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The evaluation of the long term stability of a material regsithe estimation of its long—time dynamics. For amorpinoaierials
such as structural glasses, it has proven difficult to pteédelong—time dynamics starting from static measuremetése we
consider how long one needs to monitor the dynamics of atsiralglass to predict its long—time features. We preseetailéd

characterization of the statistical features of the singéeticle intermittent motion of structural glasses, ahdvsthat single—
particle jumps are the irreversible events leading to thexegion of the system. This allows to evaluate the diffasionstant
on the time—scale of the jump duration, which is small andoerature independent, well before the system enters thesidié

regime. The prediction is obtained by analyzing the parti@jectories via a parameter—free algorithm.

1 Introduction the irreversible events with transitions between (metsijiza

of the energy landscafi@, that can only be detected in small
The glass transition is a liquid to solid transition thatwsc  enough systems\(< 100), it is possible to predict the dif-
on cooling in molecular and colloidal systems. The traaositi fusivity from a short time measurement. Similarly, the whff
is characterized by a slowing down of the dynamics which issjvity can also be predicted if the irreversible events asoa
more pronounced than that occurring in critical phenomenagiated to many—particles rearrangemént§ that are identi-
and that takes place without appreciable structural clangefied via algorithms involving many parameters. We approach
Understanding the origin of this slowdown is a major unsdlve this problem considering that in glassy systems partigeas
problem in condensed matfef, that has been tackled devel- most of their time confined within the cages formed by their
oping different competing theories that try to describedhe  neighbors, and seldom make a jump to a different ¢agss il-
served phenomenology from a thermodynamic or from a kijustrated in Fig. 1(inset). This cage—jump motion is chamac
netic viewpoint. See Ret? for recent reviews. From a prac- jzed by the waiting time before escaping a cage, by the typica
tical viewpoint, solving the glass transition problem isiof  cage size, and by the type of walk resulting from subsequer:*
terest as this would allow to estimate the long term staiilit  jumps. Previous experiments and numerical studies have ir-
glassy materials, e.g. drugs and plastic materials sucl-as oyestigated some of these featutds:16-23 as their tempera-
ganic solar cell3. In this respect, since we are not yet able ture dependence gives insight into the microscopic oriin o
to fully predict the long term dynamics of a glassy systemthe glassy dynamics. Here we show that single—particle jump
from its static properties, it becomes of interest to coassid are the irreversible events leading to the relaxation obgrse
how long we need to observe a system before we can prediggm and clarify that the typical jump duratidit;) is small
its dynamical features. This is a promising but still poorly and temperature independent: this allows to estimate the si
investigated research direction. Since the relaxatioegs® gle particle diffusion constant resulting from a sequente o
occurs through a sequence of irreversible events, in thés li jumps,D;, and the density of jumpgy, on the time scale of
of research it is of interest to identify these events andeto d (At;), if the size of the system is large enough. These esii-
termine their statistical features. For instance, by idgng  mates lead to an extremely simple short time prediction®f th
diffusivity of the system
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we define(u?) = r?(tpw), wheretpy is the time of minimal
diffusivity of the system, i.e. the time at which the deriva-
tive of log(r?(t)) with respect to lo¢t) is minimaPl. The
algorithm is slightly improved to reduce noise at high tempe
atures, where cages are poorly defined due to the absence of
a clear separation of timescafés At each instant the algo-
rithm gives access to the density of jumpsg, defined as the
fraction of particles which are jumping, and to the density o
cagespc = 1— p3. We stress that in this approach a jump is

A ¥ a process with a finite duration, as illustrated in Fig. ldths
g e L Indeed, by monitoring whe&? equals(u?), we are able to
Wl ‘X‘/?m o identify the time at which each jump (or cage) starts and ends
10 ot 0 1 17 17 10" 16 The algorithm is robust with respect to the choice of the time

t interval over which the fluctuations are calculated, as lasig

this interval is larger than the ballistic time, and much kena
than the relaxation time. Due to its conceptual simplidhis

17-1073, from left to right. The dashed lines indicate the ballistic a'go”thm is of general appllcablllty_ in experiments anu sk
time, t, and the average time of flight of cage jumsty). The Iau_on. _Indee(_j, its only parameter is the Debye-Wallerdgct
inset illustrates a portion of a particle trajectory at temsure which is a universal feature of glassy systems.

T =17-103, that our algorithm decomposes in two cages
connected by a jump. The jump consists of four consecutive
segments, each one corresponding to the displacement of the
particle in a timedt = 10 (red thick line). The jump lengtlrj, is
defined as the distance between the center of mass of the g&s.ca

=
(=)
T T

=
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T

T

Fig. 1 Mean square displacement for= 25,22 20,1918 and

3 Results

We have divided the trajectory of each particle in a sequefice

periods during which the particle is caged, of duratigrsep-

arated by periods during which the particle is jumping, of du
rationAt;. The waiting time distribution within a cagB(ty),

2 Methods illustrated in Fig. 2, is well described by a by power law with

. ) an exponential cutoff,
We have obtained these results via NVT molecular dynam-

ics simulationg* of a model glass former, a 50:50 binary B tw

mixture of N = 10® disks in two dimensions, with a diam- P(tw) Dty exp(—r—w) ) (2)
eter ratioop /os = 1.4 known to inhibit crystallization, at a

fixed area fractionp = 1. Two particlesi and j, of aver-  as observed in different systefi$2 The exponeng(T) in-
age diameteojj, interact via an Harmonic potentiad(rij) =  creases by lowering the temperature, ranging in the interva
£ ((ajj —rij)/GL)z, if in contact,rij < ¢jj. This interaction 8 € [0.4,0.95]. Since (ty(T)) = Tw(T)(1—B(T)), this im-

is suitable to model soft colloidal partic&s?®  Units are  plies that the average waiting tini&,) grows slower than the
reduced so thaty,. = m= & = kg = 1, wherem is the mass exponential cutoff timeT,(T), as illustrated in the inset. The
of both particle species arig the Boltzmann’s constant. In time of flight distributionP(At;), illustrated in Fig 3a, decays
the following, we focus on results concerning the small par-exponentially. The collapse of the curves correspondiigfto
ticles, but analogous ones hold for both species. Our esulferent temperatures clarifies that, while the average tipara
rely on the introduction of a novel algorithm to identify in ticle spend in a cage increases on cooling, the averageaturat
the particle trajectories both the cages, as in previoud- stu of a jump is temperature independent. We f{iM}) ~ 10Q,.

ies, as well as the jumps, whose features are here studied féve note that the presence of a temperature dependent waiti.u
the first time. The algorithm is based on the consideratiortime and of a temperature independentjump time is readily ex
that, for a caged particle, the fluctuatiSf(t) of the position  plained via a two well potential analogy; indeed, the wajtin
on a timescale) corresponding to few particle collisions is time corresponds to the time of the activated process reduir
of the order of the Debye—Waller factéw?). By comparing to reach the energy maximum, while the jump time is that of
S(t) with (u?) we therefore consider a particle as caged ifthe subsequent ballistic motion to the energy minimum. We
S(t) < (U?), and as jumping otherwise. Practically, we com- define the length of a jumpr; as the distance between the
puteS(t) as((r(t) — (r(t))s5)?) 5, where the averages are com- center of mass of adjacent cages, as illustrated in Figsétjin
puted in the time intervdt —  : t + 8], andd = 10t, wheret, Fig 3b shows that this length is exponentially distributeith

is the ballistic time. Following Ref%-3° at each temperature a temperature dependent average value.
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Fig. 2 Waiting time distributionP(ty) at different temperatures, as

illustrated in Fig. 1. Lines are fits to Eq. 2. The inset ilhasés the
temperature dependence of the me&p),, and of the cutoff time,
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Fig. 3 Distribution of the time of flight (a) and of the length (b) of

the jumps. Inset: temperature dependence of the averaggd ju
length, (Arj).

(Ary) and time of flight(Aty):

o (rP(6y)  (ard)
Dy= 9|J|r—n>°° 6y(Oty) <Atj> - )

The validity of this prediction is verified in Fig. 4b. This
result shows that single—particle jumps are the irrevésib
events leading to the relaxation of the system, and suggests
that they are the elementary units of both local irreveesibl
many—particle rearrangemeMs'® as well as of global irre-
versible events, such as transitions between basins imthe e
ergy landscap®36-3” In addition, Eq. 3 allows to estimate a
long time quantity, the jumper’s diffusion constabt;, from
properties of the cage—jump motion estimated at short times
of the order of(Aty). Since the time of flightAt;) is temper-
ature independent, Eq. 3 also clarifies that the decreaBg of
on cooling is due to that ofAr?). As an aside, we note that
these results support the speculation of Refhat rational-
ized data from different glass formers in the ContinuouseTim
Random Walk paradigif, postulating a simple form for the
waiting time and jump distributions. Here, we have exglcit
measured the cage-jump statistical properties.

The increase of the average waiting time on cooling lead«
to a decrease of the density of jumps, whose temperature ¢ -
pendence is illustrated in Fig. 4c. Indeed, these two gtiesiti
are related ap; is to good approximation equal to the fraction
of the total time particles spend jumping,

(D)
PI= T + (a)

as illustrated in Fig. 4d. We note that the r.h.s. of the above
equation is computed after having determined the waitime ti
distribution, i.e. on a temperature dependent timescale c*
the order of the relaxation time, whereas the l.h.s. is esti
mated on the small and temperature independent timescale,
(Aty). We note, however, thgp; can be estimated on a
time scale of(At;) only if jumps are observed on that time
scale, i.e. only ifojN > 1. This is always the case in the
investigated temperature range, as we fmtl ~ 25 at the
lowest temperature. In general, the time of observation re-
quired to measur@; scales ad\t = (At;)/psN. This is al-
ways much smaller than the relaxation time, as Eq. 4 leads to

(4)

Since the average jump length is at least a factor threerlargey; ~ ((tw) + (At3)) /N < () < T

than the cage gyration radius, which is Gaussian distributeé  The features of the cage—jump motion allow to predict the

(not shown), one can consider each particle as a walker with fhacroscopic diffusion via Eq. D) = pyDy. This equation is
temperature dependent step si2e;), and a temperature in-  acovered as

dependenttime of flightAt;). The features of this walk can be
inferred from the mean squared displacemeht6;)), illus-
trated in Fig.4a, where the average is taken over the ensembl
of particles which have performe®) jumps. At all tempera-

N

1 1<
D=l ;3 0150 = 3 6005180, ©

tures, the walk is to a good approximation diffusive from thewhere the last equality is obtained considering that, a¢ tim

onset. Accordingly, we predict the diffusion constant of

the contribution of particlep to the overall square displace-

the jumpers to be that of a pure random walk with step sizenent is due to@ﬁp) (t) jumps of average sizB;(At;). Eq. 1

This journal is © The Royal Society of Chemistry [year]
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Fig. 5 Linear dependence of the diffusion constant on features of
Oﬁhe cage—jump motion. Open circles and the solid line aresured

Fig. 4 (a) Mean square displacement as a function of the number ! d th diction f ivel )
jumps at different temperatures, as indicated in Fig.3idSiole is a ata and the prediction from EqA-fjv respectively. We strestiX is
{ J>> is estimated at short times,

power law guide to the eyes with exponent 1; (b) validatioEqf 3, ~ estimated at long times, whiley 75
that connects the diffusion constant of the jumpBxs,to its short well before the system enters the diffusive regime. Theldinle has

2 . . . . .
time estimation 272} . (c) Temperature dependence of the density of Slopem= 0.75. Inset: the persistence relaxation timg, is

it . . .
jumps; (d) valide<1ti8>n of Eq. 4, that connects the densityaips to proportional to the ratiot2) / (ty), of the moments of the waiting
time distribution. The solid line is a power law with expobhén

the timescales of the cage—jump motion. In (b), (c) and (o&no
circles and the solid line are the measured and predictegsal
respectively.

sion constant® was obtained identifying irreversible events
with complex structural changes involving many-particles
follows as; Z’;\alzl ea(p) (t) is the average number of jumps per whereas our approach relies on a simple single particle ana-
particle at timet, (6;(t)) = m, a quantity related t@;  ysis. Other approaches are also not able to give a short time
by Eq. 4. Eq. 1 can also be expressed as prediction of the diffusivity. For example, in order to coutg
the Green-Kubo integral of the velocity autocorrelationdu
(ArJ2> tion (VACF), one need to wait VACF to vanish, i.e. a process
(Aty) occurring on a time-scale much longer than the jump dura
tion. In addition, the VACF approach requires to estimate th
thorough Eq. 3. Our numerical results are consistent with th particles velocities, that is a very problematic task frdra t
prediction, as we find = mpJ%, with m~ 0.75, as illus-  experimental viewpoint.
trated in Fig. 5. We explain the valum < 1 considering that We now consider how jumps are related to the relaxatio:.
the time of flight,Aty, is a slightly underestimation of the time of the system, that we have monitored through the persistenc
required to move byAr;, as after jumping a particle rattles in correlation function: at time, this is the fraction of particles
the cage before reaching its center of mass. Eq. 6 has two inthat have not yet performed a jurfp*® From the decay of
portant merits. First, it connects a macroscopic propéng, this correlation function we have estimated the persigeac
diffusion coefficient, to properties of the cage—jump motio laxation time, 1, (p(7p) = e 1), we have found to scale as
Second, it connects a quantity evaluated in the long timi¢,lim the decay time of the waiting time distribution, O 7y, not
to quantities evaluated at short times. This demonstratgst as the average waiting tim@y). This is explained consid-
the diffusion constant can be predicted well before theesgst ering the spatial heterogeneity of the dynamics. Indeed, in
enters the diffusive regime. Eq. 6 also clarifies that twolmec the system there are mobile regions that last a time of the or-
anisms contribute to the slowing down of the dynamics. Onder of the relaxation tim23:324lwhere the typical waiting
the one sidepy decreases, as the mean cage time increasesme is smaller than the average. The subsequent jumps of
On the other side the diffusion coefficiddj decreases, as the particles of these regions influence the average waiting tim
jump size decreases on cooling. (tw) but do not contribute to the decay of the persistence cor-
We note that a previous short time prediction of the diffu- relation function, which is therefore controlled by the agc

D=p; (6)
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time of the waiting time distributiont, O 7. It is also pos-  wave vectors.

sible to relatet, to the first two moments oP(ty), as due

to Eq. 2w O (t3)/(tw) (2— B) = (t3)/ (tw) (see Fig. 5, inset).  acknowledgement
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