
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Dynamics of Self-Propelled Particles Under Strong Confinement

Yaouen Fily,∗a Aparna Baskaran,a Michael F. Hagana

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 20XX

DOI: 10.1039/b000000x

We develop a statistical theory for the dynamics of non-aligning, non-interacting self-propelled particles confined in a convex

box in two dimensions. We find that when the size of the box is small compared to the persistence length of a particle’s

trajectory (strong confinement), the steady-state density is zero in the bulk and proportional to the local curvature on the boundary.

Conversely, the theory may be used to construct the box shape that yields any desired density distribution on the boundary, thus

offering a general tool to understand and design such confinements. When the curvature variations are small, we also predict the

distribution of orientations at the boundary and the exponential decay of pressure as a function of box size recently observed in

simulations in a spherical box.

1 Introduction

Active fluids consisting of self-propelled units are found in bi-

ology on scales ranging from the dynamically reconfigurable

cell cytoskeleton1 to swarming bacterial colonies2,3, healing

tissues4,5, and flocking animals6. Experiments have begun

to achieve the extraordinary capabilities and emergent prop-

erties of these biological systems in nonliving active fluids of

self-propelled particles, consisting of chemically7–12 or elec-

trically13 propelled colloids, or monolayers of vibrated gran-

ular particles14–16.

In contrast to thermal motion, active motion is correlated

over experimentally accessible time and length scales. When

the persistence length of active motion becomes comparable

to the mean free path, uniquely active effects arise that tran-

scend the thermodynamically allowed behaviors of equilib-

rium systems, including giant number fluctuations and spon-

taneous flow3,14,16–30. Importantly, a sufficient active persis-

tence length is the only requirement for macroscopic manifes-

tations of activity, as revealed by athermal phase separation of

non-aligning, repulsive self-propelled particles31–41.

When boundaries and obstacles are patterned on the scale

of the active correlation length, they dramatically alter the

dynamics of the system, and striking macroscopic properties

emerge42–52; for example, ratchets and funnels drive spon-

taneous flow in active fluids42,43,46–48. This effect has been

used to direct bacterial motion53 and harness bacterial power

to propel microscopic gears54–56. However, optimizing such

devices for technological applications requires understand-

ing the interaction of an active fluid with boundaries of ar-

bitrary shape. More generally, any real-world device nec-

essarily includes boundaries, and thus the effects of bound-
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ary size and shape are essential design parameters. Although

recent studies have explored confinement in simple geome-

tries43,44,51,52,57–62, there is no general theory for the effect of

boundary shape.

In this paper, we study the dynamics of non-aligning

and non-interacting self-propelled particles confined to two-

dimensional convex containers, such as ellipses and polygons.

We find that the boundary shape dramatically affects the ac-

tive fluid’s dynamics and thermomechanical properties in the

limit of “strong confinement”, in which the container size is

small compared to the active persistence length (the distance

a particle travels before its orientation decorrelates). In partic-

ular: (i) particles are confined to the boundary, (ii) the steady-

state distribution of particles at the boundary is proportional

to the local curvature (see Fig. 1), and (iii) when the curvature

varies slowly, the local pressure exerted on the boundary de-

cays exponentially with the ratio of the radius of curvature to

the active persistence length. Results (i) and (ii) are derived

in the limit of small and slowly varying curvature radius, then

extended to polygonal boxes. They likely hold for arbitrary

convex boundaries, although the definition of “strong confine-

ment” depends on the type of boundary. Together, these three

results demonstrate that the boundary shape in an active sys-

tem can sensitively control the behavior of particles within,

and they constitute a first step in a theoretical framework to

design confinement geometries that give rise to specific mate-

rial properties or device functionalities.

2 Model

We consider an overdamped self-propelled particle with posi-

tion r and orientation ν̂νν = cosθ x̂+ sinθ ŷ whose dynamics is
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From Eqs. (6) it follows that g1 is constant and g2(s)= g2(0)−
g1

∫ s
0 du/R(u). Like f , g2 is a periodic function of s, and

∮ L
0 du/R(u) = 2π for any planar curve64; therefore g1 must

be zero, i.e. there is no density flux at steady state. We close

the system by neglecting ∂sg3. The approximation is exact for

circular boxes for which φ ’s Gaussianity implies g3 = 0, and

should hold when R is nearly constant. It can also be inter-

preted as setting the third cumulant to zero; a standard closure

method. Finally, the normalization constraint
∫ L

0 dsρ(s) = N

with N as the total number of particles, gives

ρ(s) =
N

2πR(s)
(8)

〈φ 2(s)〉= R(s)Dr/v0 (9)

Eq. (8) is our primary result. The density of particles at the

boundary is inversely proportional to the local curvature ra-

dius; i.e., regions of high curvature act as attractors for ac-

tive particles. A more general derivation of this result can be

found in appendix C. The second key result, Eq. (9), is that

fluctuations in φ are controlled by RDr/v0, consistent with the

premise that φ is small under strong confinement. This result

is limited by the validity of our closure approximation and its

scope and relevance are discussed in section 5.

4 Pressure

We now consider the mechanical pressure exerted locally on

the boundary by the active particles, which is equal to

P = ρ

〈

v0ν̂νν

µ
· n̂

〉

=
v0ρ

µ
〈cosφ〉 (10)

with v0/µ the force exerted by a single particle aligned with

the normal. In the strong confinement (small noise) regime

where φ is small, we may approximate cosφ as 1 and use

Eq. (8) to get

P(s) =
v0ρ(s)

µ
=

Nv0

2πµR(s)
(11)

In other words, the pressure on the boundary is proportional

to the density and hence to the curvature.

To get the leading order correction to the infinite confine-

ment (zero noise) limit, we expand the cosine in Eq. (10) to

second order in φ and use Eqs. (8)-(9):

P(s) =
v0ρ(s)

µ

(

1−
1

2
〈φ 2(s)〉

)

=
Nv0

2πµR(s)

(

1−
R(s)Dr

2v0

)

(12)

Note that if the box is circular, the distribution of φ is Gaussian

and we can use the exact relationship 〈cosφ〉 = e−〈φ2〉/2 ‡ to

‡ The relationship follows from 〈eφ 〉 = e〈φ
2〉/2, which is obtained from the

Gaussian distribution’s moment generating function.

get

P(s) =
Nv0

2πµR(s)
e
−

R(s)Dr
2v0 (13)

thus making the expansion in φ unnecessary. Naturally, ex-

panding the exponential in Eq. (13) leads back to Eq. (12).

The decay of pressure with RDr/v0 at low noise was re-

cently observed in 2D and 3D simulations of active particles

in circular and spherical boxes by Mallory et al.59, who dis-

cussed various expressions including those of Eqs. (12)-(13).

In particular, they measured the numerical prefactor in front of

RDr/v0 in Eqs. (12)-(13) and found 0.45 in 2D and 0.9 in 3D,

consistent with our predictions 1/2 in 2D and 1 in 3D (the lat-

ter is a preliminary, unpublished result obtained by extending

our analysis to 3D).

5 Simulations

To explore the domain of validity of our statistical theory

and the physics beyond the low moment closure, we per-

form molecular dynamics simulations of Eq. (1). We consider

v0 = 1 and various Dr in elliptical boxes with major semi-axis

a ≥ 1 and minor semi-axis b = 1 aligned with the x and y axes

respectively. We plot results against the polar angle α rather

than the arclength; thus the curvature radius oscillates between

R = b2/a at α = 0, π and R = a2/b at α =±π/2.

The simulation results are shown in Fig. 2. As expected,

in the circular case (a = 1) the distribution of φ (not shown)

is Gaussian and both ρ and 〈φ 2〉 match the theory perfectly.

Near-perfect agreement between Eq. (8) and the observed den-

sity ρ persists at all simulated aspect ratios. The magni-

tude and qualitative behavior of 〈φ 2〉 remain well captured as

well, but quantitative agreement is lost with increasing a, even

though RDr/v0 is small. This results from the breakdown of

the ∂sg3 = 0 assumption as the distribution of φ departs from

Gaussianity (see appendix D). To improve the theory, one may

push the moment closure to higher orders; i.e., set the nth cu-

mulant to zero for some n > 3. This leads to a non-linear

equation for ρ and g2 that involves derivatives of ρ and R with

respect to s, even for n = 4. These terms suggest that the pre-

diction 〈φ 2〉= RDr/v0 requires not only RDr/v0 ≪ 1 but also

dR/ds ≪ 1, and thus may only hold in slightly deformed cir-

cular boxes.

In Fig. 3 we plot the mechanical pressure exerted on the

boundary, defined by Eq. (10). At low noise, Eq. (11) closely

matches the simulation results over a large range of aspect ra-

tios. This follows from the fact that the density distributions

observed in the simulations closely match Eq. (8) (see top

panel of Fig. 2) and φ is small (see bottom panel of Fig. 2).

In the bottom panel of Fig. 3, we show the effect of angular

noise on the pressure, described theoretically by Eqs. (12)-

(13). Since our prediction relies on the prediction Eq. (9) for
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Graphical Abstract

Confinement of active particles dramatically alters their spatial distribution

and mechanical properties .
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