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Our work represents a first step towards understanding the equation of state of

active systems at high density.
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Soft Matter

1 INTRODUCTION

Aggregation and Segregation of Confined Active Particles’

Xingbo Yang,** M. Lisa Manning,”” and M. Cristina Marchetti¢”

We simulate a model of self-propelled disks with soft repulsive interactions confined to a box in two dimensions. For small
rotational diffusion rates, monodisperse disks spontaneously accumulate at the walls. Atlow densities, interaction forces between
particles are strongly inhomogeneous, and a simple model predicts how these inhomogeneities alter the equation of state. At
higher densities, collective effects become important. We observe signatures of a jamming transition at a packing fraction
¢ ~ 0.88, which is also the jamming point for non-active athermal monodisperse disks. At this ¢, the system develops a critical
finite active speed necessary for wall aggregation. At packing fractions above ¢ ~ 0.6, the pressure decreases with increasing
density, suggesting that strong interactions between particles are affecting the equation of state well below the jamming transition.
A mixture of bidisperse disks segregates in the absence of any adhesion, identifying a new mechanism that could contribute to

cell sorting in embryonic development.

1 Introduction

Minimal models of self-propelled particles (SPP) have pro-
vided much insight into the emergent behavior of non-
equilibrium, active systems where energy is injected at the
scale of the individual constituents. This novel class of ma-
terials spans many length scales, ranging from bird flocks to
bacterial swarms, cell layers and synthetic microswimmers *.
Novel behaviors have been predicted theoretically and ob-
served in simulations and experiments, including flocking?,
large density fluctuations>*, and spontaneous phase separa-
tion®>”. Walls and confined geometries are ubiquitous in re-
alizations of active systems. For example, sperm and bacte-
ria often live near surfaces or in narrow channels, and these
interfaces strongly affect their dynamics®!!. Vibrated gran-
ular rods spontaneously accumulate at the walls even in the
absence of hydrodynamic interactions !>!%. Finally, mixtures
of two types of active particles have been studied as minimal
models of cell sorting in co-cultures and have been shown to
segregate in bulk in the presence of adhesive interactions '4~16.

In this paper we study a minimal model of athermal self-
propelled disks with soft repulsive interactions confined to a
box in two dimensions. The soft repulsive potential is cho-
sen to provide finite energy barriers to particle crossing, as a
way to mimic living cells that are capable of escaping to the
third dimension and cross over each other. Each disk performs
a persistent random walk consisting of ballistic runs at speed
vg, randomized by rotational diffusion at rate D,. We find that
confined self-propelled particles aggregate at the walls pro-
vided their rotational diffusion is sufficiently slow (Fig. 1(a)).
At low density, aggregation occurs when a particle travels bal-
listically across the container. At high packing fraction ¢,

1 Electronic Supplementary Information (ESI) available.

@ Physics Department, Syracuse University, Syracuse NY 13244, USA. E-
mail: xyangl4@syredu

b Syracuse Biomaterials Institute, Syracuse University, Syracuse NY 13244,
USA

Fig. 1 Force chains at time 7 = 2000 for vo = 0.02 displaying (a)
aggregation at D, =5 x 107> and ¢ = 0.672, (b) jammed state at
D, =5x107 and ¢ = 0.896, and (c) homogeneous gas state at
D, =0.005 and ¢ = 0.672. ({Supplementary Movies 1-3)

however, a critical active speed v.(¢) is required for wall ag-
gregation even in the limit D, — 0. The onset of a nonzero
value of v, in our active material correlates with the packing
fraction at which non-active hard disks become “jammed” 17
i.e. exhibit a non-zero yield stress. The pressure of the active
fluid, like the density, is spatially inhomogeneous as the par-
ticles seem to organize to optimally transmit stresses to the
walls, as shown in Fig. 1(a). As the jamming point is ap-
proached, the system becomes more uniform (Fig. 1(b)) and
the pressure begins to decrease with increasing density. This
decrease occurs well below the jamming point and is asso-
ciated with the onset of slow relaxation times due to strong
caging effects that occur over a broad range of densities due
to their activity. This non-monotonic dependence of pressure
on density is unique to active systems. It is consistent with
the non-monotonic dependence of pressure on temperature in
a thermal active gas'® and on system size in a dilute active
gas!”. Finally, this aggregation can be harnessed in a mixture
of self-propelled particles of different sizes that segregates in
the absence of any alignment or attraction (Fig. 5). The sense
of the segregation (i.e., whether the large or the small disks
accumulate on the outside) is determined by a mean field cal-
culation for the energy barrier generated by the repulsive in-
teraction. This segregation is reminiscent of cell sorting in
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embryonic development and is very different from the mech-
anisms that have been previously studied>*>*, which require
differential cell adhesion or repulsion and postulate that cell
sorting relaxes the tissue towards a free energy minimum, as
in thermal systems.

2 Model

We consider a system of N monodisperse disks of radius R in
a square box of length L. The overdamped dynamics is gov-
erned by Langevin equations for the position r; of the center
of the i-th disk and a unit vector u; = (cos 6;,sin 6;) along the
axis of self propulsion,

ori=voui+u) Fij, 06 =n(t), (1)
J

where v is the active (self-propulsion) speed and g the mo-
bility. The particles interact via short-range repulsive forces
F;; proportional to the overlap between two disks, F;; =
k(2R — r;j)Ei;, with r;; = 1; —r; = f;73;, and k a force con-
stant. The angular noise 1 is white, with < n;(t)n;(') >=
2D, 6;;6(t —1') and D, the rotational diffusion rate. Large im-
mobile particles are glued to the walls of the box to imple-
ment the confinement and to suppress crystallization. At low
density, each disk performs a persistent random walk and is
diffusive at long times (¢ >> D,’l), with an effective diffusion
constant D, = v(z) / 2D,%. We treat D, as an independent param-
eter because in many realizations, including bacterial suspen-
sions?2’ and active colloids2, the rotational noise is athermal.
In these systems, D, is also typically two orders of magnitude
larger than the thermal diffusivity, and so we neglect thermal
noise in Eq. (1).

Lengths and times are in units of the particle radius R and
the elastic time (uk)~!. Unless otherwise noted, the size of
the box is L = 83. Particle positions are initialized with a uni-
form random distribution inside the box, and orientations are
random over the interval [0,27]. Equations (1) are integrated
numerically using an Runge-Kutta algorithm for ¢ = 9000
timesteps. This time interval is sufficient to ensure that the
density profile of the system has reached steady state. We ex-
plore the behavior of the system by varying the active velocity
v, the rotational diffusion rate D,, and the packing fraction
¢ =NrR>/L**.
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Fig. 2 (a) Diagram of nested square strips. (b) Gini coefficient vs.
vp at various packing fractions. The rotational noise is

D, =5x 10~ and the total simulation time is T = 9000. (c) Phase
boundaries separating aggregated and homogeneous states in the
plane of vy /L vs Dy. The open symbols are for ¢ = 0.40 and

L = 83,110,130 (circles, squares, diamonds). The straight line is a
fit to that data with v = ALD,, where A = 0.5402. Filled diamonds
are for ¢ = 1.00 and L = 83. The total simulation time is 7" = 2000.
(d) Critical speed at D, — 0 vs. packing fraction.

3 Aggregation and segregation

3.1 Wall aggregation

To quantify wall aggregation and the resulting density inho-
mogeneities we divide the system in na nested square strips
of thickness A (Fig. 2(a)) and calculate the gini coefficient 2

given by g = 2N+‘p,‘ bk lpi — pj|, with p the mean density, p;
iJ

the number density of particles in the i-th strip, and A = 2R.
The gini coefficient provides direct information of the spa-
tial organization of density inhomohgeneitites. It approaches
0 when the density is homogeneous Fig.1(b)(c) and 1 when
all particles are at the wall Fig.1(a). The boundary separat-
ing homogenous states from aggregated states where the par-
ticles accumulate at the walls is obtained by a linear fit to iso-
surfaces of the gini coefficient, and corresponds to g = 0.5,
above which we say the system is wall-aggregated as shown
in Fig 2 (c) for different values of ¢. At low ¢, aggrega-
tion occurs when D, is small and particles travel ballistically
across the container. The phase boundary is well-described
by vo/L o< D,, which is the solid line through the open cir-
cles in Fig. 2 (c). The gini coefficient increases continuously
with vy /Dr, consistent with the result in!!. At high ¢, a finite

* The values of packing fraction quoted below and in all figures have been ad-
justed to take into account the area occupied by the particles glued to the
walls.
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3.2 Pressure

value v.(¢) is required for wall aggregation even in the limit
D, — 0, as shown by the solid line through the closed dia-
monds in Fig. 2 (¢). The dependence on ¢ is seen in Fig. 2 (b),
where the gini coefficient immediately rises from its minimal
value for ¢ < 0.83, and only rises at a finite v. for ¢ > 0.88.
The critical v, as a function of ¢ is shown in Fig. 2(d). The on-
set of a finite threshold for aggregation at ¢ ~ 0.88 coincides
with the jamming point for monodisperse passive hard disks
at zero temperature 7. The result is also consistent with active
jamming in a disordered landscape 28

3.2 Pressure

To quantify force distribution in our active fluid, we have
evaluated the pressure both in the homogeneous and wall-
aggregated states. We define the pressure using the Irving-
Kirkwood (IK) expression for the stress tensor given below >,
augmented by a contribution from self-propulsion. We have
checked that this yields the same result as measuring the force
per unit length on the walls of the container at all packing frac-
tions. This demonstrates that the generalized IK formula pro-
posed below is the correct expression for evaluating the me-
chanical pressure of an active system. The stress tensor g
(with o, B = x,) is naturally separated in a contribution from
interactions and an active contribution, as Oup = G&"ﬁ + Ggﬁ,
with
int 1 a B a 1 a B
Oap = §<2Fz‘j rij>’ Oap = §<2Fi,ari >,

i£j i

@

where F; , = (vo/u)u; is the active force on each disk. The
pressure is the trace of the stress tensor, P = G /2 = Py + Fa,
shown in Fig. 3(a) as a function of ¢ for a small rotational dif-
fusion rate D, = 5 x 107>, For small D,, where the system
aggregates at the walls and exhibits strong density and pres-
sure inhomogeneities (Fig. 1(a)), the pressure is a strongly
non-monotonic function of density and starts decreasing at
¢ ~ 0.672, well below jamming. At this packing fraction
the density gradients start to smoothen, and the pressure be-
comes more homogeneous, as shown in Fig. 4(a), which dis-
plays the interaction force between particles as a function of
distance to the wall. Fig. 4(b) shows the gini coefficients of
density and pressure, demonstrating that the pressure inho-
mogeneity is a direct consequence of density inhomogeneity.
Meanwhile, particles are caged by their neighbors. This leads
to “self-trapping”, resulting in a suppression of their effective
self-propulsion speed, as discussed in recent work on active
phase separation® 73932 In this region, although the system
is fairly homogeneous, the transmission of force is impeded
by crowding, resulting in an increased effective rotational dif-
fusion rate and a sharp decrease in pressure. This description
is supported by the correlation between the compressibility
and homogeneity of the system, Fig 4(b). The decrease in the

forces that particles are able to transmit to the walls is most
dramatic in the active pressure, that seems to essentially van-
ish near ¢ = 0.907, the packing fraction corresponding to per-
fect crystalline order in a triangular lattice. Fig. 3(b) shows
that the pressure non-monotonicity diminishes with increas-
ing D,, and the active system exhibits thermal-like behavior
when vo/L < D,, as suggested by the curve of filled circles.
The analogy with a thermal system and the notion of effective
temperature can, however, be made precise only in the low
density limit. At finite density, repulsive interactions affect
the active system quite differently from its thermal counterpart
even in the limit of large D,, and the pressure of the thermal
system increases much faster than the active one, as shown in
Appendix D. In all cases, the pressure increases steeply above
¢ ~ 0.88 due to enforced overlap.

Pressure

Fig. 3 (a) Total pressure calculated from the IK formula (triangles)
and as the force on the walls (circles) as a function of packing
fraction at vo = 0.02 and D, = 5 x 10~>. The two calculations yield
the same result. Also shown are the interaction (black diamond) and
active (blue squares) contributions to the pressure. The dashed
magenta line is the calculated ideal gas pressure with no fitting
parameters. The black dot-dashed line is the calculated interaction
pressure with ¢ = 1.2. The blue dotted line is the calculated active
pressure with a density-dependent active velocity v(¢) and effective
rotational diffusion rate fo s
rotational noise D;.

(¢). (b) Total pressure for various
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Fig. 4 (a) Interaction force as a function of distance to the wall for
various packing fractions ¢. (b) Gini coefficient of density (circles),
gini coefficient of force (squares) and compressibility (filled
diamonds) vs. packing fractions at vg = 0.02, D, = 5 x 107,

The active pressure can be calculated analytically at low
density from the Langevin equations (1) neglecting interac-
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tions. The result corresponds to the pressure of an active
ideal gas, also discussed in®***. Using (uie(t)u;p(t')) =

e*Dr\l*’/‘&j&xﬁ, we find By(t) = 2’:;2‘2)) (1 e P} for the ideal
active gas pressure. In a container of side L, active particles
eventually get stuck at the wall. For small, but finite D,, we
then define the ideal gas active pressure as Py = Po(f = L/vg),
where L/vg is the time required by an active particle to travel

ballistically through the container. The resulting expression

o pv; ~ —D.Ljvg
B=aup (1 p ) 3)

interpolates between the thermal limit Py ~ pvg/(suD,) for
D, > vo/L and the value Py = pvoL/(2u) for D, < vo /L cor-
responding to N disks each exerting a uniform force vo/u
on the walls. The ideal pressure of an active gas is shown
in Fig. 3(a) as a dashed line and fits the data at low density.
At moderate density the pressure remains a monotonically in-
creasing function of density, but is suppressed relative to the
ideal gas expression. This deviation can be understood as aris-
ing from “self-trapping”, which yields a density-dependent
effective active velocity® v(¢) = vo(1 — A ¢). At high den-
sity, however, the active pressure shows a nonmonotonic be-
havior and decreases with increasing density. This nonmono-
tonicity is indicative of strong caging and cannot be described
solely in terms of a suppression of active speed. A mean-
field formula that fits the pressure over the entire range of
density can be obtained by assuming that caged active par-
ticles repeatedly change direction of motion due to interac-
tion, resulting in an enhanced effective rotational diffusion
rate, fof(d)) = (¢ — ¢c)explo(¢ — @c)], which character-
izes the rate of change in the direction of the actual veloc-
ity v; = d;r;, with ©(¢ — ¢.) the Heaviside step function, and
¢, the critical packing fraction above which this caging effect
kicks in. We emphasize that this occurs well below jamming
and ¢. generally depends on the active speed v, as discussed
in Appendix B. A fit to this mean-field theory that incorpo-
rates density-dependent velocity and rotational diffusion rate
is shown in Fig. 3(a) as a dotted line.

On the other hand, a simple expression for the interaction
pressure can be obtained by modeling the system as con-
centric layers of particles aggregated at the walls and as-
suming that the particle overlap, hence the force that each
layer exerts on the walls, increases linearly as the wall is
approached. This estimate, described in Appendix A, gives

Py =c (%d)z - % 3) , with ¢ a fitting parameter. A fit to

this expression with ¢ = 1.2 is shown in Fig. 3.
3.3 Active mixtures and segregation

The mechanisms responsible for athermal phase separation®
and wall aggregation of purely repulsive self-propelled par-

ticles have remarkable consequences in mixtures. We sim-
ulate a binary mixture of small (S) and large (L) self pro-
pelled particles with diameter ratio 1.4 to prevent crystalliza-
tion. Although different in size, they interact via the same
harmonic soft repulsive potential, with equal force constants
ks; = kss = k1, and with dynamics described by Egs. (1).
The self-propulsion speeds are vg and vy, respectively, and to
reduce the number of parameters we have assumed equal mo-
bilities for both types of particles. To quantify the spatial dis-

C

Fig. 5 (a) Phase diagram showing the segregated and homogeneous
states as functions of the active velocities vg and vz, (small particles
are green and large ones are red) for D, =5 x 107> and a total
packing fraction ¢ = 0.9, with each species occupying half of the
packing fraction. (b) Analytical calculation identifying when
particles with a given active velocity and radius ratio are able to
overcome mean-field elastic energy barriers (solid line). Onset of
particle segregation in simulations (data points). The remarkable
agreement with no fit parameters demonstrates that segregation is
driven by asymmetric elastic energy barriers. A-C are snapshots of
segregated and homogeneous states. The labels A, B, C correspond
to the states marked in the phase diagram. (7Supplementary Movies
4-5)

tribution of the two particle types, we define a segregation co-

efficient S: . s
Z|Pi =7l
l

§—_-
Y max[pF, p]

4

where the shell width A is the large particle diameter and piS L
is the density of small/large particles in the i-th shell. With this
definition, § — O for a uniform distribution of L and S disks,
and § — 1 for complete segregation.

When these purely repulsive disks are exactly the same ex-
cept for their size (vs = vp), the system spontaneously segre-
gates so that the small particles aggregate near the walls and
the large particles are closer to the center of the box. We
choose a critical value of § = 0.5 to differentiate segregated
state from mixed state.

To better understand this suprising result, we study a phase
diagram of the segregation as a function of the two self-
propulsion speeds vs and vy, shown in Fig. 5. We find three
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distinct states: (A) a segregated state where all the large (red)
disks have accumulated at the wall, with the small (green)
ones closer to the center, (B) a mixed state where the par-
ticles have accumulated at the wall, but they are homoge-
neously distributed, hence S ~ 0 and (C) a segregated state
where the small disks are near the walls and the large ones are
near the center. The lower left hand corner of Fig 5 demon-
strates that if both the small and large particle velocities are
too small, the system remains mixed. This suggests that par-
ticles must overcome a finite energy barrier in order to seg-
regate. To quantify and test this assumption, we let vs. (vic)
denote the critical velocity of the small (large) particles in the
limit v;, — 0 (vg — 0). To estimate vs., we derive an analytic
expression for the velocity required for an active small parti-
cle to cross through two immobile large particles in contact
with zero overlap, assuming that the small particle is moving
directly perpendicular to the pair, as illustrated in Fig. 5 (See
Appendix C for details). This is a mean-field theory for en-
ergy barriers in a system exactly at the jamming transition.
We derive a similar expression for v, and calculate the ratio
vie/vse. While the data in Fig. 5(a) are for a bidisperse mix-
ture with diameter ratio 1.4, we calculate the velocity ratio as
a function of the diameter ratio x = Ry /R, obtaining

VLc

L (e Il (R ¥
VSe !

1=+ H2a R+ 12— 1)

)

=X

This function %(x) is plotted in Fig 5(b) as a solid line. We
then extract numerical values of vLe/vse from the segregation
boundary in simulations with different values of R;,/Rs. These
numerical results are the data points in Fig 5 (b). The remark-
able overlap between the theory and simulation suggests that
our mean field theory is valid and that asymmetric energy bar-
riers for particles moving across one another are responsible
for segregation.

We emphasize that the phenomenon of active segregation is
intrinsically different from the “Brazil Nut Effect”3>, where a
bidisperse granular mixture segregates under external shaking.
Our soft active particles are individually driven rather than ag-
itated through boundary forces. As a result, size segregation
in our active system is driven by the asymmetry of the energy
barriers imposed by soft repulsive interaction between parti-
cles as supported by the outstanding agreement between ana-
Iytical and numerical results shown in Fig 5(b), rather than by
the “void-filling”3> or “granular convection”3® mechanisms
proposed to explain the “Brazil Nut Effect”.

4 Conclusions

We have demonstrated that in the limit of small rotational
noise, spherical self-propelled particles spontaneously accu-
mulate at the walls of a container in the absence of any align-

ment or attractive interactions. At high density there is a fi-
nite threshold speed v.(¢) for wall aggregation in the limit
D, — 0. This speed vanishes at low density and becomes finite
near the jamming transition, suggesting that the particles must
overcome a finite yield stress to rearrange and accumulate at
the walls. The pressure displays a startling non-monotonic
dependence on density. When particles are aggregated at the
walls the pressure increases with density, as the particles pack
densely to optimize force transmission. Eventually, as the
system approaches the jamming transition, both density and
force distribution become more homogeneous and the parti-
cles become caged by their neighbors, losing the ability to
self-organize to optimally transmit stress. The net result is
that the pressure decreases drastically with increasing density.
We are currently implementing simulations at constant pres-
sure to interpret this surprising effect that could never happen
in a thermal system.

In a mixture of active disks of two sizes we observe segrega-
tion in the absence of any adhesive interaction, which may be
relevant to cell sorting'*~1¢ and cell-assisted size segregation
of colloidal particles®’.

S Appendix A: Interaction pressure of the ag-
gregated state

For simplicity, we consider a completely aggregated state,
where the active force is balanced by the interaction force.
We work in a coordinate system with axes along the principal
direction of the stress tensor, and therefore drop the label of
component for force and particle position. The trace of the
stress is then given by

1
Gaa:ﬁZFijrija (6)

i#]j

where the summation is over all interacting pairs. As illus-
trated in Fig 6, the interaction forces are transmitted through
chains of particles, resulting in a larger interaction force/stress
closer to the wall. Given that our repulsive force is a linear
function of overlap, we assume that the stress increases lin-
early as the wall is approached. This assumption is supported
by Fig 4(a) in the paper. To proceed, we divide the system into
N nested particle layers, as shown in Fig 6. Each layer has the
width of a particle diameter 2R, area A, and occupies a frac-
tion ¢, = A,/L? of the entire system’s area. We assume that
¢, is also the packing fraction of particles in the n-th layer.
Approximating the area of a layer as the sum of the area of
four equal strips, we can write

A, =8LR—32R*(n—1). (7

Page 6 of 9
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Fig. 6 (a) Snapshot of an aggregated state with force chains (blue).
The nested particle layers are also displayed. The overlap between
particles increases as they approach the wall, indicating an
inhomogeneous distribution of pressure, which is maximum at the
wall, as shown by the force chains. (b) The aggregated state is
modeled as a collection of N nested layers of particles, with a linear
increase of overlap (or pressure) as the wall is approached. Each
layer has area A, and is occupied by active particles of packing
fraction ¢,,.

We assume that the total packing fraction ¢ of the system is
equal to the sum of ¢,

N
Z — (8LRN + 16NR* — L6R’N?) . (8)
Solving Eq. (8) for N in terms of ¢, we obtain
N o+ OR/L) ©)
~ R ;

Now we proceed to calculate the stress. When the system is
completely aggregated, the interaction forces are balanced by
the active forces F, = vo/ . Assuming that the force increases
linearly as we approach the wall, and imposing force balance
between the interaction force F;;‘ on particle 7 in the n-th layer
due to particle j in the n — 1 layer and the active forces, we

can write
Vo

Fi=n—-1DF=0m—-1)—. a0
u
The stress in the nth layer is then given by
oty = i #ZJF']’-r;;. (1)
Inserting Eq. (10), we obtain
1 N/ Vo
e =4 ; PR—(n—1)p 1, A2)

where C is a fitting parameter corresponding to the average
contact number of a particle and N, is the number of particles

in the nth layer. Expanding Eq. (12) and keeping only terms
to lowest order in vo, we obtain

Oga = CcPu(n—1)vo, (13)
where ¢ = % is a rescaled fitting parameter. Using ¢, = ’2’21

and summing over the layers, we obtain an expression for the
total stress as

Ooaa = Z Oaa = / Oqaln

N [8Rcvg 32R%cvy o
- [ L Lz<’”>}d”

where the sum over layers has been replaced by an integration.
Carrying out the integration we find

(14)

(n—1)—

4Rcv, 32R%cv
Oaa = O(N*I)Z*#O(Nflf

3L 15)

4Rcvg | 5 32R%cvg a3 Lvy Lvy

a2 N-— N —p? - —¢°
L 312 16R 48R
The pressure of the system is defined as
Oaq

P=— 16
5 (16)

To fit the data for k=1, u =1, R=1 and L = 80 yields
¢ = 1.2, corresponding to an average contact number of 6.

6 Appendix B: Non-monotonic active pressure

0.06/ | O vg=0.01
O vg=0.02
005 LA v =003
_A-AA' "X
@ 0.04 Ax >
> A A
$ 0.03 & c0®ea_ A
o i« O N %
002t A T o] A ]
ot gE-ErEr . s
001N - EL{LU QN
0 =l .08
0.2 0.4 0.6 08

Fig. 7 Markers: Active pressure as a function of packing fraction
for various active speeds vo and D, = 5 x 107>, Dashed line: Fitting
using expression of ideal active gas pressure with density-dependent
velocity and density-dependent effective rotational diffusion rate.

The suppression of self-propulsion due to caging can be
incorporated in a mean-field fashion by replacing the active
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speed vp in the ideal gas pressure by a density-dependent
speed v(9), as suggested by recent work on phase separation
of active particles®. We also speculate that crowding effec-
tively increases the rate of rotational diffusion as particles rat-
tle around the confining cage and incorporate this effect into a
density-dependent effective rotational diffusion rate D‘;f f (9),
which is enhanced at packing fraction above ¢., where the
active pressure starts to decrease sharply. A fit to the ac-
tive pressure for various active speeds vy using the ideal gas

2’;‘3 (1 fe’D’L/VO) with v(@) =vo(1 —A0) re-

placing vy and fof(d)) = O(¢ — ¢.)expla(d — ¢.)] replac-
ing D,, where ©(¢ — ¢.) is the Heaviside step function, is
shown in Fig. 7 as dashed lines. The fitting parameters are
A =0.8 and @ = 13. The critical packing fraction ¢, in-
creases with active speed vg, where ¢. = 0.616, 0.672, 0.728
corresponds to vo = 0.01, 0.02, 0.03 respectively. This sug-
gests that activity counteracts the effect of crowding, which
is consistent with the “unjamming” of the system as activity
increases (Fig. 2(b)).

formula Py =

7 Appendix C: Segregation barriers

To evaluate the barrier that particles must overcome for segre-
gation, we consider the geometry shown in Fig. 8 displaying
a small active particle of radius Ry that has to make its way
through two immobile large particles of radius Ry. For the
small particle to travel through the barrier imposed by the two
large ones, the active force vo/y has to overcome the maxi-
mum of the repulsive force Fy.p. This defines a critical active
velocity vs. for the small particle. To calculate this barrier we

F F

Fig. 8 Minimal model used to evaluate the barriers of segregation: a
small active particle pushing its way through two adjacent, immobile
large particles. Rg and Ry, are the particles’ radii. The small particle
initially just touches its neighbors, then travels a distance d
vertically with active velocity F; = vo/l. F is the repulsive force
between two particles. Other geometrical quantities are as labelled.

assume that the small active particle initially just touches its
neighbors, then travels upward a distance of d. At this point,
the net repulsive force is

Frop = 2Fsin0 | (17)

where F = k[(R, + Rs) — 1/(I—d)>+ R3] is the repulsive

force between two particles and sin® = I'/s. Geometrical
(I—d)>+R; and

I = /r? 4+ 2RgR}, allowing us to express F. solely in terms
of d.

The critical active velocity vs. is defined as the maximum
value of uF,.,(d). This gives

considerations lead to I' =1—d, s =

Ve = 2ukl(Re + Ro) R AT1 — (1 ) )
L
Ry s (18)
x[(14+ 1]
This is the critical velocity of an active particle with radius Rg
pushing through two immobile particles of radius Ry,. The crit-
ical velocity for the reversed configuration, corresponding to
a particle of radius Ry, pushing through two particles of radius
Rg, can be obtained by interchanging Rg and Ry. Segrega-
tion occurs when either species has an active velocity above
the critical value. Note that particles with different radii have
different critical velocities. If, for instance, Rs < Ry, then
vse < vie. and small particles will aggregate to the outside,
next to the wall, when both species have the same active ve-
locity.
Finally, the ratio of active velocities of the two species can
be written as a function of their radii ratio as

[1—(1+x)"232[(1+x)>3 1]
L=+ DA+ 1P - 1]
where x = Ry, /Rs. This result is compared with the numeri-

cal result in Fig.5(b) of the paper. The excellent agreement
supports our simple model.

1
v 2
—LC =x 3
Vse

; 19

2
1
2

8 Appendix D: Comparison with thermal gas

In the limit vo /L < D, the pressure of an ideal active gas given
in Eq. (3) takes the form of the pressure of an ideal thermal
gas, with an effective temperature kgTeqr = v3/(2uD,), corre-

sponding to a thermal diffusivity D, = ukgT,ry = %. This
suggests that in this limit it may be possible to map the active
system onto a thermal one with an effective temperature. Fig-
ure 9 compares the pressure of an active gas for vop = 0.02 and
D, = 0.005 to that of a thermal gas with the corresponding
value D; = 0.04. Also shown is the analytical expression of
Eq. (3). Although the three curves overlap at very low density,
the pressure of the thermal gas rises much more rapidly than
that of the active gas with increasing packing fraction, indicat-
ing that repulsive interactions are more effective in building up
pressure in the thermal system. Surprisingly, the pressure in
the active system falls slightly below the active ideal gas limit
at intermediate packing fractions.
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Fig. 9 Pressure as a function of packing fraction for an active
system with vg = 0.02, D, = 0.005 and L = 80 (blue circles) and of
a thermal system with D; = 0.04 (red triangles). The black dashed
line is the calculated expression for pressure for the ideal active gas
pressure given in Eq. (3).
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