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We develop a statistical theory for the dynamics of non-aligning, non-interacting self-propelled particles confined in a convex
box in two dimensions. We find that when the size of the box is small compared to the persistence length of a particle’s
trajectory (strong confinement), the steady-state density is zero in the bulk and proportional to the local curvature on the boundary.
Conversely, the theory may be used to construct the box shape that yields any desired density distribution on the boundary, thus
offering a general tool to understand and design such confinements. When the curvature variations are small, we also predict the
distribution of orientations at the boundary and the exponential decay of pressure as a function of box size recently observed in

simulations in a spherical box.

1 Introduction

Active fluids consisting of self-propelled units are found in bi-
ology on scales ranging from the dynamically reconfigurable
cell cytoskeleton! to swarming bacterial colonies>>, healing
tissues*>, and flocking animals®. Experiments have begun
to achieve the extraordinary capabilities and emergent prop-
erties of these biological systems in nonliving active fluids of
self-propelled particles, consisting of chemically’~!2 or elec-
trically 13 propelled colloids, or monolayers of vibrated gran-
ular particles 416,

In contrast to thermal motion, active motion is correlated
over experimentally accessible time and length scales. When
the persistence length of active motion becomes comparable
to the mean free path, uniquely active effects arise that tran-
scend the thermodynamically allowed behaviors of equilib-
rium systems, including giant number fluctuations and spon-
taneous flow 141630 Importantly, a sufficient active persis-
tence length is the only requirement for macroscopic manifes-
tations of activity, as revealed by athermal phase separation of
non-aligning, repulsive self-propelled particles3' !

When boundaries and obstacles are patterned on the scale
of the active correlation length, they dramatically alter the
dynamics of the system, and striking macroscopic properties
emerge *>2; for example, ratchets and funnels drive spon-
taneous flow in active fluids*>#34648  This effect has been
used to direct bacterial motion>? and harness bacterial power
to propel microscopic gears>*°. However, optimizing such
devices for technological applications requires understand-
ing the interaction of an active fluid with boundaries of ar-
bitrary shape. More generally, any real-world device nec-
essarily includes boundaries, and thus the effects of bound-
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ary size and shape are essential design parameters. Although
recent studies have explored confinement in simple geome-
tries #344-31:52.57-62 there is no general theory for the effect of
boundary shape.

In this paper, we study the dynamics of non-aligning
and non-interacting self-propelled particles confined to two-
dimensional convex containers, such as ellipses and polygons.
We find that the boundary shape dramatically affects the ac-
tive fluid’s dynamics and thermomechanical properties in the
limit of “strong confinement”, in which the container size is
small compared to the active persistence length (the distance
a particle travels before its orientation decorrelates). In partic-
ular: (i) particles are confined to the boundary, (ii) the steady-
state distribution of particles at the boundary is proportional
to the local curvature (see Fig. 1), and (iii) when the curvature
varies slowly, the local pressure exerted on the boundary de-
cays exponentially with the ratio of the radius of curvature to
the active persistence length. Results (i) and (ii) are derived
in the limit of small and slowly varying curvature radius, then
extended to polygonal boxes. They likely hold for arbitrary
convex boundaries, although the definition of “strong confine-
ment” depends on the type of boundary. Together, these three
results demonstrate that the boundary shape in an active sys-
tem can sensitively control the behavior of particles within,
and they constitute a first step in a theoretical framework to
design confinement geometries that give rise to specific mate-
rial properties or device functionalities.

2 Model

We consider an overdamped self-propelled particle with posi-
tion r and orientation ¥ = cos 0 % + sin 6 § whose dynamics is
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Fig. 1 Left: Visual summary of simulation results showing particles
concentrated in high curvature regions. Right: Geometric notations
for the analytic theory for a smooth boundary (top) and a polygon
(bottom).

described by
0=E() ()

where vq is the self-propulsion speed, g is the mobility, &
is a white Gaussian noise with zero mean and correlations
(E(HE(H)) =2D,8(t —1"), and over-dots indicate time deriva-
tives. The hard wall exerts a force Fy = —vo(V-0)A/p if
the particle is at the wall and ¥ -fi > 0 and zero otherwise,
where i = cosyX +siny ¥ is the local normal to the wall
pointing outwards; i.e., the normal component of the veloc-
ity that would drive the particle into the wall is cancelled by
the wall force .

When the particle is at the wall, its configuration is charac-
terized by its arclength s € [0, L) along the boundary, where L
is the box perimeter, and its orientation ¢ = 8 — y relative to
the local boundary normal (see Fig. 1). Projecting Eq. (1) onto
the boundary tangent yields equations of motion for s and ¢,
which hold as long as the particle stays at the wall, i.e. as long
as 9] < m/2:

§=vpsing, (b:é(t)fl%sind) (2)

r= VOO + .quall )

where R(s) is the local radius of curvature, which satisfies { =
§/R(s). We now argue that there is a “strong confinement”
regime in which ¢ is small. Within this regime, the particle
never leaves the boundary (this would require |¢| > 7/2) and
its dynamics is always described by Eqgs. (2), which we may
linearize about ¢ = 0:

$ =00, ¢:¢([),I%¢ 3)

We prove this point self-consistently, by assuming Eqgs. (3) are
valid and then using them to evaluate ¢. This approach is fur-
ther justified by our numerical observations, see appendix A.

* This is the simplest choice of wall potential consistent with overdamped dy-
namics. It doesn’t depend on the value of i, which is only kept for dimen-
sional consistency. Similar results were obtained in simulations with softer
potentials.

We first consider a circle, for which R(s) is constant and the
linearized equation of motion for ¢ can be directly integrated:

o(1) = /0 Lt E (e ol IR, @

It follows that ¢ is a Gaussian random variable with zero mean
and (¢?) = RD,/v,. Physically, ¢ is small when the curvature
radius R is much smaller than the particle’s persistence length
vo/Dy; we refer to this case as the strong confinement limit. In
the rest of this paper we consider the implications of this result
for the particle density and its extension to arbitrary boxes. We
only consider convex boxes for which R(s) > 0 everywhere;
thus ¢ = 0 is always a stable equilibrium point with charac-
teristic relaxation time R(s)/vo. The corresponding restoring
force acts by moving the particle along the boundary until the
wall’s normal aligns with its orientation.

3 Statistical Description

Let f(s,¢,¢) be the probability density of finding a particle
with relative orientation ¢ at arclength s at time . Eqs. (3)
can be mapped onto a Langevin equation for a free particle
in one dimension with position s, velocity vo¢, and position-
dependent friction and temperature. Thus, f obeys an equa-
tion that has the form of the usual Fokker-Planck equation for
a free particle (see, e.g., Ref. 63):

Af = v09af+ 5O N+DAS )

The three terms on the right-hand side of Eq. (5) describe, re-
spectively, (i) the drift motion of a particle along its velocity
vo®, (ii) the relaxation of the velocity vo¢ towards zero (as-
sociated with drag in the Langevin analogy), and (iii) the dif-
fusive broadening of the velocity distribution by noise. The
boundary is closed and particles leave the boundary when
|¢| > m/2; therefore physical solutions satisfy f(s+L,¢,t) =
f(s,¢,1) and f =0 for |¢| > m/2. Since we work in the small
¢ limit, we also assume dg f (s, £7/2,t) =0 . and seek the
steady state solution to (5).

To this end, we introduce the moments g,(s) =
Jdo " f(s,d) such that p = go is the density of particles
at the boundary and (") = g,/go. The steady state solu-
tion to (5) is then obtained by solving the recurrence relation
dsgny1+ g8n—n(n—1) %gn,z = 0 (see appendix B), the first
three equations of which are:

1
dg1=0, g+ RS = 0 (6)
2
g3+ p82 fg0=0 (7
Vo

T Since the Fokker-Planck equation is second order in ¢, these boundary con-
ditions are over-constraining. Physically, however, no particle ever gets close
to ¢ = 47/2 and thus the boundary terms are irrelevant.
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From Egs. (6) it follows that g; is constant and g2 (s) = g2(0) —
g1 Jodu/R(u). Like f, g, is a periodic function of s, and
$-du/R(u) = 2x for any planar curve®; therefore g; must
be zero, i.e. there is no density flux at steady state. We close
the system by neglecting dsg3. The approximation is exact for
circular boxes for which ¢’s Gaussianity implies g3 = 0, and
should hold when R is nearly constant. It can also be inter-
preted as setting the third cumulant to zero; a standard closure
method. Finally, the normalization constraint [i'dsp(s) = N
with N as the total number of particles, gives

N
p(s) = S7R(5) ®)
(9%(s)) = R(s)Dx/vo ©9)

Eq. (8) is our primary result. The density of particles at the
boundary is inversely proportional to the local curvature ra-
dius; i.e., regions of high curvature act as attractors for ac-
tive particles. A more general derivation of this result can be
found in appendix C. The second key result, Eq. (9), is that
fluctuations in ¢ are controlled by RD; /vy, consistent with the
premise that ¢ is small under strong confinement. This result
is limited by the validity of our closure approximation and its
scope and relevance are discussed in section 5.

4 Pressure

We now consider the mechanical pressure exerted locally on
the boundary by the active particles, which is equal to

V()O A vop
P:p<-n>:(cos¢> (10)
u H
with vo/u the force exerted by a single particle aligned with
the normal. In the strong confinement (small noise) regime
where ¢ is small, we may approximate cos¢ as 1 and use

Eq. (8) to get

p(s) = YOPL) __Nvo (1)
u 27pR(s)
In other words, the pressure on the boundary is proportional
to the density and hence to the curvature.
To get the leading order correction to the infinite confine-
ment (zero noise) limit, we expand the cosine in Eq. (10) to

second order in ¢ and use Egs. (8)-(9):
~ vop(s) 1, ~ Nvo B R(s)Dy
Py = 2B (1 200200 ) = s (1- T
(12)

Note that if the box is circular, the distribution of ¢ is Gaussian
and we can use the exact relationship (cos¢) = e=(07)/2 % 1o

1 The relationship follows from (e?) = €9*)/2_ which is obtained from the
Gaussian distribution’s moment generating function.

get

R(s)Dy
— & e 2 (13)
2nUR(s)

P(s)

thus making the expansion in ¢ unnecessary. Naturally, ex-
panding the exponential in Eq. (13) leads back to Eq. (12).

The decay of pressure with RD;/vo at low noise was re-
cently observed in 2D and 3D simulations of active particles
in circular and spherical boxes by Mallory et al.>®, who dis-
cussed various expressions including those of Eqgs. (12)-(13).
In particular, they measured the numerical prefactor in front of
RD: /vy in Egs. (12)-(13) and found 0.45 in 2D and 0.9 in 3D,
consistent with our predictions 1/2 in 2D and 1 in 3D (the lat-
ter is a preliminary, unpublished result obtained by extending
our analysis to 3D).

5 Simulations

To explore the domain of validity of our statistical theory
and the physics beyond the low moment closure, we per-
form molecular dynamics simulations of Eq. (1). We consider
vo = 1 and various D in elliptical boxes with major semi-axis
a > 1 and minor semi-axis b = 1 aligned with the x and y axes
respectively. We plot results against the polar angle ¢ rather
than the arclength; thus the curvature radius oscillates between
R=0b*/aata =0, and R = a®/bat o = +7/2.

The simulation results are shown in Fig. 2. As expected,
in the circular case (a = 1) the distribution of ¢ (not shown)
is Gaussian and both p and (¢?) match the theory perfectly.
Near-perfect agreement between Eq. (8) and the observed den-
sity p persists at all simulated aspect ratios. The magni-
tude and qualitative behavior of (¢?) remain well captured as
well, but quantitative agreement is lost with increasing a, even
though RD; /vy is small. This results from the breakdown of
the dyg3 = 0 assumption as the distribution of ¢ departs from
Gaussianity (see appendix D). To improve the theory, one may
push the moment closure to higher orders; i.e., set the nh cu-
mulant to zero for some n > 3. This leads to a non-linear
equation for p and g, that involves derivatives of p and R with
respect to s, even for n = 4. These terms suggest that the pre-
diction (¢?) = RD; /vy requires not only RD; /vy < 1 but also
dR/ds < 1, and thus may only hold in slightly deformed cir-
cular boxes.

In Fig. 3 we plot the mechanical pressure exerted on the
boundary, defined by Eq. (10). At low noise, Eq. (11) closely
matches the simulation results over a large range of aspect ra-
tios. This follows from the fact that the density distributions
observed in the simulations closely match Eq. (8) (see top
panel of Fig. 2) and ¢ is small (see bottom panel of Fig. 2).
In the bottom panel of Fig. 3, we show the effect of angular
noise on the pressure, described theoretically by Eqs. (12)-
(13). Since our prediction relies on the prediction Eq. (9) for
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Fig. 2 Boundary density p (top) and standard deviation (¢2)1/2 of
the orientation relative to the boundary normal (bottom) as a
function of polar angle in the first quadrant of elliptic boxes. The
boxes have major semi-axis ¢ > 1 and minor semi-axis » = 1,
aligned with the x and y axes respectively. Symbols are from
simulations with D; = 1073, Solid lines are from Egs. (8)-(9). Both
p and (¢?) are symmetric with respect to reflections about 0 and
/2.

the angular variance (¢?), which as we just showed (bottom
panel of Fig. 2) is only quantitatively accurate in nearly cir-
cular boxes, we restrict ourselves to such boxes. At small
RDr/ vo, the exponential form, Eq. (12), and its expansion,
Eq. (13), are nearly equivalent, and both match the data. As
RD, /vy is increased beyond the strong confinement limit, sev-
eral of our assumptions break down: (i) particles start leaving
the boundary, (ii) the density on the boundary is no longer
proportional to R~ (iii) the variance (¢>) no longer obeys
Eq. (9). These effects, however, partially cancel each other
out in such a way that Eq. (13) provides a reasonable descrip-
tion of the evolution of the average pressure well beyond the
domain of strict applicability of our theory.

To understand why the low moment closure successfully
predicts p even when it poorly describes (¢2), we now con-
sider the limit case ¢ = 0, or 8 = y, in which a parti-
cle is always located at the position s where its orienta-
tion aligns with the boundary normal. Since the dynamics
of 0 is purely diffusive, its steady-state distribution is flat:
p(6) =p(y) =N/(2m). A change of variable then yields
p(s) = (dy/ds)p(y) =< 1/R. In other words, for sufficiently

RD: /vy

Fig. 3 Top: Mechanical pressure P exerted by a single particle on
the boundaries of ellipses of various aspect ratios a as a function of
the local radius of curvature R(s) for D; = 10~3. The dashed line is
the predicted pressure P = (27R(s)) ™! in the D; = 0 limit. Bottom:
Pressure P normalized by its zero noise value (27R(s))~! asa
function of the confinement parameter RD; /vy where R(s) is the
local radius of curvature. The dotted line and the dashed line
correspond to the predictions of Egs. (12) and (13), respectively.
Each run generates a cloud of data points corresponding to various
locations along the boundary; the horizontal spread of the cloud
results from the fact that each location monitored on the boundary
has a different local radius of curvature R(s).

small fluctuations of ¢ = 6 — y, p(s) is controlled by dy/ds
and is essentially independent of the form of the distribution
of ¢. This reasoning only requires Y¥(s) to be monotonic and
should apply to any convex box.

6 Polygonal Boxes

The previous paragraph suggests that Eq. (8) applies to arbi-
trary convex boxes with no restriction on the magnitude of
curvature, provided ¢ is small. However, under what condi-
tions is ¢ small in such a container, and do these conditions
correspond to the strong confinement limit defined above? To
elucidate this point, we turn to a class of shapes for which both
R and dR/ds are unbounded, namely polygons.

The radius of curvature is now discontinuous, equal to in-
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finity along the edges and zero at the corners. y(s) is a step
function with value y; on the edge connecting corners i and
i — 1 (corner indices are defined modulo the number of cor-
ners). The dynamics at corners follows from that at edges: a
particle leaves corner i along edge i (resp. edge i — 1) as soon
as 0 > y; (resp. 0 < y;_1). Conversely, a particle remains
stuck at corner { as long as 6 € [y_1,y;]. The numerical re-
sults shown in this section were obtained with the polygonal
box pictured on Fig. 1, which has a wide variety of angles
and a perimeter L ~ 8.93 (i.e. a radius of order one). Similar
results were obtained with different boxes.

—
[}

fo

Probability Density

0 5% L 10~4 10-1

Fig. 4 Top: Distribution of the orientation ¢ relative to the
boundary normal at several normalized arclengths

§=(s—s1)/(s2 —s1) between corners 1 and 2 (5 = 0 at corner 1,
§=1 at corner 2) of the polygon shown on Fig. 1 for D, = 1073.
Bottom left: Standard deviation of ¢ as a function of arclength for
D, = 1073, The dotted lines indicate the positions of the corners.
The gray area represents the region between corners 1 and 2 from
which the distributions of the top panel are extracted. Bottom right:
Upper bound of the standard deviation of ¢ across the boundary as a
function of D;. The dashed line is a power law with slope 1/3 as
suggested by the analysis in the text.

Because of the singular nature of curvature in a polygon,
the mechanisms controlling ¢ are quite different from those at
work in the ellipses of section 5. In particular, the distribution
of ¢ is non-local, i.e. it cannot be predicted from the local ge-
ometry (the curvature and its derivatives) alone. This is clear
from the top panel of Fig. 4, which shows the distribution of
¢ at various points along an edge: each point has a different
distribution, yet every point has the exact same local geome-
try (that of a straight line). The distributions are also heavily
skewed, and the prediction (¢?) = RD, /vy = oo from Eq. (9)
is clearly wrong.

To evaluate ¢, we need to treat corners and edges separately.

At a corner, the radius of curvature is zero and the linearized
equations of motion (3) reduce to § =0 and ¢ = 0. Physically,
a particle remains stationary as long as its orientation lies be-
tween the outward normals to the two edges meeting at the
corner (see bottom right panel of Fig. 1), hence § = 0. During
this time, the active force vV is fully balanced by the wall
force Fy,,1. One can then interpret ¢ as the angle between
v and —Fy,, which is well defined and equal to zero even
though the normal fi is ill-defined.

At an edge, the radius of curvature is infinite and the lin-
earized equations of motion (3) reduce to § = v and ¢ =
E(r). In the absence of boundaries, the statistical properties
of s and ¢ are easily derived. However, the presence of cor-
ners that can absorb and release particles makes the problem
much trickier, and beyond the scope of this paper. A simi-
lar problem has been studied in the context of first-passage
processes under the name “random accelerated process”, and
we refer the interested reader to Refs. 65, 66 for more details
on the topic. Here, we only seek to understand whether and
how the angle ¢ goes to zero when the box size (or the noise)
goes to zero, which can be achieved using scaling arguments
based on the unbounded results. To this end, we consider a
particle that just left a corner located at s = 0. Since ¢ is al-
ways zero while at a corner, we also have § = vo¢ = 0, which
completes the initial condition. We now forget about the cor-
ner and integrate the equations of motion: ¢(t) = [y dt'E(¢')

and (1) = vo J; dt’fé/ dt"E(t"), from which it follows that
¢ and s are Gaussian variables with zero mean and variance
(¢(1)*) = 2Dyt and (s(r)*) = $v3D,* tespectively. The root
mean squared displacement (s(¢)?)'/? is the typical distance
travelled along the edge after a time /; the time at which it is
equal to the edge length £ provides an estimate for the time it
takes a particle to cross the edge: t ~ 62/3/(V(2)/3Dr1/3) S, Fi-
nally, inserting this crossing time into the root mean squared
angular displacement (¢ (£)*)1/? = (2D;t)"/? yields an esti-
mate for the typical angle ¢ reached in the course of crossing
an edge of length £:

¢ ~ (4D, /vo) /> (14)

We now show that this scaling expression can describe the
fluctuations of ¢ on the edges of an actual polygon by test-
ing it against simulation data. Fig. 4 shows the square root of
the angular variance <¢2>1/ 2 along the boundary of a poly-
gon (bottom left edge) and its upper bound as a function
of the angular noise strength D, (bottom right panel). As
suggested by the scaling analysis, the latter scales as Dr1 /3
Dimensional analysis then imposes that it in fact scales as
(4D;/vo)'/?, thus validating Eq. (14). The important result

§ An exact result on the mean escape time of a randomly accelerated process
with absorbing boundaries leads to the same scaling 65, Additionally, the scal-
ing argument we presented here can also be found in Ref. 66.
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here is that, despite the infinite radius of curvature, the am-
plitude <¢2>1/ 2 of the angular fluctuations does go to zero in
the limit of small boxes or small noise, i.e. in the limit of
strong confinement. However, comparing the polygonal re-
sult, (92)'/% ~ (4D;/vo)'/? where £ is the edge length, with
the result of Eq. (9), <¢2>1/2 ~ (RDr/VO)l/2 where R is the ra-
dius of curvature, reveals that the ¢ = 0 limit is harder to attain
in polygonal boxes than in rounder ones.

0.3F i
2
g
[}
0
Arclength L
T T é T T 100 [T T ’|’7 3
0.3f 1 Rl o
g B ‘é /3. 00
2 E < 00
= |\ i=] ’¢' o (o]
° = lgo
sqe}
[al} F
B @ L
ol . . . . -k . . s
0 Corner # e 107 D, 107

Fig. 5 Top: Boundary density p as a function of arclength for the
polygonal box of Fig. 1 with perimeter L ~ 8.93. Bottom left:
Observed (crosses) and predicted (squares) corner populations. The
former are obtained by integrating the density over each grey region
of the top panel. The latter are renormalized to account for edge
particles; i.e., particles not in any of the grey regions. Bottom right:
Fraction of edge particles as a function of the angular noise D;. A
power law with slope 1/3 is shown for reference. The edge fraction
for the other two panels (D, = 107>} is 28%.

Since ¢ goes to zero in the strong confinement limit, we
apply the reasoning developed at the end of section 5, which
results in the following expression for the density:

p(5)=Low)= LY pSG-s) (3

where § is the Dirac delta function, s; is the arclength of cor-
ner i, and fB; = W; — W;_1 is the size of the angular sector lying
between the outward normals of the two edges meeting at cor-
ner i (see Fig. 1). Edges occupy a set of measure zero in the
space of orientations and thus have zero population. Corner
i traps every particle whose orientation 8 lies in the interval
[Wi—1, ] and its population is proportional to its size f3;.

The simulation results are shown in Fig. 5. As expected,
there are sharp density peaks at each corner (top panel), and
the corner populations (the areas under these peaks) are pro-
portional to B (bottom left panel). The fraction of particles not
in the vicinity of any corner (the “edge fraction”), on the other

hand, decreases slowly with LD, /vy (bottom right panel), re-
maining of order 10% at LD, /v ~ 1073, This is a conse-
quence of the slow decay of ¢ as one decreases the box size
or the noise (Eq. (14)). In other words, the meaning of “strong
confinement” is more restrictive for polygonal boxes than for
rounder ones. However, Eq. (15) accurately describes the rel-
ative corner populations even when edge fractions are large.

7 Conclusion

In summary, we have shown how to predict the density and
pressure distribution of a simple active fluid from the geome-
try of its confining box, provided the box is convex and small
enough. Conversely, our theory predicts the box shape that
will yield any desired density profile on the boundary, thus
offering the first general tool to understand and design such
confinements.

The result relies on the ability of particles to circumnavi-
gate their container faster than they re-orient (the strong con-
finement limit). This limit is readily achieved when curvature
is positive and sufficiently large everywhere, e.g. in the el-
lipses of section 5. When the boundary has regions of very
small curvature (e.g. the flat edges of a polygon), on the other
hand, the theory is only fully accurate for extremely small box
size or angular noise; otherwise it underestimates the density
in the regions of very small curvature. However, the theory
remains qualitatively correct over a broad region of parameter
space. Furthermore, zero curvature is the worst-case scenario
for a convex box. Thus, we expect the theory to apply to con-
vex boxes of arbitrary shape, within the limitations discussed
above.

Appendix A: Bulk Fraction

Fig. 6 shows the bulk fraction — the fraction of particles not
sitting at the boundary — extracted from numerical simula-
tions in various elliptical and polygonal boxes as a function
of the dimensionless confinement parameter £D; /vy, where £
is a relevant length scale of the box. For ellipses (top panel of
Fig. 6), the two available length scales are the semi-axes a > 1
and b = 1, and dimensional analysis imposes ¢ = a £(%). Our
theory does not predict the form of 7; however we observe
a good collapse of the bulk fraction data with a power law
I(x) =x%3,i.e. £=a" b3 For polygons (bottom panel of
Fig. 6), the amplitude of orientation fluctuations is controlled
by the length of the edges (see Eq. (14) and Fig. 4). Parti-
cles are most likely to leave the boundary on the longest edge,
whose length we take as the relevant length scale /.
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=

[ O S
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Fig. 6 Simulated fraction of particles in the bulk as a function of the
dimensionless confinement parameter £D; /v for ellipses of various
aspect ratios a (top) and for three different polygons (bottom; the
polygons are shown next to the curves), where £ is a relevant box
length: £ = a'* for ellipses, and £ is equal to the longest edge length
for polygons, as described in the text. In both cases, the bulk
fraction is negligible for £D; /vy < 1071,

Appendix B: Moment expansion

Here we establish the recurrence relation for the moments
gnls)= [ 9" f(s.0.0) (16

from the steady-state version of the Fokker-Planck equation
Eq. (5):

0= Vo0 df+ %a(,,(w) +D9}f (17)

To this end, we multiply (17) by ¢” and integrate over ¢:
71,'/2d 1y 1 71,'/2d P
0:7 15 : _ n
[0 artg [ doomasion)
D /2
= dpe"dsf (18
v, d00" ks 08

The spatial derivative can be taken out of the first integral on
the right-hand side of Eq. (18); which then reduces to g,1.
The second and third integrals can also be expressed in terms

of the moments by integrating by part once and twice respec-
tively. The assumption f(£7/2) = dof(£n/2) = 0 guaran-
tees that all boundary terms vanish:

/2
/ 1, 199"9(0 1) = —ng (19)

/2
[ﬂ/zmp 9" 92 =n(n—1)gu 20)

Substituting these results in Eq. (18) yields the desired recur-
rence relation:

n D
Asgni1+ —gn—n(n—1)"g,2=0 1)
R Vo

Appendix C: Overdamped Approach

Here we present a derivation based on stochastic calculus of
the main result of the paper: the relationship between the
density on the boundary and the local curvature radius of the
boundary, Eq. (8).

We start from the linearized equations of motion on the
boundary Eqgs. (2) (main text), written in a form that empha-
sizes their equivalence with a Langevin equation for a free
particle with position-dependent friction and temperature:

V=34, Vz—%v—kvoé(t), 22)
where v=vo¢ and (£ (1) (¢')) =2D,8(¢t —1'). Then, eliminat-
ing the momentum variable v (or ¢) by averaging over the fast
time scale R /v is equivalent to taking the overdamped limit.
Since the friction coefficient is position-dependant, care must
be taken to circumvent the “Ito-Stratonovitch dilemma”. The
problem was solved by Sancho et al.®’, who find that s obeys
the following Stratonovitch stochastic differential equation:

§=R(s)E(1). (23)
The corresponding Smoluchowski equation for the density
px,) = (8(x—s(1))) is
dip = Dy dc[RIx(Rp)], (24)
whose steady-state solution is given by

p(x):RC((;)[H/Oxg(‘m. (25)

The two integration constants ¢o and ¢; are determined by en-
forcing the periodicity of p(x):

cidy

=0 = =0 (26
R(y) amh oo

pW=plerr) = [

This journal is ©@ The Royal Society of Chemistry [year]
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and the normalization of density:

L L
/ dxp(x)=N codx
0

N
o R(x) 0=0g 47
where we have used the relation §dx/R(x) = 27 for plane
curves. The resulting expression for p:

N
p(s)= 7R (28)

is identical to that of Eq. (8), obtained by moment expansion.

Appendix D: Angular distribution

To assess the importance of higher order moments in Eq. (7),
we show in Fig. 7 the variance, skewness and kurtosis of the
distribution of the angle ¢ between the boundary normal and
the particle’s orientation in ellipses of various aspect ratios a.
The data comes from the same runs used for Fig. 2. As sug-
gested by the mismatch between the prediction (¢?) = RD,/vo
and the numerical observations on Fig. 2 for values of a not
close to 1, higher order moments can only be neglected in al-
most circular boxes.

Variance Skewness
‘ ‘

0.010 0.3

0.008f { 02
oaf 1
e ' A
0.0 :
0.004f 1 V
—0.1F .

0.002F 1 oo

/2 w 03 /2 w
Polar Angle Polar Angle

0.000

0.95 KUI"TEOSIS

0.20F k
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B—a =15

0.05F .
—> g —

0.0 &W& _3
e

—0.05}

—0.10} E
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Fig. 7 Variance, skewness and kurtosis of the orientation ¢ relative
to the boundary normal in small elliptic boxes of aspect ratio a.
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Graphical Abstract

Confinement of active particles dramatically alters their spatial distribution
and mechanical properties .
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