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The structure and assembly of soft particles is difficultharacterize because their interpenetrability allows theive packed

at ever higher density albeit with an increasing penaltyriargy and/or pressure. Alternatively, the use of impebé&traar-
ticles (such as hard spheres) as a reference model for stiftlgs can fail because the packing densities are limitethle
impossibility of complete space filling. We recently inteatd the stochastic penetration algorithm (SPA) so asdwvdbr the
computationally efficient integration of hard sphere medehile including overlaps seen in soft interactions [Cregeal., J.
Chem. Phys$.2013,138, 244901]. Moving beyond the initial one-dimensional caselied earlier, we now consider the spatial
properties of systems of stochastically penetrable sghiedimensionsl < 3 through the use of molecular dynamics simulations
and analytic methods. The stochastic potential allowsrgshi® either interpenetrate with a probabilityor collide elastically
otherwise. Fod > 0 the patrticles interpenetrate (overlap), reducing thectiffe volume occupied by the particles in the system.
We find that the occupied volume can be accurately predictedyanalytic expressions derived from mean field argunfents
the particle overlap probabilities with the exception otduserved clustering regime. This anomalous clusteringdiehoccurs

at high densities and small We find that this regime is coincident with that observedetedministic penetrable models. The
behavior of the stochastic penetrable particles also ateicthat soft particles would be characterizable throwghgle reduced
parameter that captures their overlap probability.

1 Introduction suspension$, polymer-colloid mixtures star polymers and
globular micelles’ and dendrimers?

The aggregation of small molecular motifs into macromolec- The generalized exponential model of index(GEM-
ular structures gives rise to assemblies and materialsdigth  p) 1112

tinct emergent behavior. For processes in which intermolec VCEM () — eexp{— (L)"] 1)

ular forces drive self-assembly, such as polymerizatioth an '

colloidal flocculation, a theoretical formulation is oftém is a prototypical bounded potential. The softness of the po-
tractable from microscopic statistical mechanics due ® th tential is specified by the parameter For the exponential
complex spatial arrangements of the resulting composition parameter value = 2, the GEM-2 becomes the Gaussian
The study of such systems is often relegated to purely compuzore (GC) model® The potential (1) is finite valued at= 0
tational methods, but because of the large number of atoms @hd this gives rise to complex phase and thermodynamic be-
which they are composed, macromolecules are difficult te simhavior.14-16 In modeling solutions of micelles, Marquest and
ulate on relevant biological and chemical length scalese Th Whitten introduced the penetrable sphere (PS) métiel,
computationally taxing procedure of simulating large eyst

can be accelerated by reducing the atomic degrees of freedom VPS(r) = { 0, r>o, @)

to a coarse-grained descriptidr® In the coarse-grained pic- & r=o.

ture, macromolecules can be treated as overlapping pEticl
when soft interaction potentials allow them to interpeatetr
relative to their radius of gyration. The complex nature of
soft matter interactions is manifested in systems with theo
logical and structural properties that are absent in sirfiple
ids.*=® Previous modeling of soft matter systems using a clas
of potentials that are finite valued at the origin, boundeepo
tials, has elucidated the phase behavior and structurdlofato

)

The PS model is the limiting form of the GEM as— oo,
where o is the diameter of the particle ardis a finite en-
ergy. Only ass — o does the PS model take the form of the
ubiquitous hard-core (HC) potenti&;?! otherwise the par-
ticles have a non-zero probability to overlap due to thedinit
Tature of the energy barrier. Fer= 0 the PS model repre-
sents the ideal gas. The PS model is perhaps the most well-
studied bounded potential. Its simplicity allows for thegtic-

@ Center for Computational Molecular Science and Techngl@&ghool of tion of O_bservab_l_es of the system th_azliéln mOSt cases aredenv
Chemistry and Biochemistry, Georgia Institute of TechgpldAtlanta, GA, able using modified HC argumerﬁ%. As is common with
USA; E-mail: hernandez@chemistry.gatech.edu the completely repulsive HC potential, the PS model has been
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extended to include attractive regidfis® for the purpose of  stochastic collision outcome. The probability of penérat
modeling complex fluids. is thus uniformly distributed over the entire energy dimiri
When particles are allowed to interpenetrate due to thaion. The ensemble average of these outcomes generates spa-
bounded nature of the potentials that govern their intemast  tial configurations that are analogous to those found byrdete
the effective volume occupied by the particles in the syseem ministic bounded potentials such as the PS model. The effec-
reduced from the non-overlapping value. The spatial propertive pairwise potential is determined By It replaces the de-
ties of such systems are of interest not only in macromoéecul tailed forces in the interaction (or collision) region wheov-
assembly, but also in modeling the structure of porous meing from the all-atom to CG representations. Thus the SPA is
dia.33-36While the volume occupied by soft-edge potentials,a HC model augmented only by a single pairwise parameter,
like the GC model, is ill-defined due to the lack of a distinct characteristic of a particles softness, connecting detésm
spatial boundary, the geometric properties of systems witlic systems governed by Newtonian mechanics to a stochastic
hard-edge boundaries are amenable to both andiyfitand  system governed by non-Newtonian mechanics.
computer studie§!—*4 In order to bridge the dynamics of a  When the particles are allowed to overlap, a fundamental
system between completely hard and completely ideal behawbservable is the volume fractigmoccupied by the particles
ior, Blum and Stef® introduced an abstraction of a bounded in the system. We find thap can be predicted using prob-
potential, called the permeable-sphere model (PSM). Withi abilistic arguments and that the system’s structural biehav
this model the radial distribution functiam(r) is constantin  is approximately that of deterministic soft potentials. ush
the penetrative region (PR)Or < ¢ and equal to a penetra- when a system’s degrees of freedom are coarse-grained, the
tion parameted, representative equations of motion can be considered proba
g2(r) =0. (3)  ilistically as well as deterministically. This result hdisect
gapplications in modeling macromolecular assemblies where
previously, deterministic bounded potentials have beén ut

In this article, a stochastic penetration algorithm (St943 lized to probe the spatial structure at the coarse-graesl.|

used to model penetrative particles. In the SPA, the outcome The paper is outlined as follows: The numerical methods
of collisions between particles are governed by stochastit!S€d o simulate and measure the volume occupied by a sys-

rules. Through a penetration paramelem mixture of com- tem of particles governed by a stochastic collision ruledere

pletely hard and completely soft interactions are consédic scribed in Sec. 2. Their structure can be characterizedéy th

The PSM model can be equated to the SPA model only ifadial distribution functiomy(r). Amapping ofgy(r) between
the limit of infinite dilution. For finite densities, the mix- the SPA and soft-particle systems is used in Sec. 3 to obtain a

ing of stochastic collision events in the SPA generates comcPrespondence between an SPA model hithody penetra-
plex spatial configurations and non-linear behaviorggr) ~ toN Parameter to a soft-particle system with pairwise soft-
in the PR and thus Eq. (3) does not hold. The dynamics opessé . Ana_lytlc theorles capable of pre_dlctlng the occupied
single-particle trajectories evolved through the SPA ame-n  Volume in dimensiord < 3 for SPA particles are presented

Newtonian as particles are allowed to enter classically pro!" S€C. 4 and tested by comparison between the results mea-

hibited regions subject to the outcome of a stochastic variSured from molecular dynamics (MD) in Sec. 5. Finally, in

able. However, by combining these hard and soft collision>€¢- 6, We conclude by summarizing the extent to which the
outcomes, the SPA generates ensemble averages thathetain o7/ Model can be used to obtain structure and dynamics of

pertinent features of analogous deterministic systenth as ~ cOrresponding soft-particle systems, and the extent tefwhi
the PS model. coarse-grained models can be enhanced through the use of the

Thus, the PSM uses one parameter to bridge the limiting b
haviors.

In coarse-grained systems that are governed by impose%PA'
Hamiltonian dynamical rules, the probability of enteringea
pulsive potential region is dependent on the relative \iglad 2 Numerical Methods
the two colliding particleg? If the relative velocity between a
colliding pair is below the respective energy thresholdifat 2.1 Model and Simulation Details
region, the result is a turning point for soft-edge potdstiae

the GC_Z model, or an impulsive elastic collision in hard-edgeN — 1000 spheres with each sphere having a { diam-
potentials such as the PS model.

o - . eterg. These simulations were performed id-alimensional
In the SPA model, the kinetic energy of a colliding F?a'ré)eriodic hypercube with sides of length The volume of a
single sphere in dimensiahis

Dynamical simulations have been performed on a system of

with a relative velocity of small magnitude will sometimes
overlap, traversing the now penetrable core. Moreovert a se

of particles with large kinetic energy can be repelled by the vt

d) nd/2 (o)d @)

T T(+d/2) \2
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cluster size

4 ) 6

Fig. 1 Selected spatial configurationsidf= 1000 spheres &ty = 0.4 for 6 = 0.025 (left),d = 0.25 (middle), and = 1 (right). The
particles are colored according to cluster Sikge

The HC volume fractiomy, is the occupied volume fraction of at time to + 7, then a new random numbey; &co + 7) is
the system when no spheres overlap. In dimendiche HC generated and the acceptance algorithm is repeated.
volume fraction is

@ NV The SPA procedure generates the following stochastic poten
=—a- (5)  tial between spherdsandj:
If the spheres are allowed to overlap due to softness in the 0, r>o,
governing potentialsg, is an upper bound to the actual vol- VijSPA(r) ={ 0, r<o anda;j(teo) <9, (6)
ume fractiong, i.e., < . In simulation, the box volume? o, r<o anda;j(tco) >0,

is changed to reach the targgtvalue while keepindN con-

stant. In the SPA, penetrability is realized by using a singl with the random numbeg;; giving rise to the stochastic nature

parameter < & < 1. The limiting values of this parameter, of the interactions. The potential (6) is used to constriict a

& =0andd = 1, correspond to the HC and the ideal behaviorpairwise interactions in the SPA simulations.

limits, respectively. When the stochastic interaction varialalg (tco) < 0 the
The SPA algorithm is implemented as follows: particles penetrate each other without interacting leadin

pairwise ideal behavior. For trajectories widh= 1, all pair-

1. For every MD trajectory a value of the penetration proba- wise interactions are ideal. In this limit, the structuredan
bility 6 € [0,1] is preassigned and maintained throughout dynamics are completely ideal with no spatial correlatien b
the trajectory. tween particles.

: . R : For trajectories withd = 0, all pairwise interactions are

2. When a pair of spheres i and j collide at timg ta random governed by a HC potential and the dynamics observed are

Eutmberﬁ].(tc"') i[o’ 1]is gbene(;a'ied fr_om a umfor_:n distri- that of ad-dimensional hard sphere system. For 0O, the
pution. This random number determines, upon its Comloar'particles can take on overlapping configurations. When the
ison tod, whether or not the pair of particles will interact.

. . . particles overlap, clusters are formed. The §izé) of a clus-
I aj (teol) > 5 they interact via a hard p_otentlgl, other- ter is defined by the number of spheres connected by overlaps
wise the particles penetrate each other without interagtin toi other particles, self-inclusivé’ As illustrated in Fig. 1, the
3. For the overlapping particles which do not interact, this distribution of cluster sizes is strongly influenced by tadue
relationship between ia(teo) and & is maintained until  Of 0. At small & the system consists of mostly monomers
rj > o, i.e. the zero interaction potential is kept until the @nd dimers. For intermedia@, higher order oligomers are
pair breaks apart. formed. Ford =1 the particles have no spatial correlation
and are Poisson distributed. In this state, the structutheof
4. If the same pair of particle§, j) undergoes a new collision system is dominated by transient high order clusters.

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-14 |3



Soft Matter Page 4 of 15

In the SPA, the positions and velocities of each particle ar®.2 M easurement of the Occupied Volume Fraction
updated through a time-driven hard-sphere algoriffivhen
collisions occur &; (tco1) > 0), they are elastic and thus the For systems consisting of particles with well-defined spati
total kinetic energy of the system is conserved. The paenti houndaries, a fundamental observable is the occupied elum

energy of the systeM is also constan/ =0, as given by (6).  fraction. Through the introduction of an indicator functf8
For deterministic dynamical systems governed by soft poten

tials, such as the GEM, the kinetic energy is not conservedd an
the total energy of the system is varyingly partitioned ithte I(r) = {
potential and kinetic terms.

1, if r € particle phase
0, otherwise,

@)

The initial positions of the particles are chosen by placinga spatial coordinatecan be classified as belonging to the par-
their centers at distinct points on a uniform lattice. Th&éah tjcle phase or the void phase. The occupied volume fraction i
velocities are sampled from a Maxwellian distribution eerr  the expectation value of the indicator function,

sponding tal = 300 K, although for the athermal potential (6)
the choice of temperature is arbitrary.

@=(Ir)), ®)

The simulations are partitioned into two stages: an initial

spatial relaxation stage and a second sampling stage. he firy e the domain of all pointsin the simulation subspacé.
stage is implemented to achieve a spatially relaxed stdter A
the initial velocities are assigned, these velocities esealed
such that the total energy of the system, for every trajgctor
becomesiNks T /2. The system is then aged for<3a.0° colli-

Determination of this volume fraction for a system of over-
lapping patrticles is non-trivial and often computatiopa#x-

ing to measure in simulation. Two of the most used methods

sions to achieve a spatially relaxed state (both hard anétsof 0 Measurep azrgﬁ/léloznte Carlo (MC) integratidi#*" and the
teractions are counted as collisions in this phase). Asraede GRID method=>">
previously*® ¢ relaxes to an equilibrium value quickly during ~ The MC approach involves generating a large number of
this equilibration phase. During a second sampling stadfie, arandom coordinates iff’, and checking if those coordinates
statistical data is generated by sampling the system ataniins are overlapped by any particle from the system. The ratio of
time intervals. The details for the exact methods used te santhe number of sampling points that are overlapped to thé tota
ple the studied observables are discussed in Sections @.2 anumber of points generated g as given by Eq. (8). The
3. GRID method involves discretizing the sampling spacato
uniform bins. These bins are then probed individually to see
The HC volume fractions chosen for the study in oneif any particle overlaps with the chosen bin. The ratio of the
dimension were in the rangg < [0.1250.968. A one-  number of occupied bins to that of total binsgs
dimensional gas does not exhibit a phase transificand
therefore the system remains in the isotropic phase wittién t
range of volume fractions. An isotropic-solid phase traosi
occurs for HC systems only in dimensions greater than one.

The accuracy of both the MC and GRID methods increases
with an increasing number of sampling points or bins used.
However, the trade-off to this increase in accuracy is an in-
crease in computational time. Thus, the number of sampling
oints or bins is often chosen such that there is an acceptabl
alance between statistical accuracy and computatiofial ef
ciency.

A system of hard disks in two dimensions undergoes arg
isotropic-hexatic phase transition @ ~ 0.7 and a hexatic-
solid phase transition &b ~ 0.73.4%:59The HC volume frac-
tions chosen for the study in two dimensions are ranged Although algorithms that give an exact measure of the oc-
@ € [0.1250.75). In three dimensions, freezing occurs at cupied volume are known in one and two dimensiéhs?we
@ ~ 0.491 and melting afn ~ 0.543 with isotropic-solid co- have used the MC sampling method to maintain a uniform
existence occurring between these two volume fractiéns methodology for all dimensions studied. We have found that

In three dimensions we have studied volume fractigns ~ MC gives an acceptable mix between ease of implementation,
[0.1,0.5]. computational efficiency, and statistical accuracy. Tosnea

@, for each parameter séb, @}, 10* frames were integrated
In general, wherd # 0, the observed volume fractiapis  using 1 sampling points per frame. A single trajectory was
much less than the HC volume fractign. When the particles evolved to generate the configurations used for integration
are allowed to overlap, the phase boundaries present in HErevious studies using 8000 trajectories yielded the same r
systems cease to exist and complex phase behavior can ocauits, up to finite size effect® thus confirming the ergodicity
as the particles form clustef$;28:54-56 of systems evolving through Eq. (6).

4|  Journal Name, 2010, [vol]1-14 This journal is © The Royal Society of Chemistry [year]



Page 5 of 15

Soft Matter

3 Radial
Mapping

Distribution Function and (-

confinement effect gives rise to tlge(0;0) > gx(0 ;) be-
havior. It is interesting to note that while particles bejony
to the cluster have no intracluster interactions, the aiars-

When a macromolecule’s atomistic degrees of freedom are rdiC concavity ing(r) is also observed in deterministic models

duced to a coarse grained description, the effective patent

in which clustering is brought on by intermolecular and in-

. . : i 122-24,56
between the coarse-grained structures can be modeled usifigmolecular interaction*=24

bounded potentials. The bounded, i.e., finite, nature afehe
potentials allows for the centers of mass of the coarsargaai
macromolecules to overlap relative to their radius of ggrat
o. This leads a characteristic featuregs(r) where there is
a non-zero probability to find the interacting macromolesul
directly on top of each other, i.egp(0) # 0. This is in con-
trast with simple fluid interactions in which the excluded-vo
ume of the nuclei give zero probability to find the interagtin

molecules in a completely overlapped state. The softness of

the governing coarse-grained potentials leads to cluster f
mation'?28:54-56and complex functional forms fagy(r) in
the penetrative region (PR) defined bguch that 6< r < 0.

The pairwise softnesd can be be mapped to a heurigtle
body softness parametér to account for multi-body induced
effects in the pairwise potential through the weightedritigt
tion of energy states in the PR. In dimensihrwe define this
parameter as the probability to find a particle in the PR, with
respect to a test particle, for a specific valu&dphormalized
by the ideal § = 1) probability,

/U (d-1g-BwWa(rid) g
0

/ " po-lgPualril g
0

(10)

For systems that evolve through the potential (6), the funcFord = 0, {y = 0 because particles are not allowed in the PR
tional form ofg(r) depends on the pairwise penetration prob-and ford = 1, {y = 1. Thus, the limiting values ofy are in
ability & and therefore it must be included as a parameteragreement with the limiting values 8t

G2 = G2(r; 9).
In the dilute limit, when three and higher order interaction
can be neglectedy,(r;d) is constant in the PR and equal

The results given by Eqg. (10) in one, two, and three dimen-
sions are shown in Fig. 3(a), (b), and (c), respectively. The

trend in Z\Sd) is the same across all dimensiahsAs we will

to 8. As the density of the gas is increased multi-body ef-show, ¢ has distinct trends that depend highly on the dimen-
fects dominate the potential of mean force. In the languége osionality of the system. We conjecture, and illustrate in. Se

the Ornstein-Zernike formalism, indirect contributiorend-
nate the structural assembly whereas the direct contoitsiti
leading togy(r) = & are small. When these indirect contri-
butions are strong, as is the case in deNskody systems,

g2(r; 0) # 6 due the multi-body effects. The potential of mean
force (PMF)wy(r; d) between a pair of particles can be ex-

tracted fromgy(r; &) through the relationship

Go(r; 8) = & Prelr®), ©
where3 = 1/kgT.

Figure 2 showsyy(r;d) for a one-dimensional system at
@ € {0.25,0.5,0.75} over various values a¥. For g = 0.25,
the radial distribution function approaches constant biena
for r < 0. At higher @ values, in the PRgy(r;d) # & and

that these dimensionally-variant spatial effects can peucad
by a different softness parameter,

/ % e Bua(ri®) gy
0

(@) ="——"—,
/ 7 o Bwlrid) gy
0

(11)

using line (contour) integrals of the Boltzmann-weighted
states over the PR along the one-dimensional line conmgectin
the centers of a given pair of particles. Tl defined by
Egs. (10) and (11) are equivalent in one dimenstbs: (1) but
differ dramatically at highed. As will be seen below, the pa-
rameter{, is more effective in following the trends observed
for spatial properties, and specificalpy as the system dimen-
sionality is increased.

particles have a propensity to be in overlapped states which Figure 4(a) shows(, as a function ofd for a one-

is evident by observing tha,(0;0) > gz2(0~; d), with the
equality holding agy — 0. (Note thato~ ando™ correspond
to the approach of to o from the left or the right, respec-

dimensional system. Th& values are calculated by numer-
ical integration of Eq. (11) fogy(r;d) values obtained from
MD simulations. At the dilute densityy = 0.125, . weakly

tively.) The reduced volume state arises from the overlap ofleviates from the ided value. Asg, is increased toward the

effectively-ideal particles into clusterbl{ > 2). The particles

maximum HC packing fractiong, = 1, a characteristic shape

in the cluster are free to overlap at no energy cost as the inteoccurs. For smal, the (. values deviate strongly from ideal

action between them is ideal. If the cluster has HC inteoasti
with a shell of particles surrounding them, the HC intei@uasi
push the clustering particles into a completely overlapgtatk

behavior. Asd is increased toward the ideal limid,= 1, {|.
deviates less strongly. This effect is induced by the SPA, as
the particles in the system are not strongly correlated when

forcing the cluster to minimize the occupied volume. Thisthe probability of collision is small.

This journal is © The Royal Society of Chemistry [year]
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Fig. 2 The radial distribution functiogy(r; ) for one-dimensional
rods(d = 1) measured from simulations at variogsandd values
using a histogram bin width af /300. The integration was
performed for each set of parametéyp, 0} over a varying number
(5x 10° — 2 x 10°) of configurations.

1.0 [ T T T T
0.8
- >0.6
04 >
i — $,=0.968 $y=0.375 1
0.2 $y=075 — =025
$y=05  — $,=0.125 |
O 1 l l ]
1‘0 L 1 1 1 1
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~0.4
- — $,=0.75 $,=0.375 1
0.2 $y=0.65 — ,=0.25

$y=0.5 — ¢,=0.125 |

Fig. 3 Z\(,d) as a function ob, at variousg values, for systems in
(@d=1, (b)d =2, and (c)d = 3 dimensions. The black dashed
line corresponds to the infinite dilution limit.
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Fig. 4 ¢, as afunction 0B, at variousg values, for systems in (a)
d=1, (b)d =2, and (c)d = 3 dimensions. The black dashed line
corresponds to the infinite dilution limit. The black solid line in (c)
is the{,. = 1 upper bound.

In two dimensions, as shown in Fig. 5, the trendgf; 9)
are generally the same as those seen in one dimension. The
HC volume fractiongy = 0.75 is above the solid phase tran-
sition andgx(r;0) begins to take on the characteristic shape
of a solid. Forgy = 0.75 andd = 0.01, g»(0;0) > gz(0™;9)
showing that the density of the system is greatest insidththe
PR. This affectg| strongly, as shown in Fig. 4(b) where the
{L /¢ ratios are larger than those in one dimension for small
0.

In Fig. 6, the measuredy(r;d) functions are shown for
a system of three-dimensional spheres at varigyigind &
values. For smalb and large@, highly overlapped states
are heavily favored angy(0;0) > g»(o*; &) with respect to
one and two dimensional systems. In this laggesmall-d
regime, overlapping configurations dominate in the distrib
tion of particles. This clustering state is analogous tositre
called“cluster anomaly”found in the deterministic (GENY
model8 In the SPA it leads to a turnover in ti{¢ function
for larger packing fractiongy as shown in Fig. 4(c), whereas
in one and two dimensional systesis a monotonically in-
creasing function od at ¢.

The trends observed igy(r; ) suggest that as the dimen-
sionality is increased, pairs of overlapping particlesdmee
more confined by the first solvation shell. Fbe 1, the num-
ber of neighboring sites is 2. For a patrticle to be allowed
to leave a cluster, there must either be a cavity available to
accommodate the particle, or a neighboring site must switch
interaction from HC to ideal, i.e., a random numlagtc,))
generated at the time of collision must be less than/ith
increasingg, the probability to find a cavity with enough
free volume decreases. Thus, for a particle to leave a cluste
it must do so through a stochastic switching of interactions
As the dimensionality is increased, the number of neigimgpri
sites also increases due to the respective packing geesetri
With increasingl, the particles in a cluster interact repulsively
with more neighbors. This increase in the number of neigh-
bors forces the cluster into a heavily overlapped states Thi
phenomenon is manifested in the trendsgefr; d) discussed
above.

4 Theory

In this section, we derive two expressions for predicting th
occupied volume fractiorp of a system of SPA particle with
hard core volume fractioy. The first one is an analog of

an expression derived by Rikvold and Stell (RE for the

PSM using the Kirkwood superposition approximatfrhut

now obtained for a system of particles evolving through the
SPA. The second expression relies on mean field arguments
for the conditional probabilities of finding a pair of patés

in an overlapped state as particles are sequentially addbd t
system.

This journal is © The Royal Society of Chemistry [year]
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Fig. 5 The radial distribution functiogy(r; ) for two-dimensional
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4.1 Kirkwood Superposition Approximation for SPA As the thermodynamic limit is approachegN-SPA Noeo
particles @RS-SPA
Multi-body interactions leading to clustered states, can
drastically affectp in the SPA model. To account for the in-
direct, multi-body induced effects{ must be used in place
of 8. The general Kirkwood approximation for tlketh order
correlation function inl-space is

In the PSM? the pair correlation functiow,(r) is taken to
be a constant in the PR. In this limit, we can deffhes used
in the SPA model, as that constant, igx(r;d) = 0. Thus,

in analogy with Egs. (10) and 11, boﬂ{yd) and(, for any
dimension, are equal , i.e.,

{Lv(d)=20. (12) g =) 2 . (22)

This is the limiting case of the SPA model at infinite dilution T analog to the finit&l-SPA expression, Eq. (19), far in
To predictg in the PSM, RS also used the Kirkwood SUPErpO-7_snace can thus be written as

sition approximatiofi* for higher-order correlation functions,

3N ()"
(et = [ @), (13) CSPAN, 0,2 (5)) = — ( > © (@3
L FEN®LE) =5 | ) e o @)
€.9. with the replacement from Eq. (22) serving to account for the
G(r1,...,r3) = 5, (14) overlaps betwegn thg particles. In practice, the value_';’scm‘n
5 be estimated using either Eq. (10) or Eq. (11). We will reer t
9a(ry,...,ra) = 0%, (15)  these as thé,-SPA and the/ -SPA, respectively.

and in the thermodynamic limigN — oo, L9 — oo N/L% = . .
const derived a dimensionally invariant expression for the oc-4.2  Sequential Iteration Method

cupied volume fraction through a power seriegjP3:3°:59.60 . L
P ghap i A more accurate expression for estimatipgvas constructed

RSP ® (_%)k K(k_1) in Ref. 46 through the sequential addition of particles tg-a h
P @, 0) =5 w07 (16)  percube with volumé?. Although it was derived for the one-
k=1 dimensional case, all the arguments of this sequentialtiter
where @ is the volume fraction for a HC system. From method (SIM) remain valid for systems dfdimensional pen-
Eq. (16), the limiting values o give, etrable spheres with arbitrary dimensidn Within the SIM
approximation, the occupied volume fraction
%@, 0) = @, 17)

RSP @, 1) =1-e . (18)

@M(N, @,(5)) = o™, (24)

. . . : remains a function oN, @ and the penetration parametr
Equation (17) is the HC volume fraction, given by EG. (3). (see Eq. (11) above). The RHS of Eq. (24) is Mparticle
Equation (18) is the Poisson distributed redtf¢for the vol- 1 < °C e occupied volume fractiopé) for n par-
ume fraction of particles with no spatial correlation attther- ticles. Each such fraction can be written as
modynamic limit. '

Far from the thermodynamic limit (small), Eq. (16) must N LI
be replaced by its finite variarif, o =1- DQ( ', (25)

N N k . .
OV SPAN, @, 3) = — > <':> ( qf) 57, (19) whereQl) is the conditional probability that a random point
k=1 N Xr hot in the covering of the first— 1 particles is also not

. . . - _ ver he-th particle. Th r ilities are foun
Where(’\k') is the binomial coefficient, and the last term in the covered by thé-th particle. These probabilities are found as

summand is thé&-th order correlation functiogx. The dif- N R N
ference in Eq. (16) and Eq. (19) lies in coefficients of e Q) = Z}( )Z'kl(l— 0¥k, (26)
power series. The limiting values éfin Eq. (19) give k= K
¢N-SPA(N7 ®,0) = @, (20) whereq is the probability thakg remains a point in the void
N phase of an— 1 particle system after theth particle is added
OVSPAN, @, 1) =1— (1_ ‘R’> ) (21)  under the condition that theth particle has no overlap with at
N leastk other particles.

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-14 |9



Soft Matter Page 10 of 15

The probabilitiesys, obtained from a recurrence relation by 1.0 . T
use of mean field argumenté read DR
_o® 0.8 Tl -
qkch_ (p(k) ’ @7 ‘.:3:‘*---. e 60,968
¢ Q..~. RN :--‘.-_._‘:__‘I_O:_" ]
whereq is the probability that the first particle added to the 0.61 T e :-3.‘::;_._.__.__ 'j
: T
system does not cover the random poggat <. Mo - - . $0=0.75
B = ==
d_y(d) 0.4F el AdH ST
G- Ldv —1- %, (28) 0%
d) . - - [oo-0---0-co--o---up -
andvl?9 is the volume of a single sphere in dimenséiven 02} $o=0.25
by Eq. (4). - 0---0--0---0--0-=--0--0--¢
Through Egs. (12), (24), (25), (26), and (27) the expression ¢ =0.125
for ™ (N &)) can be evaluated givin —
¢ (N, @, ¢ (0)) gming OO 0.2 0.4 0.6 0.8 1.0

-1 o

N i—1\
PN ®.2(3) =1-T] (Z)< ) z>qu) .
i=1 \k Fig. 7 The occupied volume fractiogp as a function of the

(29) penetration probability parameté&rin one dimensiorid = 1). The
It gives the correct result in several limiting cases. Farex  blue filled circles are the results of MD simulations. The result of

ple, in the case of hard spheres, wh&re 0, one obtains theN-SPA expression, given by Eq. (19), is shown as a dashed black
curve. Thel| -SPA expression, given by Eq. (23), is shown as a

(pS”V'(N’ ®,2(0) =1—qo01---On_1 = @, (30)  solid orange curve. Thg -SIM result, given by Eq. (29), is shown
as a dashed red curve.
as one expects for the HC limit from Eq. (20). For fully trans-

parent particles in thé = 1 limit, the occupied volume frac- _ .
tion is results while thel, -SIM expression shows excellent agree-

PSMN, @, (1)) =1, (31) ment. The error be.tween the results measured from MD and
(. -SIM expression i< 1.5% over all values ofp andd. In
which is equal to the exact result given by Eq. (21). Thus,comparison, thé&N-SPA expression gives error 20% at large
at limiting values ofd, the SIM expression is exact. We will ¢, and smalld.
refer Eq. (29) as both th&,-SIM and the(| -SIM expression,
depending on whicld parameter is used in calculation. 52 Two Dimensions
The results forp generated from simulation and analytic the-
ory for a two-dimensional system of disks are shown in Fig. 8.
The general trends are the same as in one dimension. When
0 # 0 the observed volume fraction is decreased fggnThis
In one dimension, the dynamics are those of a system of roddecrease is pronounced at high densities and stnelhere
moving on a line. Shown in Fig. 7 are the results §ogiven  overlapped states are favored as observed in the BR D)
by theN-SPA (19),{. -SPA (23) and]_-SIM (29) expressions. in Fig. 5. TheN-SPA expression, which is shown only for
Note that ford =1, {| = {y. @ = 0.75, fails in the largeg, small-d regime while both the
For dilute systemsg is an approximately linear function ¢ -SIM and the{| -SPA expressions show agreement with the
of & and all three analytic predictors give satisfactory result results measured from MD simulations across all ranges of
interpolating approximately linearly between the comgliet andd studied. The -SIM expression gives error i@, with
hard(d = 0) limit and the completely soft Poisson distributed respect to values obtained from MD simulation,~e%% at
(6 =1) limit. As @ is increased and the system becomeslarge @ and smalld, with typical error< 1% outside of this
denser, a characteristic feature @fin systems governed by regime. Interestingly, the dimensionally-scalégSIM ex-
bounded potentials can be seen. As moved slightly from  pression gives errorz 10% at largeq and smalld values.
the d = 0 limit, ¢ decreases drastically due to pressure pushThis error decreases significantly &ss increased, but it is
ing the particles into overlapped states. In thisregiméh e always greater than that given by tfe-SIM expression, up
N-SPA and{, -SPA expressions fail to agree with simulation to larged values where the error in both expressions becomes

5 Discussion

5.1 OneDimension

10| Journal Name, 2010, [vol], 1-14 This journal is © The Royal Society of Chemistry [year]
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Fig. 8 The occupied volume fractiop as a function of the Fig. 9 The occupied volume fractiop as a function of the
penetration probability parametérin two dimension(d = 2). The penetration probability parameté&rin three dimension&d = 3).
{v-SIM resultis shown as a solid black curve. The result obtained The labeling and symbols correspond to those in Fig. 8. The result
using theN-SPA expression (dashed black) is shown only for of theN-SPA expression (dashed black) is shown onlygpe 0.5.
@ = 0.75. All other labels and symbols correspond to those in

Fig. 7.
tic potential (6) the samé&luster anomaly” found in the de-
terministic (GEMn) model 56

To characterize the anomalous clustered state, the depen-
) ) dence of the clustering probability am was measured from
53 ThreeDimensions MD simulations. LetP(i) denote the probability of a ran-
Figure 9 shows the results far measured from simulation d0mly chosen particle being connected by overlapsaiher
and predicted by the analytic approaches of Sec. 4 for a Sy@_artlcles, selfq_nclu_swé.7 If_th_e particle does not overlap vv_|th
tem of three-dimensional spheres. At low to moderate densi@ny Other particlesi (= 1) it is a monomer; two penetrating
tiesg € {0.1,0.2,0.3} the results from MD simulations agree parncles.form a dimeri (= 2) given there is no other particle
with the Zy-SIM, . -SIM, and the, -SPA expressions across ©verlapping the former onesic
all ranges ofd. In this density regime, the error for all three ~ The results are shown in Fig. 10. At= 0, no particles
expressions is< 2% at smalld values and is typicallyx 1%  overlap and the system consists entirely of monomers. At
for & > 0.25. small & and large@ the most probable configuration is a

At higher densitiegs € {0.4,0.5}, close and above the HC dimer. The turnover from a state in which monomers are fa-
freezing transition densityg ~ 0.491), the theoretical predic- Vvored to a state in which the particles cluster and dimers are
tions are in agreement with the MD results for ladyecon- favored is the exact trend of clustering observed in the (GEM
trary to the case of smafl. The latter divergence is caused n) model (c.f. Fig. 4 in Ref. 56). For intermediade higher
by a change in structure from an isotropic state to a Crysta(])rder oligomers are formed and the distribution of clusters
or clustered state. Note that whén > 1, which is shown Poisson-like as observed by comparing the middle and bot-
in Fig. 4(c), the weighting of states in Egs. (23) and (29sfai tom panels of Fig. 10. Fad = 1 the particles have no spatial
catastrophically. In this case, we makesahhoccorrection by ~ correlation and are Poisson distributed.
imposing thatZ, be bound from above b§ = 1. When clus- The internal dimer radial distribution functioggi(r; 0)
tering behavior dominates the structure of the system, st hagives the probability to find the second particle in a dimex at
been shown that for the deterministic PS potential (2) othedistance from the first particle. For > o, gg‘(r; 0)=0asthe
analytic theories breakdowd?®:?’ In this regime, completely two particles are not in a dimerized state in this case. InFig
overlapped states are highly favored and theory based on athe ratiogg‘(r;5)/gg‘(a*;5) is shown for various® values for
sumptions of spatial uniformity would be expected to fait. A @ =0.25 andg@ = 0.5. Forr =~ g, this ratio decreases because
high densities we observe in systems governed by the stochathe cluster is more likely to be in a higher order oligomer due

negligible, typically< 0.1%.

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-14 | 11
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to the available volume for other particles to occupy.rAsp-
proaches 0, the particles become completely overlapped. At
@ = 0.25 ands = 0.01, the ratiogd(0;5)/g3'(0—;6) ~ 15
while at ¢y = 0.5 andd = 0.01 it jumps up to~ 2500 indi-
cating a large increase in propensity for the dimer to be in a
highly overlapped state.

6 Conclusions

We have studied the static structures of a system of stochas-
tically penetrable spheres through MD simulations and ana-
lytic theory in dimensions one, two, and three. In simulatio
the interactions between particles are governed by a stecha

Page 12 of 15

tic potential. This stochastic potential bridges hardecand
ideal behavior through a penetration paraméteihe value
of & governs whether the particles are allowed to interpene-

trate (overlap) or are completely hard. When the particles ta
on overlapping states, the volume occupied by the system is
reduced. To predict the particle volume fraction, analthie-
ories have been developed based on conditional probabiliti
derived from the sequential addition of particles to configu
tion space. The particle volume fraction has been measured
from simulation and the results have been compared to the
theoretical predictions. These results were found to bedin e
cellent agreement apart from an observed clustered regime a

12| Journal Name, 2010, [vol], 1-14

This journal is @ The Royal Society of Chemistry [year]



Page 13 of 15

Soft Matter

high densities and smallin three dimensions. We have char- 15
acterized this regime through analysis of clustering pbdba
ties and intracluster spatial distributions. 16
. . . . 17
In one and two dimensions, over the densities studied, Weg
see no conclusive evidence of a transition from an isotropig g
stable state to a cluster-forming regime where particlést,ex
and persist, in completely overlapped states. Trends in the0
effective occupied volume fractiopsuggest that these transi- 21
tions could be observed as the density is increased toward ﬂ?z
maximum hard-core packing fraction.
A qualitative comparison between the simulation resultsz5
generated from deterministic bounded models and the pres
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