

Go(r) ~ gir?o/v =2~ @2 (r/E)* /™ 1 < <€

where ¢ ~ 74=%s.  Note that the exponent ¢,/v —d characterizing the scaling
dependence of Gp(r) is significantly different from the analogous exponent, 2/v—2d,
for the function Gp,(r) for n > 0.

Let us turn to longer length-scales, r > ¢, where the fluctuations always follow
essentially the mean-field laws (see sections 3, 4). The function Gu(r) in this
regime is calculated in Appendix E. It is shown there that the long-range part of
Gu(r) is defined by the fluctuations of the volume fraction of large rings (i.e., by
the structure factor of rings). Using the general result, eq. (E3), we find for d =3

Gpi(r) =~ 327;_2 a* i 2eT M ps f > ()

and for any d
Gu(r) ~na "2 £ >r > € n>0 (105)

Interestingly, for n» # 0,1 the function Gu(r)/é is rather similar to Gi(r) (cf.
eq. (C10)). Note that Gp(r) is roughly the square of the typical amplitude, §¢7,
of fluctuations of the field ¢; smoothed over the length-scale 7, hence

81 ~ a7 £ S Sk

This result for 6é¢] can be interpreted within the blob picture as the mean
concentration provided by a chain segment (blob) of size ~ r.

Note also that Gp(r) > Gp(r) for » 2 & n >0 (cf. eqgs. (105), (101)) since
£2/a*® ~ N* ~177% > 771 (as ¢y > 1 for n > 0). Thus, the long range fluctuations
of concentration of ‘black’ units (belonging to linear chains) are much stronger
than fluctuations of the total concentration. To conclude, the function G(r) for
living polymers with rings (n > 0) is qualitatively different from the correlation
function of the total concentration, Gp(r), at all length-scales (r < ¢ and 7> ¢).
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Using eq. (E3) we get the structure factor of linear chains at g = 0: Su(0) =
[ Gp(r)d?r ~ §(47r)_d/2a*_den_d/2. Thus, Su(0) o< h¥2=% diverges at h — 0 at any
7> 0 in contrast to O¢;/8r which remains finite in this regime (h — 0, 7> 0). 2

6. Further generalizations and summary of the main results.

1. The Ginzburg parameter. In the preceding sections we analyzed the
thermodynamic properties and correlation functions characterizing solutions of living
polymers in two major regimes: mean-field regime (see sections 3, 4) and fluctuation
regime (see section 5). The systems are characterized by the two main parameters:
r = 1In(B/B*) = p — p*, the deviation of the monomer unit chemical potential,
p=1InpA, from the critical value p*, and h = e P where E is the excess free energy
of a chain end (end-cap energy), and 2E is the chain scission energy (note that
all energy quantities are expressed in kT units). The fluctuation regime occurs
close to the critical point (8 =p* h=0), |7| <7~ 1/2*% (for d =3), while the
mean-field domain emerges farther from this point, |7| > 7. (cf. eq. (11)). The
latter condition is equivalent to the Ginzburg criterion of validity of the mean-field
description*® for the relevant magnetic model, eq. (Bl), in d-dimensional space:

Gi=|r|"* (") <1 (106)

where Gi is the Ginzburg parameter’®, 2z* ~ b? and the length b is defined in
eq. (24). Thus, in the general case

Te ~ (z*)_Z/(4_d) (107)

Normally, the effective number 2* of neighbors of a given site is large, hence
7. < 1 (note that 2z* ~ b*/v for d =3, where v is excluded volume for monomer
unit).

2. The basic length-scales and concentrations in the mean-field regime.
Let us now summarize the main results obtained in the mean-field regime,
7. < || < 1, for the volume concentration of linear chains ¢;, the mean poly-
merization index of linear chains N,,, the correlation lengths ¢ and ¢,,, the
concentration of chain ends ¢, = 2¢, and the polymerization index (molecular
mass) distributions of rings and linear chains, ¢,(N), ¢g(N) for N > 1 (cf.
eqs. (9), (32), (14), (27), (31), (15)). Above the polymerization transition, 7 > 0,
the effect of h on ¢ is weak for h < h*(7) ~ 732, In this regime

1l —eT~T e =2~ hV2r (108)
Ny~ \/2¢1 /b ~ /27 |} (109)

£ ~a®/(2r), €, ~a’N,, ~ V2rad’/h (110)

12 And, of course, S,(0) and 8¢;/d7 do not coincide.
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Note that the condition h < h*(7) is equivalent to ¢ < ¢, saying that typical
linear chains are long enough. Thus, the crossover field hA* corresponds to & ~ &,.

Eqs. (108), (109), (110) are valid for 7> 7*(h) ~ h?%. For |r| < 7* (that
is for 1> h 2 h* ~ |7'|3/2) the properties of the system are dominated by the
parameter h (end-cap energy), being almost independent of 7:

g~ B e~ B N BTl a7 | S (111)
The results of section 3.4 allow to find N,,, & &, also for 7 <0, |7| > 7%
Ny 1/ lr], €~ & ~a?f|r], B < |r] < 1 (112)

The length distributions for linear chains and rings, valid for |r| < 1, are

1
a(N) ~ §h2e—N/Nm (113)
1 —d
cr(N) gﬁ (471']\7(12) 2 e NNm N> 1 (114)

The concentrations ¢, ¢; are defined by ¢(N):
ce =2¢c ~h*/|r], ¢~ 051 T<O0, |7| >

while for 7 >0 we recover egs. (108).
The total volume concentration of rings for 7, < |7| < 1 can be then found
either using the distribution ¢,(N) or using eq. (32):

r'e2-d/2)n 9\ —4/2
ot — — 7y N1-d/2 115
b g = =y (dma?) N (115)
where ¢* is the total concentration at the transition point (r =0, h =0, N, — o),

¢* ~n/z*. Using eq. (115) we get:

¢ — b~ (n/2) 7P, <0, |r| 27 (116)

6 — ¢~ (nfz) (V7)) 2 (117)

Taking into account the fluctuation correction ~ (1/z*)® for ¢, we get

¢ — Py ~ (n/z*z) 4% 4 (n/2") (h/\ﬁ)d/z—l —nr,, T2T (118)

13

The last term here represents the fluctuation correction for ¢*. For smaller 7

we have (cf. eq. (116))

13Note that the critical concentration ¢*, being located in the fluctuation zone, cannot be
predicted precisely in terms of the mean-field expansion as a series of 1/z*. The fluctuation

—2/(4-d).

correction to ¢* is ~ 1. ~ (z%) ; it is negative reflecting ring swelling due to some

repulsion of its segments.
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(nfz5) ()27 r ST

119
()2 ) [P e < 0, 2 (119)

¢’* — ¢ ~ {
where 7 ~ h?/3. Note that ¢*—¢, for 7 < 0 is comparable with the concentration

contribution of large rings (of size 2 ¢). The mean-field dependence of ¢ on 7, h
can be summarized as

T, T2>T"
oy ~ T, || ~ 7 (120)
R?jr? < 0,|7| 2 T*

Therefore, the excess total concentration ¢ — ¢* = ¢ + ¢, — ¢* is

T , T2
¢—¢" ~ T , T~ (121)
K2 /r? — (n)z) o7 <0, || 2 T

The results summarized above suggest that in the general case (h # 0, 7 # 0)
the mean-field theory is valid if either |r| or 7* exceed 7.:

T+ 7" > 7,

The latter condition is equivalent to stating that the correlation length ¢ is short
enough:

£ < ey re~a(2) 0D (122)

where 7. is the characteristic mean-field length-scale. It is important that the
mean-field approach is always applicable at short length scales, » < r., even at the
critical point. In fact, based on the magnetic Hamiltonian, eq. (Bl) or eq. (B2),
it is easy to show that the short-length modes of fluctuations of the field ¢(r)
(with wave-length < r.) are always nearly Gaussian: the quadratic part of the
Hamiltonian is sufficient to describe this regime.

3. The concentrations ¢, ¢;, ¢, in the critical regime.

Considering the critical regime (|r|4+7* < 7.) so far we did not pay attention to
z* focusing mainly on the 7- and h-scaling dependencies. Below we account for the
effect of z* in the fluctuation regime. To this end, in most cases it is sufficient
to demand a smooth crossover between the mean-field and fluctuation regimes at

T ~ T, or at 7 ~ 7. First, we note that the mean-field result, 7*(h) ~ h¥? is
valid for h 2 h., where

he ~ 732~ (27) 7309 (123)

is the threshold beyond which the correlation length ¢ is shorter than r. (so, the
mean-field theory is always applicable for h > h.). Thus, applying the scaling result
for 7% in the fluctuation regime (see the line below eq. (93)), we get generally

*(h) ~ h2/3 for h 2 h, and
() ~ 7o (h/h)? B S he (124)

In what follows we consider the regime h < h., hence 7 = 7*(h) < 7.. Matching
the mean-field and fluctuation results for ¢;, eqs. (120) and (93), yields
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T , T2 Te
Te (T/TC)Vd_¢g , ™ <T<T
$i~ QT () T S (125)
RAryte=2 |7 7% <0, S| S
h?/7? , T<0,|7| 27

Similarly, we get for ¢ using eqs. (121), (63), (88):

T , T2 T,
Te (T/Tc)yd—l , ™ <7<,
p—¢ ~{ T(r/m) | S (126)
—r (|7] /Tc?;d—l <0, < |7 <7
—(n/z) ||, T <0 2

The total concentration ¢ thus monotonically increases with 7, showing a com-
plicated behavior involving power laws with the exponents d/2 —1, vd — 1, 1.
Based on the above equations we also get the polymer osmotic compressibility

Xp = 0¢/0T:
1 , T 2 Te,
vd— *
Xp~ 4 (I /)", Sl S (127)
(r /)2, [ S

Eqgs. (127) are valid as long as a =2 —wvd > 0. For d =3 this is true for n =0
and n = 1. In these cases yx, diverges at the critical point (for h = 0). By
contrast, the exponent a < 0 for n > 2, so the compressibility x, does not diverge
at 7 — 0 (for A =0): it remains finite for any 7 (Fig. 5). As a result, eqs. (127)
must be replaced by just x, ~ 1 for n > 2 (neglecting singular but small critical
corrections), so in this case we have ¢ — ¢* ~ 7 in the whole region |r| < 1
instead of eqs. (126). Thus, a small increase of the chemical potential p = Ing
above p* in the fluctuation regime (7 < 7., d =3) leads to an increase of the total
concentration by

Ap=¢ —¢* x17* 7% for n=1, Apox 1 for n =2 (128)

The corresponding concentrations of linear chains are always higher for small 7 (cf.
the second line in eq. (125)):

b o 7080 for n =1, & o 799 for n =2 (129)

Turning to the fraction of rings, we find using eqs. (118), (119), (94)

(7)) 4 (h/he) T (r/m) T =1, >,
(/7. )4 % , " <r<r,
¢ — ¢ ~ T, - (7% |7, )"* % , Ir| < 7 (130)
W23 () |7 ) 4 (7] ) e < 0,7 S ST
(7| fre)? . <0, 2.

Thus, ¢* —¢, has a minimum (corresponding to local maximum of the ring volume
concentration ¢,) in the region 7 < 0, 7* < |r| < 7., more precisely, at 7 = 7,
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|Tm| ~ 7o (h/hc)2/(ud+7+¢g_1). For d < 3 the concentration ¢, also shows a local
minimum at 7 ~ 7.. The overall dependence of ¢, on the chemical potential
@ =7+InB* is therefore non-monotonic: ¢, decreases with g near the critical point
(at small |7|) and it increases with g outside the critical region (both below and
above the critical point).

Note that eq. (125) is valid for any nm, while the above equations for ¢ — ¢*
and ¢, — ¢* are valid only for » > 0. In the special case n =0 we have ¢* =0,
¢» =0, and ¢ = ¢ (with the exponent ¢, = 1).

4. The general summary on the main length-scales and mass distri-
butions for linear chains and rings.

The behavior of the correlation lengths ¢, &, in the critical region 7 < 7,
h < h. can be found in a similar way. Matching egs. (110), (112), (111) with
eqs. (B14), (B16) we get

a/\/T S P

£~ re(r/me)” TSI ST
re (h/he) D r| S 1
21a/h , T2,
€r ~ ) 12 (he/h) (7)) e S S (131)
£ , otherwise

where 7., he, ro and 7" = 7%(h) are defined in eqs. (107), (123), (122), (124),
respectively.

Let us turn to the size R(N) of an N-chain (linear or cyclic). The chain
statistics is always nearly Gaussian for |r| > 7.. Hence '*

R(N) ~ aV'N, |r|> 7.

In the fluctuation regime, |r| < 7., there are 3 characteristic polymerization numbers,
N., N* and N,,, associated with the lengths 7., ¢ and &, such that R(N.) ~ 7.,
R(N*) ~ ¢ and R(Np) ~ &m. The chain statistics is Gaussian for N < N, and for
N > N* (with renormalized parameters in the latter regime), hence

a\/]V 3 N 5 Nc
R(N) ~ | re(N/No" ~ ¢ (NJN*)* | N. SN S N*

¢&/N/N*~a/N , NZ>N~

where v, = v/¢,,

Nc ~ 1/7_c ~ (z*)Z/(‘l—d)

Iz S AP
N* ~ Ne(rfr)™®  rnzlrlz7
Ne (h/he) 200/ H0 e S 7

14We do not consider untypically long chains with N much greater than N,,: their concentration

is always extremely small.
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and the renormalized statistical segment, b* = /2da*, is

b , Tl 2T
b~ bl > | > (132)
blre [t | <

Note that N* defines the size of the concentration blob for linear chains in the
fluctuation regime: ¢ ~ N*/€¢ for 0 <1 < 7,.

The terminal length of linear chains, N, ~ ¢2/a*?, since R(N)?> ~ a**N for
N > N*

VT/h , T 2Te
N~ (he/B) N* (7)7) T2 >0 > 70

N~ , otherwise

The molecular mass (polymerization index) distributions for linear and cyclic
chains, ¢(N) and ¢, (N), can be also found based on the results considered above.
In the mean-field regime, |r| 2 7., the distributions are defined in egs. (113), (114),
while in the fluctuation regime we have (cf. eqs. (68), (74), (86))

hte~N/Nm , N <N,
a(N) ~<{ h*(N/N,)* 'eNNn N, <N<N*
h2 (N*/Nc)'Yp—l e—N/Nm , N* g N

where v, = v/, is the polymer exponent, and (cf. eqs. (89), (90))
¢,(N) ~ nN~'R(N) e N/Nm (133)

The total volume concentrations ¢, ¢., ¢ (cf. eqs. (125), (126), (130)) are
consistent with these distributions (that is, ¢ ~ [ N¢(N)dN, etc.).

5. Correlation functions in the mean-field regime. Let us now discuss
the correlation functions. We considered 2 magnetic functions Gq(r) and Ga(r) (for
longitudinal and transverse modes of the field ¢) and 4 polymer functions G.(r),
F.(r), Gp(r), Gu(r) (for concentrations of all chain ends, ends of the same chain,
all monomer units, and units of linear chains). In the mean-field regime, 7> 7,

the predictions for d =3 are (cf. eqgs. (26), (C3), (30):

2
~ _7'/5 n _1 ( 1 ) _zr/EmH _ b 1 4:
Chlr) = imatr + 4¢y \dmwa?r ¢ (r=8, r> (134)
where the factor H(r—¢) (=1 for » > ¢, =0 otherwise) serves to formally remove

the second term for » < ¢ The function Gi(r) is thus characterized by the
standard Ornstein-Zernike correlation length ¢ (the first term) and (for n # 1) the
second long-range term with the length &, > ¢. The transverse function is
1
Gy(r) ~ ———e e > b (135)

 Ama’r

Thus, Gi(r) ~ Ga(r) =~ 5 for b < r < ¢ (note that sz should be replaced
with ~ 5727274 in d-dimensions). For 0 < r < b the prediction is Gya(r) ~ ZL*
The polymer end-correlation functions, Ge(r) and Fe(r), are related to the

magnetic functions for r > 0: Ge(r) =~ h2Gi(r) and F.(r) =~ h*Ga(r) (cf. eqs. (42)),
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thereby they show the similar short range and long-range behaviors (Ge(r) ~ F.(r)
for »r < €). This means that the short-range pair correlations of chain ends
are dominated by the intra-chain contribution (due to pairs of ends of the
same chain). For r = 0 the function G, is significantly higher than for » = I:
Ge(0) ~ c. ~ hm ~ hy/2, while Ge(1) ~ h?/2*, 50 Ge(1)/Ge(0) ~ h/ (") < 1
for h< 1, ¢ > 71, d=3.

The mean-field polymer concentration correlation functions for d = 3 and 7. <

T <1 are (cf. eqgs. (60), (58)):

¢l n —r/¢
GP(T) = (271_@27. + 3271.2 4 2 € / +

+H(r —€)3(n — 1)(47r¢l)_ZT_Ge_z"/f’"P(r/fm), (136)

where P(r/&n) = 1+ 27 + 2 —}— —}— (1524 . The correlation function for linear
chains reads

e_r/g—l—H(r —f)*e”r/ﬁm, (137)

The above equations are valid for » > a and n > 0. The first term in G,(r),
which is oc r71, reflects the short-range contribution of linear chains, the next term,
o r72, represents the effect of small rings, while the last long-range term, o< 77¢,
is generally due to both linear chains and large rings. The contribution of rings
dominates at short scales, for 7 < 7~ 1/(#a?), where 7 is the concentration bloh
size for linear chains. Similarly, the first term in eq. (137) corresponds to self-
screened fluctuations of Gaussian segments of linear chains, while the second term
is primarily due to fluctuations of large rings at nearly constant total concentration

. For n =0 the two functions are equal:
¢ q
_ A,
Gp(r) = Gu(r) ~ e — H(r —¢)

2mwa’yr

3 1 e
(471'¢’l)2 7'_66 P(T/ém)
The functions Gp(r) for n =0, 1, 2 are shown in Fig. 6.

6. Correlation functions in the fluctuation regime. Let turn to the
fluctuation regime above the polymerization transition, 0 < 7 < 7., h < h.. The
correlation functions can be obtained here, as before, matching the mean-field and
scaling results at r ~ r.. Thus, we get:

4’1% —r/é ’ P ,E r,
2 v—d "
Ge(r) ~ { zoa=z (rfre)"! L reSr S (138)
2d—4
i () e e

The above equation is valid for m # 1. Otherwise (for n = 1) the last line there
should be replaced by

21

e A S 4
4 N €2 rd=2 c » m>

Ge(r) ~
Similarly
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fraamze " , TS
2 d _
Fu(r) ~ { e (rfre )t erlen oSS (139)
47rN,fZS$nrd—2 e_r/fm o> ¢

Turning to the correlation function G,(r) for n > 0, we note that the mean-field
length 7 increases as 7 is decreased, and tends to 7 ~ ¢ at 7 ~ 7.. Therefore,
in the fluctuation regime, 7 < 7., the short-range concentration correlations (for
r <€) are always dominated by short rings that are Gaussian for r» < 7., and are
swollen for r. <r <€ Thus, for n# 0,1 we obtain:

(n/3272%) a=*rt=2d , <7
Gy(r) ~ a~4rd=2d(p [y, )2/v—2d , Te 5 r <€ (140)

3(47)"2(n — 1)(7’ + T*)‘zr‘z‘ie‘zr/&“ , rZ f

In the last line here we took into account that > = ¢,07/0¢; ~74+7* for 0 <7 <K 1
(cf. eq. (125)). For n =1 the last line in the above equation must be replaced
by the standard long-range decay

Gy(r) ~ a™*ri™2 (1 /r)™ 2 (Efr)* 2 78, w2 ¢

Note that the susceptibility relation, eq. (97), is satisfied since £2G,(€) ~ x, (cf.

eq. (127)).
The correlation function of linear chain concentration is
(1/2m)pra=2r2~de="/6 | ¢ <,
Gpi(r) ~ 2 (r€)P 1 , e STSE (141)
(n/327r2) a*—4r4—2de—2r/§m , r Z f

For n =0 eqs. (140), (141) must be replaced by

S , TS
Gp(r) = Gp(r) ~ pa=?r f d(T/T yH/v=d ) Te 5 <€ (142)

S3(m)E(r ) e
where ¢ = ¢y.

The long-range behavior of the magnetic correlation function Gi(r) is analyzed

in Appendix C. As follows from eq. (C10), for n # 1 the magnetic susceptibility
Om/0h = 51(0) = [ Gi(r)d%r is diverging at h — 0:%*

S1(0) ~ (n — 1)g=*lglnd o pA272 b < B

This leads to m ~ 7257+ [l—l—const (n—l)(h/h*)d/2 1] Note that this singular
behavior at h — 0 shows for any 7 > 0. Similar singular corrections apply to the
concentration of chains ¢ ~ hm, and to the terminal chain size, N,,:

o ~ hri T [1 + const (n — 1)(h/h*)¥?= 1]

Note that O¢;/0h does not diverge, but rather shows a weaker singularity at
h— 0.1

50f course, d > 2 is always assumed.
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7. Conclusions

1. In this paper we considered the general statistical properties of living equi-
librium polymers (solutions and melts), both close to the polymerization transition
and far from it. The polymer systems studied generally involve both linear and
cyclic chains. The main external parameters (cf. the partition function, eq. (1))
are the activities of a monomer unit (8), of a chain end unit (h) and of a
ring (n) controlling, respectively, the total polymer concentration ¢, the number
concentration of linear chains ¢, and the concentration of cyclic chains, ¢,. The
parameters 3 and h are continuous: [ = e, where p is the chemical potential of a
monomer unit in kgT units, and A% = e ?F  where 2F is the chain scission energy.
By contrast, n is essentially discrete: n =0 defines the system without rings, n =1
applies to classical living polymers that are allowed to form rings (and whose
chemical structure does not distinguish the two directions along the chain), and
n = 2 corresponds to directional polymers with rings. In all the cases with n > 0
and h — 0, only rings are present in the system for @ < B*, while linear chains
are formed for 8 > (*, where the system is a mixture of rings and infinite chains.
The polymerization (for h — 0) occurs at 8 = * as a thermodynamic second-order
phase transition.!

The basic critical properties of this transition for » =0, 1 have been established
long ago using the polymer-magnetic analogy***®2° allowing to map the living
polymer systems to m-component magnetic spin systems. However, the previous
studies of living polymers (with n > 0) were mainly focussed on the renormalization
group calculations of the basic critical exponents?®, while the regions of applicability
of the scaling laws were not fully described so far. In this regard, the important
parameter is z* = b%/v (d = 3 is the space dimension), where v is the excluded
volume per monomer unit, and b is its typical length. This parameter is large for
most polymers, z* > 1. (For lattice models z* > 1 corresponds to a large number
of neighbors that can be connected to a given site.) Two limiting cases were mainly
considered for living polymer systems: z* ~ 1 (the critical fluctuation regime), and
z* — oo (the mean-field regime). In this study we analyze in detail the effect
of large but finite z* on various statistical properties of living polymers both in
the mean-field and fluctuation regimes, in a wide range of external parameters (
and h. To this end we employ a convenient polymer-magnetic mapping (cf. the
magnetic Hamiltonian, eqs. (5), (B1)) which is different from the model used in
the previous studies?®. The mapping we use, being exact, allows to consider both
the critical fluctuation and mean-field regimes in the common framework, which
is important as the mean-field behavior is rather typical for the living polymer
systems studied experimentally?.

2. The properties of living polymer systems are analyzed for the general weight
of rings, m. We describe the behavior of such living polymers both near and
far from the critical polymerization transition point, and we use this opportunity
to discuss some fundamental features of their equilibrium polymerization and its
analogy with critical phenomena in spin systems highlighting the polymer aspect of
this analogy. The main results are explained in terms of polymer physics referring
to the polymer chain statistics, the RPA relations for polymer structure factors
and the concept of polymer blobs (see Appendices A, D, E).

3. The molecular mass distributions of living linear chains, ¢(N), and living
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rings, ¢.(N), are obtained in different regimes. We show that in the critical regime
of strong fluctuations these distributions are governed by the critical exponents w,
and 7, which are generally different (unless m = 0) from the magnetic exponents
v and <. The numerical values of v,, 7, and other exponents are indicated in
Table 1. Using these exponents, we developed a simplified physical picture for
thermodynamic and correlation properties of the system demonstrating consistency
of the basic results (see section 5).

4. Considering living polymer chains with a sense of direction (directional poly-
mers allowing formation of cycles) we found that their equilibrium polymerization
falls into a distinct universality class (as compared to the classical living polymers
like liquid sulfur®®2°) corresponding to the O(n) model of magnetism with n = 2
(x-y model). This means, apart from qualitatively different correlation properties of
the two models (see point 7 below), that all the critical exponents (v,v,vp,7p...)
involved in the scaling laws describing the behavior of the system near the critical
point (r=p—p* =0, h=0) are different in the two cases, n =1 and n =2. In
particular, the polymer osmotic compressibility, x, = 0¢/07, defining the intensity
of low-q scattering of concentration fluctuations follow the critical law x, o |7|™*
for small 7, h =0, where a =2 —vd =~ 0.11 for n =1, and a=x —0.011 for n = 2.
Therefore, x, diverges at the critical point for classical living polymers, but x,
remains finite (showing a non-diverging singularity) for directional polymers (see
Fig. 5).

5. At the critical point for the polymerization/magnetization transition, 7 =
p—p* =0, h =0, the system is characterized by just one essential length-scale
r. (apart from the microscopic monomer size b): for r < r. the statistics of
polymer segments is Gaussian (the end-to-end distance for a segment of N units
is R(N) ~ bN'/?), while the segments are swollen for r > r.: R(N) o N* for
N > N, =72/b%. The size r, ~b(z*)/*? can be obtained based on the Ginzburg-
Landau Hamiltonian, eq. (B2): 7. is the length-scale separating the regime of
nearly Gaussian fluctuations of the field ¢(r) (for r < r.) and the strongly non-
Gaussian regime, where the quadratic approximation for Hgp fails (for r > r.).
It is remarkable that r. is not affected by the rings (it does not depend on n),
although the exponent v, does depend on n (in fact v, decreases with n, see Table
1). Therefore, 7. can be interpreted in terms of the standard polymer theory °0*%:
it marks the transition from Gaussian to swollen segments of an isolated linear
polymer chain in solution.

Above the polymerization transition, 7 > 0 (where long linear chains are formed),
there emerges another length-scale ¢ characterizing the concentration fluctuations
that diminish significantly at » 2 €. The correlation length ¢ decreases with 7 as
€ < 7. The statistics of chains (and their segments) becomes Gaussian again
for r > ¢, with the renormalized statistical segment b* = v/2da*: R(N) ~ b*N*'/?
for large N; b* ~ £ (N*)7%%, see eq. (132), where N* x 7=% is the number of
monomer units in a chain segment of size £ (the values of the crossover exponent
¢4 are indicated in Table 1). The scaling regime therefore spans between r, and ¢
in the general case. The two Gaussian regimes (r < r. and 7> {) merge when ¢
decreases down to r. at 7 ~ 7.. The mean-field theory is applicable (and the chain
statistics is nearly Gaussian at all length-scales > b) for 7> 7.. The crossover
parameter 7, as deduced from the Ginzburg criterion, eq. (106), is 7, ~ (z*)_Z/(4_d).
6. An essential part of new results concerns the correlation functions. Among
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the different correlation functions, we consider: (i) the function Gp(r) for the
total polymer concentration ¢, (ii) Gp(r) for volume concentration of linear chains,
(iii) Ge(r) for concentration of chain ends. At short r, r < r., these correlation
functions show the mean-field behavior even in the fluctuation regime (0 <7 < 7):
G.(r) ~ R/ (4ma®r), Gu(r) ~ 2¢i/(4ma’r), Go(r) ~ (n/2)/(4wa?r)® for d = 3
(cf. eqs. (138), (141), (140)). Moreover, we obtained quantitative predictions,

eqs. (58), (E3), (Ch), for the correlation functions at » > £, valid both in the

fluctuation and mean-field regimes (the latter regime is important as the fluctuation
zone is narrow for z* > 1). We found that all these functions exhibit long-range
power law tails (at r > €) for certain values of the weight of rings, n. This means
that the corresponding scattering functions (Fourier transforms of the correlation
functions) are singular at ¢ = 0 not only at the critical point 7 =0, h =0, but
rather on the whole line 7 >0, h = 0.

7. Returning to the distinctions between living polymer models with different
weights of rings, the present study demonstrates that the systems with n =0, n =1,
and n > 2 show qualitatively different correlation behaviors both in the fluctuation
and mean-field regimes. The differences are not limited to the critical exponents in
the fluctuation regime (r. < < €): in this regime Gp(r) = Gu(r) o< r1/v=4 ~ p=13,
Ge(r) ox 77V~ a0 p7103 for n = 0; G,(r) oc vV~ ~ p7283 G i(r) o pPe/v=d ng p=127
Ge(r) oxx 77/7=4 o 27102 for p = 1; and Gp(r) xx 77392 Gu(r) o< r7122 G (r) o 7104
for n =2 (d =3 is assumed here and below). The major qualitative differences
concern the behavior of these functions at r > ¢, where the systems without rings
(n = 0) show a tail of anti-correlations for the total concentration, G,(r) oc —r=2¢
classical living polymers show an exponential decay, Gp(r) o e™/¢, and directional
living polymers show positive long-range correlations, Gp(r) oc 772¢ (see Fig. 6).
A similar trend is predicted for the end-correlation function: Ge(r) oc —r*2¢ for
n=0, 7> Ger) xe ™ for n =1, and Ge(r) x r*72¢ for n = 2. Further, the
correlation function Gu(r) oc r72¢ for n =0, but Gu(r) xr*2? for n =1,2.

8. For h > 0 the critical point 7 =0 spreads into a transition zone, |r| < 7*
of width 7 = 7*(h), 7%(h) ~ h*3 for h < 732 and 7%(h) o A4+ for b < 73/2
(cf. eq. (124)). The linear chains are always finite for h > 0, the typical
(mean) polymerization index being N, x 1/h for small h. The corresponding
chain size &, o 1/\/5 is yet another important length-scale characterizing the
living polymer systems with finite scission energy (note that ¢, is the size,

Y

R(N,,), of a linear chain of N,, units). In most cases, the genuine expo-
nential decay of the correlation functions is defined by £, rather than ¢ (see
eqs. (134), (135), (136), (137), (138), (139), (140), (141), (142)). The depen-
dence of &, on 7 and z* is shown in eq. (131); &, > ¢ if 7" < 1 (i.e., for small
h, that is, for sufficiently high scission energy 2F).

Thus, in all the cases (n = 0,1,2...) the fluctuation region (0 < 7 < 7.)
is characterized by two essential length-scales: the correlation length ¢ and the
terminal correlation length &, ~ &(N,,/N*)®5. Within the polymer-magnetic analogy,
the length ¢ corresponds to the longitudinal fluctuation modes, it diverges at the
critical point, 7 — 0, h — 0. The second correlation length ¢, is associated with
soft transverse modes: &, diverges as h — 0 at any 7 > 0 (i.e., in the ordered
phase). The case n =1 is special, however: here the magnetic Hamiltonian does
not involve any massless transverse modes, being a functional of just ¢;(r). As a
result, for n =1 the length ¢,, does not affect at all the properties related to just
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¢1 including the free energy F (which stays analytical at h — 0), the magnetic
correlation function Gi(r), and the polymer end correlation functions Ge(r) and
Gp(r): their decay length is ~ ¢ By contrast, the correlation functions Ga(r),
F.(r) and Gu(r), whose definition formally involves also the transverse field ¢,(r),
are characterized by both lengths, ¢ and &,,, even for n = 1, and their genuine
decay length is always &n.

9. To sum up, living polymer systems with 2z* > 1 are characterized by the
following typical lengths in the fluctuation regime |r| < 7.: (1) the short-range
and long-range statistical segment lengths, b = v/2da, b = /2da*, which are non-
universal (they depends on the definition of the monomer unit, and increase in
the decimation procedure); (2) the mean-field length r. (polymer segments are
always Gaussian for a < r < r.); (3) the correlation length ¢ relevant for many
correlation functions; the lengths r. and ¢ define the range of strong fluctuations
(re < r <€), where the correlation functions follow the critical scaling laws; and
(4) &m, the terminal correlation length corresponding to the terminal chain size
related to the mean polymerization index being N,, = €2 /a*2.

45,50 the mean-field theory is
essentially applicable in the regimes r < r. and » > ¢ the chain segments are
nearly Gaussian at these length-scales. Accordingly, the fluctuations of the magnetic
field, 8¢, show nearly Gaussian statistics there. By contrast, for r. < r < ¢ the
fluctuations are essentially non-Gaussian, and in this sense they are strong. Note,

10.  In agreement with the classical concepts

however, that the magnitude of fluctuations always increases at shorter length-
scales, so, strictly speaking, the fluctuations ¢ are stronger in the mean-field
regime r < 7. than in the fluctuation regime r, < r < €. Therefore, it is not
the absolute magnitude, but rather its ratio to the characteristic threshold for the
onset of non-Gaussian statistics, that matters. It is also noteworthy that although
d¢ fluctuations are Gaussian for r < 7., the fluctuations of monomer concentrations
(¢ or ¢) are non-Gaussian in this mean-field regime since these concentrations can
not be considered as linear forms of ¢ (rather they correspond to some quadratic
functions of &¢).

11. As found in this paper, the dependence of the volume fraction of rings,
¢r, on the monomer activity 8 is non-monotonic (for n >0, d < 3): ¢, increases
with B at low [, shows a maximum ¢, > ¢* at B < 8%, then ¢, decreases at
higher B down to the local minimum at the edge of the fluctuation zone (at
B/B*—1 ~ 1.), and finally ¢, increases again at B > B* outside the fluctuation
zone (cf. eq. (130)). The maximum rate of change, |0¢,/083|, is predicted near
the polymerization transition, at |3/8* — 1| < 7, i.e. well inside the region, where
¢, decays with S.

12. It was shown?® that ¢; > A¢ = ¢ — ¢* for classical linear polymers in the
fluctuation regime: above the polymerization transition linear chains are formed
mainly at the expense of the cyclic chains. We recover this interesting behavior
here showing that it stays valid also for the case of directional polymers (where the
distinction between the critical 7-exponents for A¢ and ¢; is nearly twice stronger,
see eqs. (128), (129)). We offer the following qualitative physical explanation
of this general feature of living polymers with rings : Exactly at the transition
point (h =0, ¢ =¢*, 7 =0, ¢ =0) there are only cyclic polymers whose length
distribution is (cf. eq. (133)):

¢.(N) ~ N'R(N)™®, R(N)~ N, N >N,
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For simplicity, we disregard the dependence on 2* setting N, ~ 1. At 7 >0
some long linear chains are formed with volume concentration ¢;. The presence
of linear chains must lead to a decrease of the statistical weight for rings by a
factor 1 —k(N) resulting in their lower partial concentration: Ac,(N) = —&(N)c,(N)
and to a decrement of their total volume concentration, A¢, < 0. There are two
possibilities: either ¢ + A¢, ~ ¢ (the total increment of the mass of linear chains
and long rings is ~ @), or ¢+ A¢, < ¢. Let us assume the first option. Then, for
N ~ 1 the decrement factor, x(N), is nearly the fraction of the volume occupied
by linear chains: k(1) ~ ¢. A larger ring (with N > 1) interacts with N-blobs
of linear chains (segments of N monomer units) rather than individual monomers.
The blob interaction is strong in the fluctuation regime, so the excluded volume for
N-rings is nearly proportional to the volume fraction of the blobs ¢p: K(N) ~ ¢.
The latter quantity was estimated in the argument above eq. (69): ¢y ~ ¢ N*»d=1

as long as ¢ <1, ie. 1< N < N*~ gﬁl_l/(ypd_l). Thus
Ac,(N) = —k(N)e,(N) ~ =y N*** ¢, (N) ~ —y N2

hence the decrement of the total volume concentration of rings is
N*

A, = /NAC,,(N)dN ~—¢ [ NUN ~ —¢yIn N (143)
1

This equation shows that |[A¢,| > ¢ as N* > 1. This overcompensation of the
linear chain increment by a depletion of the rings points to a negative feedback
mechanism keeping the total concentration nearly constant: A¢ < ¢. (Of course,
A¢p = ¢+ Ap, must always be positive, as follows from the general thermodynamic
condition 8¢/8r > 0, so eq. (143) formally yields a contradiction showing that
the first option taken above is impossible.) Therefore, the general compensation
behavior of rings vs. linear chains comes as a result of their interactions which
are enhanced in the fluctuation regime. It is thus predicted for any living system
with rings (that is, for any » > 0). Formally, this feature is enforced as long as

20
L,

the crossover exponent ¢, exceeds which is apparently always true for n > 0

(see Table 1).

13. In this paper a considerable attention was given to the correlation function
of the total concentration, G,(r), in particular, to its long-range behavior, which
was already considered in our previous studies®’*?. The known predictions for Gp(r)
are generalized here in two directions: for arbitrary m» and for A > 0 (in particular,
we obtained quantitative equation for the terminal decay of G, at r 2 &, cf.
eq. (58)). Moreover, it is revealed that this function shows a long-range tail for
n =0 and » = 2, but not for n = 1. The distinction between polymer systems
with n = 0 and » = 1 was attributed to the fact that the real-space polymer
Hamiltonian is non-local for n = 0%32 but is local for n = 1 (classical living
polymers). However, it may seem that the Hamiltonian is also local for n = 2
(directional living polymers). Indeed, in both cases, n =1 and n = 2, the main
selection rule for placing the bonds is local: the number of bonds meeting at each
site must not exceed 2 (and there is no need to check whether rings are formed or
not). This issue is analyzed in Appendix A, where it is shown that the real-space
Hamiltonian for directional polymers involves a non-local term.

14.  As shown in section 2, the directional living polymers (see Introduction)
correspond to n = 2. Alternatively, the case m > 2 can be realized with multi-
component mixtures of classical living polymers (the number of components being
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n), where each component can form cyclic chains. The main problem here concerns
the compatibility of the components. Interestingly, our analysis shows that the
presence of both short and long rings enhances the thermodynamic miscibility of
the polymer components.

15. To verify the predicted differences in the equilibrium properties of classical
and directional living polymers either experimentally or by computer simulations,
it would be interesting to focus on (i) The dependence of osmotic compressibility
Xp on chemical potential or concentration (see point 4 above and Fig. 5), and
(ii) The behavior of the polymer concentration correlation function Gp(r) on the
distance r at r > ¢ (see point 7 above and Fig. 6). In particular, it would be
appropriate to do simulations for the three living polymer models (with n =0, 1,
2 and keeping all other parameters the same), and to try and find the differences
between the correlation functions G,(r) obtained for all these cases.
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APPENDIX A: Discussion of long-range effects for a
real-space model of living polymers

There are no long-range interactions (beyond the correlation length ¢) in classical
equilibrium systems involving linear and cyclic chains, but, somewhat surprisingly,
these effects reappear in the analogous systems of directional polymers. Although
these properties come rather directly from the polymer-magnetic analogy, it 1is
useful to treat the problem also within an explicit real-space model. Here we
follow the approach proposed by I. Ya. Erukhimovich.*®

For simplicity, consider the standard bead-spring model of polymer chains®®. The
aim is to find the free energy F of a living polymer system for a given overall
distribution of monomers with concentration field c(r): F = Feong [c(7)] + Fint [c(7)].
Here the second term is the free energy of excluded volume interactions of
monomer units. Below we focus on the conformational free energy (the first term,
Feong [e(r)]). The interactions are irrelevant for Feonys, so it can be calculated for an
ideal polymer system.’® To this end, we take the following route: First, the living
polymer system is mapped to a system of dimers by just cutting each internal
bead in two halves. Thus, each dimer is a bond (spring) with two half-monomers
at its ends. Next we calculate the free energy Fy of a system of ideal dimers
(with concentration c.(r) = 2¢(r) of half-beads), and then find a simple relation
between Fiony and Fy.

The polymer free energy (effective Hamiltonian) Feons[c] can be defined using
the following physical coarse-graining procedure: the system is divided in cells of
volume Vi (such that typically there are many monomers in each cell, Vie > 1),
the number of monomers in the ¢th-cell is fixed at n; = c(r;)Vi. Then Feonglc] =
—kpT In Zeong {ni}. Here Zons {n;} is the partition function of the ideal living
polymer system (where both polymer rings and linear chains are allowed) for a
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given set {n;}. (We assume for simplicity that there are no free ends, that is,
linear chains are infinite.)

The free energy of the system of dimers, Fq = Fqlce], is defined in a similar
way: Falce] = —kpTIn Zg{v;}, where Zz{v;} is the partition function of the dimer
system for a given set {v;}; v; = ce(r)Vi = 2n; is the number of dimer ends in the
tth-cell.

There is an obvious relation between the two systems: the polymer system can
be obtained from dimers by simple pairwise association of 2n; dimer ends in each
cell (yielding n; pairs = full monomers). The corresponding combinatorial factor
is K(n;) = (2n; — D! = (2n;)!/ (2%n;!). Therefore Zeons {ni} = Za {z/i}Vl_N [T K(ni),
where N = S,n; is the total number of monomers. Hence we get the relation
(kT is considered as the energy unit here and below)

2
Feontle] = Falce] — /c(r)ln ﬂd%
e
The last term in the r.h.s. is explicitly local and non-singular. It therefore remains
to find the dimer energy F4. This can be done by considering the ideal dimers in
an external field ¢(r) conjugate to concentration:

Zalo] = /zd{yi} e~ Li e 1) (A1)

In the mean-field approximation the integration reduces to evaluation of the
maximum of the integrand. This results in Fg[p] = —In Z4[p], which is connected
with Fglce] by Legendre transformation:

Falee] >~ max {ﬁd [p] — /ce(r)go(r)d3r} (A2)

The grand canonical free energy Fy [¢] can be easily calculated as it reduces to that
of a single dimer in external field. The resultant Fy[p] is a local functional, and
so is the functional Fyle.]. Moreover, as the ideal system of dimers obviously does
not show any soft modes, the non-mean-field (fluctuation) corrections to eq. (A2)
are also local, so that the free energy remains local in the general case. This
means that the living polymer system does not show any long-range effects (either
correlations or interactions). Importantly, so far we implicitly assumed that the
polymers are classical (non-directional), with both directions along the backbone
being equivalent.

The situation is entirely different for directional polymers. In this case the
reference system of dimers must be directional as well: each dimer must have
distinct ends, say white and black, and we must impose the obvious rule that only
ends of different color can associate to make a polymer (i.e., white with black).
Accordingly, we have to consider two concentrations c,(r) and cy(r) for white and
black ends, respectively, hence the free energy Fylcy(r),cp(r)] is a functional of
the two concentrations. In addition, two external fields, @,(r) and @(r), must
be introduced together with the free energy of the dimer system in these fields,
Falpw(r),05(r)]. As before, the latter free energy Fulew(r),os(r)] can be easily
calculated and represented as a local functional. In analogy with eq. (Al) we
have:

o~ Falew(r)ou(r)] / D [cu(r), cp(r)] e Felen(hen(r)]=Hoe (A3)
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where Hee = [ (w(r)cw(r) + @p(r)es(r)) d®r. In the mean-field approximation it
reduces to

Falew(r), co(r)] = max { Fa[pu(r), 05(r)] = Hoe (A4)

Suppose there are n black and n white dimer ends in a Vj-cell. Their association
leads to the combinatorial factor K’(n) = n! which is not drastically different from
K(n) considered above. The major difference comes from the very restriction that
the number of black and white ends (ny = c(r)Vi and ny, = cp(r)V2) must be
exactly equal in each cell:

cu(r) = es(r) = e(r) (A5)

This difference does not emerge at the mean-field level: the condition (A5) leads
to @w = @p in eq. (A4), so the mean-field Fy reduces to that for non-directional
dimers. The mean-field free energy Fyle(r),c(r)] is therefore purely local. However,
the fluctuation correction is important here. An inspection of eq. (A3) reveals that
calculation of Fy[p, ] involves integration of e 7wl oyer n(r) = c,(r) — c(r)
for a fixed cyu(r) + cp(r). Note that n(r) measures the deviation from the imposed
condition (A5). It is instructive to expand Fy as a series in 7. Analyzing the
dimer system, we get in the quadratic approximation:

1

|r—7'|

AFqn] = Fale—n/2,¢+ /2] — Filec,c] ~ /n(r)r](r') d3rd®s
The free energy increment AFy[n] is thus strongly non-local. This feature translates
in the non-local fluctuation correction to the mean-field result, eq. (A4). In turn,
the non-local energy term brings in long-range correlation/interaction effects in
melts and concentrated solutions of directional polymers.

To summarize, a system of symmetric dimers can be rigorously mapped to
a system of equilibrium (living) chains and rings, and this mapping justifies the
absence of long-range effects in the latter system. By contrast, the similar mapping
of a system of asymmetric dimers to a system of directional living polymers involves
an essential additional condition stating the balance of inward and outward bonds
for each cell and bringing in the long-range effects for the directional polymer
systems.

APPENDIX B: Summary on the critical behavior of the O(n)
model

The generalized magnetic Hamiltonian used in this paper is Hp [p] = Ho[p] +
Hi [p] with (cf. eq. (5))

1 _
HO [90] = 5 Z Ki,jlsoaisoaja

2,J

Hy [p] = —zi:ln (1 + Bhp1i + g (Soaisoai (1 S ) + Soi)) (B1)

n—1 n—1
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where a = 1,2..n, and g is the parameter of uniaxial quadratic anisotropy. This

Hamiltonian has the same symmetry as the standard O(n) Ginzburg-Landau Hamil-

49

tonian®’,

—T a? g 1
Hoslel = [ahr{ T+ S (Vof = 2 (agt =) 4 5ot —hon | (B2)

2 8

where % = @afa, Po = Palr), a=1.n, (Vo)’ = (Vopa)’, w=1.d, ¢* = (¢?)" The
two models are nearly equivalent falling in the same universality class and showing
the same critical properties.

The parameter h should be identified with magnetic field. For h =0 the model,
eq. (B1), shows a continuous magnetization transition at 8 = B*, and 7 =In(8/8%)
should be considered as the temperature parameter. The main properties of the
standard O(n) model*® are summarized below for |r| < 1, A < 1 in terms of the
critical exponents v, 7, ¢, (crossover exponent for g) for the space dimension d.

Let us first set ¢ = 0. At 7 >0 and h =0 the magnetization m = (p1) is
nonzero,

m ~ &=/ (B3)
and
m ~ h(dV—’Y)/(dV+'Y) (B4)
for h >0 and 7=0. For 7 <0
m ~ h|r|”” (B5)

The latter equation is valid for h < h*, where h* ~ |r|(@+7/2,
The free energy per unit volume (per site) for h =0, g =10 is

F,, ~ —const |r[** 4+ Fle,

where the first term accounts for the dominant singularity at 7 =0, and F,ey is a
more regular part. Thus,

<902> ~ —OF,,/0r ~ const + |7|* " sgn(r) (B6)
so the heat capacity is
C ~ 6<go2> |81 ~ —8*F,,/87% ~ const + |7|*7? (B7)
More precisely, for 7 # 0
Fro= |7 fo(h/R",9/g") + Freq (B8)
where ‘4’ or ‘-’ correspond to sgn(r), g* ~ |7'|¢’9 is the characteristic magnetic

anisotropy. In particular,
f-l-(w?y) ~ 1+ Olw + 02y7 f—(wvy) ~ 1+ Olwz(l + O/y) (B9)

for z = h/h* <1, y=g/9° <1, where C1,Cy, C' are generic positive constants.
The behavior of fy for > 1 can be found demanding that F,, = Fn,(r,h,g) is
nearly independent of 7 in this regime of high h:
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fe(z,y) ~ @/ (14 Clyz /@) a1, y <] (B10)

Note that the scaling laws for m follow from eqs. (B9), (B10) since m ~
—0F,,/0h. Further, (¢? — %) ~ —2m o we get for g — 0 and |7| < 1:

dg
oF,,

(1 —eh) ~ —5 2~ T >0, h<h, (BI1)

OF,, .
SR 1 <0, h< B (B12)

9y
and
_‘3’6& RS ) s (B13)
g

The numerical results®® ®® for the main critical exponents for d = 3 are summarized
in Table 1.

Below we assume no quadratic anisotropy, g = 0. The most essential length-scale
in the critical region is the correlation length ¢ defining the maximum size of the
regions with strong and non-Gaussian fluctuations of the field ¢(r):

£~{ 7™, h< b

h—2u/(du—|-'y), h>> h* <B14)

For n =1 (Ising model) the correlation function Gi(r) = (p1(0)pi(r)), describes

fluctuations of the only field component ¢;(r):

vl < r <€
L P i

The Fourier transform of Gi(r) is

(B15)

$u(g) ~ g, 1> q>1/¢
' G (14 g2, ¢t <1

The correlation properties are significantly different for n # 1. In this case
we define the transverse correlation function Ga(r) = (p2(0)pa(r)) in addition to
the longitudinal function Gi(r). The soft transverse modes are important as they
become massless in the limit A — 0. These modes are characterized by the second
(terminal) correlation length &,

—0.5 (dv++v)/4—v *
émN{h T , h<h*, 7>0 (B16)

¢ , h>h" or <0

&m > € in the ordered state for A < h*; &, — oo for h — 0. The transverse
correlation function Gy(r) shows a power-law decay between ¢ and &,:

r“’/”‘d, l<r <

LR PR o

Its Fourier image is
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Sy ~d T I
i Er+ae) T, <l

The longitudinal function Gi(r) shows a different behavior at large distances
associated with Ga(r):

privd < r<é
G]_(T) ~ { (n _ 1)£—y/u+dG2<T)2’ r >>€ (B18)
The second line of eq. (B18) is derived in Appendix C. Thus, Gi(r) is characterized
by a power-law (rather than exponential) decay beyond r ~ & Gi(r) o< r*72¢ for
¢ <r <én. The two correlation functions are always similar at short distances,

Gi(r) ~ Ga(r) for 7 < €. Note also that Gy(¢) ~ Go(€) ~m? for 7> 0.

APPENDIX C: Correlation function of longitudinal modes

Below we show that the longitudinal correlation function Gi(r) exhibits a power-
law decay for 7 >0, h =0 and n # 1. We first consider this function in the
mean-field regime for d = 3 using the effective magnetic Hamiltonian, eq. (46),
appropriate at length-scales larger than b. Then we use exactly the same idea as
in section 4. There is no need to change variables, rather we just expand H,, as

a series in dp, = po — L, where 2 = mé, corresponds to the minimum of H,,
(m is defined in eq. (7), m?/2 ~ ¢). Thus, we get H,, = Hy + Hz, where

H, = %/ [2(;5 (5901)2 +a? (ch)ﬂ d4r

and Hj; includes all higher-order terms:
1
H; = / [§m5901 (60) + ] ddr

(only the most important cubic term is shown above). With H, only we get the

mean-field functions (cf. eqs. (26), (30))

Ciamg () = (@2(0)a(r) sy = e 7/Em, 75 b (&

" Arma?r

1
Gims(r) = (8@1(0)81(r)) gry = —e™™/6, > b

 4wa?r

where &, ~ a\/N,, is the terminal coil size, N,, ~ \/2¢/h and ¢ ~ a/\/2¢. The

main correction to the latter result for r > ¢, Gy (r), comes from Hs:

G1(r) & Gimg(r) + Gun (1), (C2)

Guir(r) = (8p1(0)8¢01 (r)H [2)

More explicitly (cf. eq. (50)),
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2

Gun(r) = " (81(0)8a(r) [ 51(r) (Sialr’))7 A" [ Eip1(0") (Bpg(r"))" d)

H2

On wusing the Wick’s theorem, it is clear that the integrals in the r.h.s. are
dominated by the regions ' ~ 0, »" ~r or " ~r, " ~0:

Gun(r) = ™85 1)G (o)
where
Xmf = [ Gimg(r)d%r = Simg(0) = 1/(29)
Thus
G (1) ”4;1 (47;27«)2 e~ 2/im b (C3)

For r > ¢ the first term in eq. (C2) can be neglected, so Gi(r) ~ Gyp(r). The
end-correlation function Ge(r) =~ h2Gi(r) ~ 22-Gy(r), cf. eqs. (42), so
_ln—1

Gelr) = 52

2
(o) e, rg, d=3 (1)

dma?r

Although this result was derived in the mean-field regime, it stays essentially valid
also in the critical regime, provided that the parameter a is renormalized: a — a*
(cf. eqs. (79), (132)). In the general case the terminal length is &, ~ a*\/N,,
(cf. (57)), hence

G. () 1n—1<1

2
R —) e/ p> g, d=3 (C5)

47y

Eq. (C5) can be obtained noting that Ge(r) according to its physical meaning must
be invariant with respect to a decimation procedure (grouping of monomer units)*.
Therefore, G¢ may depend on just two dimensional parameters, the concentration
of ends 2¢/N,, and £,. Noting also that G.(r)oc N;2r*"24 is the general scaling
behavior for { < r < &y, we get Ge(r) o< €%, which leads to eq. (C5).

The argument does not change in the case of arbitrary d. The general result is

1n—1 9
GE(T) = 5 é;ln G(Tv ém) , 7> ¢ (06)
where
Grey = [ (¢ +e2) e, ()
L
G(Ta ) = Ee T/ga d= (08)
G(r &) ~ Agr®™, r < & Ag=T(d/2 —1)m~¥?/4 (C9)
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Based on the obtained results for G. we can predict the long-range behavior of
Gi(r) in the general case for 7 >0, h < h*. Recalling that Gi(r) ~ G.(r)/h* for
z*> 1, we get the general result (cf. eqs. (42), (43)):

n—1

Ga(r) = m?® (2¢1) 7 (a) T G(r,6m)?, 7> € (C10)
In the mean-field regime for d =3 the above equation agrees with eq. (C3). Thus,
Gi(r) ~ (n — 1)gd+r/v-tpt=2de=2r/m 1 5 ¢ in agreement with the second line of
eq. (B18). In particular, for h =0, 7 > 0 the function Gi(r) follows the long-range
power-law, Gi(r) ox 74724 if n £ 1. At r ~ ¢ the function Gy(r), eq. (C10), matches
the short-range asymptotics, Gy ~ #7/*~¢. The general long-range behavior for the
functions Fe(r), Ga(r) can be found in a similar way based on eq. (Cl):

201

FE(T) - 52

G(r,&n), > ¢, (C11)

m2

24

in agreement with the second line of eq. (BI1T7).

Gy (r) (a*) 2 GQ(r,bm), 7> ¢ (C12)

APPENDIX D: The short-range behavior of G,(r)

For n > 0 the basic mean-field prediction for G,(r) (defined in eq. (49)) becomes
invalid at short =, for r S 7 < ¢ To predict Gp(r) for r <7 it is instructive to
resort to the real-space polymer model. The new short-range regime has a clear
physical meaning within this framework: for r < 7 the fluctuations of the total
concentration are dominated by the contribution of polymer rings. To see this we
recall that effective interactions of rings are weak in the mean-field regime, hence
the rings are almost uncorrelated and can be considered as an ideal-gas system.
Therefore, the correlation function of rings, Gp.(r) = (¢.(0)$,(r)),, where ¢.(r) is
the local concentration of monomer units belonging to rings, is dominated by the
intra-ring correlations:

G (1) / e.(N)F,(r, N)AN

where the function F,(r, N) accounts for monomer correlations inside a ring of N
units (the Fourier transform of F.(r, N) is the formfactor of an N-ring). The mass

distribution of rings is defined in eq. (114): ¢ (N) ~ ’2—‘%(471']\7(12)_‘1/2 e~N/Nm By
virtue of the Gaussian statistics

N
Fi(r,N) ~ N (1xNa?) ‘”2/ P(r, Ny)P(r, N — Ny)dNN; (D1)
0

where P(r,N) is defined in eq. (80) with a* replaced by a.

Thus, the correlation function Gp.(r) is

1 2
Gpr(7) g (FG(T, fm)) ~ (n/2)A% "% 1> a
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where the function G(r,&,) and Ay are defined in eqs. (C7), (C9). The analogous
function for linear chains, Gp(r) (see section 5.3), is defined in the basic mean-field
approximation:

Gpi(r) = 2¢1a 2 G(r, &) ~ drar*de/¢, r < ¢

(cf. eq. (49); for simplicity we assume here that ¢; < 1). Using the RPA relation
for the polymer structure factor®

1/8p(q) ~ 1/ [Spi(q) + Spr(g)] + v”

(Spi(q), Spe(q) are d-dimensional Fourier transforms of the functions Gu(r), Gp.(7))
we finally get the polymer concentration correlation function, Gm¢(r) = [, S,(q)eler,
for short 7r:

Gmy(r) 2 Gp(r) + Gpr(r), ™ ¢
Thus,
Gms(r) ~ 2d1a2G(r, &) + (n/Q)AZ(z_‘lr‘l_M, r <€ (D2)

in complete agreement with eq. (60).

APPENDIX E: The long-range behavior of G,(r)

Let us consider the correlation function of monomers on linear chains, Gu(r),
first, employing the magnetic analogy in the mean-field regime. In analogy with
eq. (35) we have (for small h < h*)

Gpi(r) ~ {p(0)p(r)). (E1)
where
p= 2/;—2 (3 — kel — K'}) ~ L (3 — k3 — K'03) (E2)
+o 2
The last approximation 2/,81—-}—<p2 2% is valid for z* > 1 and 8 > 1, i.e., above the

magnetization transition (it is true also in the critical fluctuation regime, where
B~ B ~1, and ¢* < 1). The fields ¢y and @3 involved in eq. (E2) are two
different transverse components of the order parameter. The constants k& and &
must satisty

E+E =1, E+E*=-1

Note that, (p) ~ ¢. In the mean-field regime ¢; = m + 81, m? ~ 2¢; (cf.
eqs. (7), (9)). Thus, using eq. (El) the function Gu(r) can be expressed in terms
of magnetic correlation functions Gi(r), Ga(r):

n
Gpi(r) ~ 261Gims(r) + 5 Gamg (r)*, 7> ¢
The function Giny is small for 7> ¢; on neglecting it we get (for n > 0):
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Go(r) =~ gGZ,nf(r)Z ~ ga_4G(r, En)?, > €

To generalize this result beyond the mean-field regime we use the trick introduced
in Appendix C: it is enough to just renormalize the parameter a (cf. the text

between eqs. (C4), (CH)):

Go(r) = - (a") " G(r,&m)?, 7> € (E3)

|3

This equation is valid also in the fluctuation zone, for 0 <7 < 7.

Below we provide an alternative derivation of the above equation directly based
on the real-space polymer model. First we note that the function Gu(r) for r > ¢
is much higher than G, (as can be verified based on the final result, eq. (E3),
and eq. (96)): the concentration of black units (belonging to linear chains)
fluctuates much stronger than the total concentration. The latter fluctuations can
be therefore neglected assuming ¢ = ¢(r) = const, hence ¢ (r) = const — ¢,(r) and
thus G, is defined by the fluctuations of the concentration ¢, of white units:
Go(r) = Gpe(7) = (¢:(0)9r(r)) — #2. The latter correlation function is mainly due to
large rings of size = r. The volume fraction of such large rings (with » > §) is
small compared to the volume fraction of long linear chains (as can be deduced
from eqs. (89), (71)), so the effective interactions between these rings are nearly
completely screened by the linear chains. Hence, the ring segments (of size r > §)
follow the Gaussian statistics, and the rings are almost uncorrelated: it is fair to
consider the system as a nearly ideal gas of large rings.

Thus, Gp.(r) is dominated by the intra-ring correlations:

Gn () = / & (N)E,(r, N)AN (E4)
where the intra-ring correlation function F.(r, N) is defined in eq. (D1). By virtue

of the Gaussian statistics®® the molecular length distribution of rings is

1 —d
CT(N) >~ gN (471']\7(1*2) /2 6_N/Nm

(@) G(r,6n)?, > ¢

(cf. eq. (133) with R(N) ~ a*V/N). Using eq. (E4) we get
n
Gp7.<'f‘) >~ 5

where &, ~ a*\/N,,. The above equation defines G,(r) ~ G,.(r) which is identical
to eq. (E3).
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TABLES
TABLE 1. The critical exponents for the O(n) model, d =3, obtained in refs.®* ®
and the corresponding polymer exponents, v,, ~,.

n v Y a=2-—dv Py vp =v/¢, Yo = /¢
0 0.588 1.1604 0.236 1 0.588 1.160

1 0.6303 1.2403 0.11 1.092 0.577 1.136

2 0.6704 1.3164 -0.01 1.184 0.566 1.112
o0 1 2 -1 2 0.5 1

FIGURE CAPTIONS

FIG. 1. The simplest peptides showing the directional chain structure: (a) achiral
polyglycine; (b) D-polyalanine, which is both chiral and isotactic.

FIG. 2. Head-to-tail supramolecular self-assembly of polar units.

FIG. 3. An example of an asymmetric unit for supramolecular polymerization based
on triple H-bonds (dotted lines); R is an alkyl tail. (Cp. with Fig. 11 of
ref.?).

FIG. 4. The lattice polymer model: N = 16, N,, = 12, N, = 2, N, = 1; the
monomer concentration ¢ = 12/16 = 0.75, number concentration of linear chains
¢ = 2/16. Volume concentration of linear and cyclic chains are ¢ = 8/16 = 0.5,

¢, = 4/16 = 0.25.

FIG. 5. The schematic dependences of the polymer osmotic compressibility x, on
the monomer chemical potential g (7 =p—p*) for classical living polymers with
rings (curve 1 showing singularity ~|r|7%'")
(curve 2, much weaker singularity).

and for directional living polymers

32
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FIG. 6. The schematic plots of the polymer concentration correlation functions
Gp(r) for 3 models: living polymers with no rings (curve 0), classical living
polymers with rings (curve 1) and directional living polymers (curve 2).
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Fig. 1.
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Fig. 4.
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Directional living polymers constitute a new universality class with distinct
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