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The evaluation of the long term stability of a material requires the estimation of its long–time dynamics. For amorphousmaterials
such as structural glasses, it has proven difficult to predict the long–time dynamics starting from static measurements. Here we
consider how long one needs to monitor the dynamics of a structural glass to predict its long–time features. We present a detailed
characterization of the statistical features of the single–particle intermittent motion of structural glasses, and show that single–
particle jumps are the irreversible events leading to the relaxation of the system. This allows to evaluate the diffusion constant
on the time–scale of the jump duration, which is small and temperature independent, well before the system enters the diffusive
regime. The prediction is obtained by analyzing the particle trajectories via a parameter–free algorithm.

1 Introduction

The glass transition is a liquid to solid transition that occurs
on cooling in molecular and colloidal systems. The transition
is characterized by a slowing down of the dynamics which is
more pronounced than that occurring in critical phenomena,
and that takes place without appreciable structural changes.
Understanding the origin of this slowdown is a major unsolved
problem in condensed matter1,2, that has been tackled devel-
oping different competing theories that try to describe theob-
served phenomenology from a thermodynamic or from a ki-
netic viewpoint. See Ref.3,4 for recent reviews. From a prac-
tical viewpoint, solving the glass transition problem is ofin-
terest as this would allow to estimate the long term stability of
glassy materials, e.g. drugs and plastic materials such as or-
ganic solar cells5. In this respect, since we are not yet able
to fully predict the long term dynamics of a glassy system
from its static properties, it becomes of interest to consider
how long we need to observe a system before we can predict
its dynamical features. This is a promising but still poorly
investigated research direction. Since the relaxation process
occurs through a sequence of irreversible events, in this line
of research it is of interest to identify these events and to de-
termine their statistical features. For instance, by identifying
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the irreversible events with transitions between (meta)basins
of the energy landscape6–8, that can only be detected in small
enough systems (N . 100), it is possible to predict the dif-
fusivity from a short time measurement. Similarly, the diffu-
sivity can also be predicted if the irreversible events are asso-
ciated to many–particles rearrangements9–14, that are identi-
fied via algorithms involving many parameters. We approach
this problem considering that in glassy systems particles spend
most of their time confined within the cages formed by their
neighbors, and seldom make a jump to a different cage15, as il-
lustrated in Fig. 1(inset). This cage–jump motion is character-
ized by the waiting time before escaping a cage, by the typical
cage size, and by the type of walk resulting from subsequent
jumps. Previous experiments and numerical studies have in-
vestigated some of these features9–11,16–23, as their tempera-
ture dependence gives insight into the microscopic origin of
the glassy dynamics. Here we show that single–particle jumps
are the irreversible events leading to the relaxation of thesys-
tem and clarify that the typical jump duration〈∆tJ〉 is small
and temperature independent: this allows to estimate the sin-
gle particle diffusion constant resulting from a sequence of
jumps,DJ, and the density of jumps,ρJ, on the time scale of
〈∆tJ〉, if the size of the system is large enough. These esti-
mates lead to an extremely simple short time prediction of the
diffusivity of the system

D(T) = DJ(T)ρJ(T), (1)

that can be simply exploited by investigating the particle tra-
jectories via a parameter–free algorithm.
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Fig. 1 Mean square displacement forT = 25,22,20,19,18 and
17·10−3, from left to right. The dashed lines indicate the ballistic
time,tb, and the average time of flight of cage jumps,〈∆tJ〉. The
inset illustrates a portion of a particle trajectory at temperature
T = 17·10−3, that our algorithm decomposes in two cages
connected by a jump. The jump consists of four consecutive
segments, each one corresponding to the displacement of the
particle in a timeδ t = 10 (red thick line). The jump length,∆rJ, is
defined as the distance between the center of mass of the two cages.

2 Methods

We have obtained these results via NVT molecular dynam-
ics simulations24 of a model glass former, a 50:50 binary
mixture of N = 103 disks in two dimensions, with a diam-
eter ratioσL/σS = 1.4 known to inhibit crystallization, at a
fixed area fractionφ = 1. Two particlesi and j, of aver-
age diameterσi j , interact via an Harmonic potential,V(r i j ) =

ε ((σi j − r i j )/σL)
2, if in contact, r i j < σi j . This interaction

is suitable to model soft colloidal particles25–28. Units are
reduced so thatσL = m= ε = kB = 1, wherem is the mass
of both particle species andkB the Boltzmann’s constant. In
the following, we focus on results concerning the small par-
ticles, but analogous ones hold for both species. Our results
rely on the introduction of a novel algorithm to identify in
the particle trajectories both the cages, as in previous stud-
ies, as well as the jumps, whose features are here studied for
the first time. The algorithm is based on the consideration
that, for a caged particle, the fluctuationS2(t) of the position
on a timescaleδ corresponding to few particle collisions is
of the order of the Debye–Waller factor〈u2〉. By comparing
S2(t) with 〈u2〉 we therefore consider a particle as caged if
S2(t)< 〈u2〉, and as jumping otherwise. Practically, we com-
puteS2(t) as〈(r(t)−〈r(t)〉δ )

2〉δ , where the averages are com-
puted in the time interval[t −δ : t +δ ], andδ = 10tb wheretb
is the ballistic time. Following Ref.s29,30, at each temperature

we define〈u2〉 = r2(tDW), wheretDW is the time of minimal
diffusivity of the system, i.e. the time at which the deriva-
tive of log〈r2(t)〉 with respect to log(t) is minimal31. The
algorithm is slightly improved to reduce noise at high temper-
atures, where cages are poorly defined due to the absence of
a clear separation of timescales32. At each instant the algo-
rithm gives access to the density of jumps,ρJ, defined as the
fraction of particles which are jumping, and to the density of
cages,ρC = 1−ρJ. We stress that in this approach a jump is
a process with a finite duration, as illustrated in Fig. 1(inset).
Indeed, by monitoring whenS2 equals〈u2〉, we are able to
identify the time at which each jump (or cage) starts and ends.
The algorithm is robust with respect to the choice of the time
interval over which the fluctuations are calculated, as longas
this interval is larger than the ballistic time, and much smaller
than the relaxation time. Due to its conceptual simplicity,this
algorithm is of general applicability in experiments and simu-
lation. Indeed, its only parameter is the Debye-Waller factor,
which is a universal feature of glassy systems.

3 Results

We have divided the trajectory of each particle in a sequenceof
periods during which the particle is caged, of durationtw, sep-
arated by periods during which the particle is jumping, of du-
ration∆tJ. The waiting time distribution within a cage,P(tw),
illustrated in Fig. 2, is well described by a by power law with
an exponential cutoff,

P(tw) ∝ t−β
w exp

(

−
tw
τw

)

, (2)

as observed in different systems18,22. The exponentβ (T) in-
creases by lowering the temperature, ranging in the interval
β ∈ [0.4,0.95]. Since〈tw(T)〉 = τw(T)(1− β (T)), this im-
plies that the average waiting time〈tw〉 grows slower than the
exponential cutoff time,τw(T), as illustrated in the inset. The
time of flight distributionP(∆tJ), illustrated in Fig 3a, decays
exponentially. The collapse of the curves corresponding todif-
ferent temperatures clarifies that, while the average time apar-
ticle spend in a cage increases on cooling, the average duration
of a jump is temperature independent. We find〈∆tJ〉 ≃ 100tb.
We note that the presence of a temperature dependent waiting
time and of a temperature independent jump time is readily ex-
plained via a two well potential analogy; indeed, the waiting
time corresponds to the time of the activated process required
to reach the energy maximum, while the jump time is that of
the subsequent ballistic motion to the energy minimum. We
define the length of a jump∆rJ as the distance between the
center of mass of adjacent cages, as illustrated in Fig. 1(inset).
Fig 3b shows that this length is exponentially distributed,with
a temperature dependent average value.
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Fig. 2 Waiting time distribution,P(tw) at different temperatures, as
illustrated in Fig. 1. Lines are fits to Eq. 2. The inset illustrates the
temperature dependence of the mean,〈tw〉, and of the cutoff time,
τw.
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the jumps. Inset: temperature dependence of the averaged jump
length,〈∆rJ〉.

Since the average jump length is at least a factor three larger
than the cage gyration radius, which is Gaussian distributed
(not shown), one can consider each particle as a walker with a
temperature dependent step size〈∆rJ〉, and a temperature in-
dependent time of flight〈∆tJ〉. The features of this walk can be
inferred from the mean squared displacement〈r2(θJ)〉, illus-
trated in Fig.4a, where the average is taken over the ensemble
of particles which have performedθJ jumps. At all tempera-
tures, the walk is to a good approximation diffusive from the
onset. Accordingly, we predict the diffusion constantDJ of
the jumpers to be that of a pure random walk with step size

〈∆rJ〉 and time of flight〈∆tJ〉:

DJ = lim
θJ→∞

〈r2(θJ)〉

θJ〈∆tJ〉
=

〈∆r2
J〉

〈∆tJ〉
. (3)

The validity of this prediction is verified in Fig. 4b. This
result shows that single–particle jumps are the irreversible
events leading to the relaxation of the system, and suggests
that they are the elementary units of both local irreversible
many–particle rearrangements12–14, as well as of global irre-
versible events, such as transitions between basins in the en-
ergy landscape6,36,37. In addition, Eq. 3 allows to estimate a
long time quantity, the jumper’s diffusion constant,DJ, from
properties of the cage–jump motion estimated at short times,
of the order of〈∆tJ〉. Since the time of flight〈∆tJ〉 is temper-
ature independent, Eq. 3 also clarifies that the decrease ofDJ

on cooling is due to that of〈∆r2
J〉. As an aside, we note that

these results support the speculation of Ref.23 that rational-
ized data from different glass formers in the Continuous Time
Random Walk paradigm34, postulating a simple form for the
waiting time and jump distributions. Here, we have explicitly
measured the cage-jump statistical properties.

The increase of the average waiting time on cooling leads
to a decrease of the density of jumps, whose temperature de-
pendence is illustrated in Fig. 4c. Indeed, these two quantities
are related asρJ is to good approximation equal to the fraction
of the total time particles spend jumping,

ρJ =
〈∆tJ〉

〈tw〉+ 〈∆tJ〉
, (4)

as illustrated in Fig. 4d. We note that the r.h.s. of the above
equation is computed after having determined the waiting time
distribution, i.e. on a temperature dependent timescale of
the order of the relaxation time, whereas the l.h.s. is esti-
mated on the small and temperature independent timescale,
〈∆tJ〉. We note, however, thatρJ can be estimated on a
time scale of〈∆tJ〉 only if jumps are observed on that time
scale, i.e. only ifρJN > 1. This is always the case in the
investigated temperature range, as we findρJN ≃ 25 at the
lowest temperature. In general, the time of observation re-
quired to measureρJ scales as∆t = 〈∆tJ〉/ρJN. This is al-
ways much smaller than the relaxation time, as Eq. 4 leads to
∆t ≃ (〈tw〉+ 〈∆tJ〉)/N ≪ 〈tw〉 ≪ τw.

The features of the cage–jump motion allow to predict the
macroscopic diffusion via Eq. 1,D = ρJDJ. This equation is
recovered as

D= lim
t→∞

1
Nt

N

∑
p=1

[rp(t)−rp(0)]2 =
1
Nt

N

∑
p=1

θ (p)
J (t)DJ〈∆tJ〉, (5)

where the last equality is obtained considering that, at time t,
the contribution of particlep to the overall square displace-

ment is due toθ (p)
J (t) jumps of average sizeDJ〈∆tJ〉. Eq. 1
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Fig. 4 (a) Mean square displacement as a function of the number of
jumps at different temperatures, as indicated in Fig.3. Solid line is a
power law guide to the eyes with exponent 1; (b) validation ofEq. 3,
that connects the diffusion constant of the jumpers,DJ, to its short

time estimation,〈∆r2
J〉

〈∆tJ〉
. (c) Temperature dependence of the density of

jumps; (d) validation of Eq. 4, that connects the density of jumps to
the timescales of the cage–jump motion. In (b), (c) and (d), open
circles and the solid line are the measured and predicted values,
respectively.

follows as 1
N ∑N

p=1θ (p)
J (t) is the average number of jumps per

particle at timet, 〈θJ(t)〉 = t
〈∆tJ〉+〈tw〉

, a quantity related toρJ

by Eq. 4. Eq. 1 can also be expressed as

D = ρJ
〈∆r2

J〉

〈∆tJ〉
(6)

thorough Eq. 3. Our numerical results are consistent with this

prediction, as we findD = mρJ
〈∆r2

J〉
〈∆tJ〉

, with m≃ 0.75, as illus-
trated in Fig. 5. We explain the valuem< 1 considering that
the time of flight,∆tJ, is a slightly underestimation of the time
required to move by∆rJ, as after jumping a particle rattles in
the cage before reaching its center of mass. Eq. 6 has two im-
portant merits. First, it connects a macroscopic property,the
diffusion coefficient, to properties of the cage–jump motion.
Second, it connects a quantity evaluated in the long time limit,
to quantities evaluated at short times. This demonstrates that
the diffusion constant can be predicted well before the system
enters the diffusive regime. Eq. 6 also clarifies that two mech-
anisms contribute to the slowing down of the dynamics. On
the one sideρJ decreases, as the mean cage time increases.
On the other side the diffusion coefficientDJ decreases, as the
jump size decreases on cooling.

We note that a previous short time prediction of the diffu-
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Fig. 5 Linear dependence of the diffusion constant on features of
the cage–jump motion. Open circles and the solid line are measured
data and the prediction from Eq. 6, respectively. We stress thatD is

estimated at long times, whileρJ
〈∆r2

J〉
〈∆tJ〉

is estimated at short times,
well before the system enters the diffusive regime. The solid line has
slopem≃ 0.75. Inset: the persistence relaxation time,τp, is
proportional to the ratio,〈t2

w〉/〈tw〉, of the moments of the waiting
time distribution. The solid line is a power law with exponent 1.

sion constant10 was obtained identifying irreversible events
with complex structural changes involving many-particles,
whereas our approach relies on a simple single particle anal-
ysis. Other approaches are also not able to give a short time
prediction of the diffusivity. For example, in order to compute
the Green-Kubo integral of the velocity autocorrelation func-
tion (VACF), one need to wait VACF to vanish, i.e. a process
occurring on a time-scale much longer than the jump dura-
tion. In addition, the VACF approach requires to estimate the
particles velocities, that is a very problematic task from the
experimental viewpoint.

We now consider how jumps are related to the relaxation
of the system, that we have monitored through the persistence
correlation function: at timet, this is the fraction of particles
that have not yet performed a jump38–40. From the decay of
this correlation function we have estimated the persistence re-
laxation time,τp (p(τp) = e−1), we have found to scale as
the decay time of the waiting time distribution,τp ∝ τw, not
as the average waiting time〈tw〉. This is explained consid-
ering the spatial heterogeneity of the dynamics. Indeed, in
the system there are mobile regions that last a time of the or-
der of the relaxation time16,23,32,41where the typical waiting
time is smaller than the average. The subsequent jumps of
particles of these regions influence the average waiting time
〈tw〉 but do not contribute to the decay of the persistence cor-
relation function, which is therefore controlled by the decay
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time of the waiting time distribution,τp ∝ τw. It is also pos-
sible to relateτp to the first two moments ofP(tw), as due
to Eq. 2τw ∝ 〈t2

w〉/〈tw〉(2−β ) ≃ 〈t2
w〉/〈tw〉 (see Fig. 5, inset).

This expression for the relaxation time, and Eq. 6 for the dif-
fusion coefficient, are formally analogous to those suggested
by trap models35, that interpret the relaxation as originating
from a sequence of jumps between metabasins of the energy
landscape6,36,37. Indeed, trap models predict the diffusion co-
efficient and the persistence relaxation time38–40 to vary as
D ∝ a2/〈tmb

w 〉, and asτp ∝ 〈(tmb
w )2〉/〈tmb

w 〉. Here tmb
w is the

waiting time within a metabasin, anda the typical distance
between two adjacent metabasins in configuration space. It
is therefore worth stressing that, since our results concern the
single particle intermittent motion, they have a differentinter-
pretation and a different range of applicability. In particular,
since〈tmb

w 〉 varies with system size asO(1/N), transitions be-
tween metabasins can only be revealed investigating the inher-
ent landscape dynamics of small (∼100 particles) systems6,
and models to infer the dynamics in the thermodynamic limit
need to be developed7,8. Conversely, our prediction for the
diffusion coefficient lacks any system size dependence and
works at short times, as previously discussed. These results
support a physical interpretation of the relaxation in terms of
trap models, but clarify that it is convenient to focus on single
particle traps, rather than on traps in phase space, at leastas
long as the relaxation process occurs via short-lasting jumps.

4 Discussion

We have shown that the diffusion coefficient of a glass former
can be estimated on a small timescale, which is of the order of
the jump duration and much smaller that the time at which the
system enter the diffusive regimes if the system size is large
enough,ρJN > 1. This is so because jumps are irreversible
events. This prediction requires the identification of cages and
jumps in the particle trajectories, we have show to be easily
determined via a parameter-free algorithm if cages and jumps
are characterized by well separated time scales. This result
is expected to be relevant in real world applications in which
one is interested in predicting the diffusivity of systems that
are in equilibrium or in a stationary state. It can also be rel-
evant to quickly determine an upper bound for the diffusivity
of supercooled out–of–equilibrium systems.

Open questions ahead concern the emergence of correla-
tions between jumps of a same particle closer to the transition
of structural arrest, and the presence of spatio–temporal cor-
relations between jumps of different particles. In addition, we
note that persistence correlation function behaves analogously
to a self–scattering correlation function at a wavevector of the
order of the inverse jump length. In this respect, a further re-
search include the developing of relations between the features
of the cage–jump motion, and the relaxation time at different

wave vectors.
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