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Microfluidics offers great tools to produce highly-controlled dispersions of gas into liquid, from isolated bubbles to organized

microfoams. Potential technological applications are manifold, from novel materials to scaffolds for tissue engineering or en-

hanced oil recovery. More fundamentally, microfluidics makes it possible to investigate the physics of complex systems such as

foams at scales where the capillary forces become dominant, in model experiments involving few well-controlled parameters.

In this context, this review does not have the ambition to detail in a comprehensive manner all the techniques and applications

involving bubbles and foams in microfluidics. Rather, it focuses on particular consequences of working at the microscale, under

confinement, and hopes to provide insight into the physics of such systems. The first part of this work focuses on bubbles, and

more precisely on i) bubble generation, where the confinement can suppress capillary instabilities while inertial effects may play

a role, and ii) bubble dynamics, paying special attention to the lubrication film between bubble and wall and the influence of

confinement. The second part addresses the formation and dynamics of microfoams, emphasizing structural differences from

macroscopic foams and the influence of the confinement.

1 Introduction

The field of droplet/bubble-based microfluidics has garnered

a lot of interest over the past few years. As often in mi-

crofluidics, the potential for many technological applications

coexists with the advantages of such microdevices to design

model experiments with a small number of well-controlled

parameters, allowing the investigation of complex problems

at scales hardly accessible in the past. Many reviews have re-

ported on the achievements of digital microfluidics to over-

come experimental challenges and bring fundamental un-

derstanding1–5, while a large variety of applications can be

cited, from new materials (phononic6, photonic7,8, tissue en-

gineering9–11), labs-on-a-chip1 (bioanalytical applications12,

pharmaceutics13,14, environment15), to enhanced oil recovery

(EOR)16–18. The step from isolated bubbles to close-packed

foams is one technically easy to take in such devices, and

discrete microfluidics (so-called to differentiate it from indi-

vidual bubbles set-ups19) offers in its turn a wealth of funda-

mental and technical applications. Microfluidic foams can be

used to build new materials such as scaffolds for tissue engi-

neering, microporous media, optics and phononic crystals. To

cite one example, 2D phononic crystals formed from gas mi-

croinclusions in a PDMS matrix show an interesting response

to ultrasonic frequencies, with deep transmission minima6,20:

microfluidics should help generate such materials, with good

control over their physical properties, e.g. through the geom-

etry of the gas inclusions.

The present work reports on the generation and dynamics

of bubbles and foams in confined microgeometries. Precisely,

we focus on bubbles with a free surface, i.e. there is always

a wetting film between bubble and walls: segmented flows

with a triple line are out of the scope of this review2,21–23.

In particular, we stress throughout the review the influence of

the confinement, as well as some specificities of working at

the microscale. Though micro-droplets have been much in-

vestigated, the literature on micro-bubbles and, even more so,

micro-foams remains comparatively scarce. Yet the experi-

mental potential of microfluidics is raising interest in the foam

community, and we wish to provide a general picture that il-

lustrates this potential and emphasizes some specific proper-

ties. Though we do not ambition to comprehensively list all

the technical achievements, we mention a few examples and

hope that this work will also prove useful for applicative pur-

poses.

To recall the general picture of the physics at such scales,

Table 1 provides the typical range of relevant hydrodynamic

dimensionless numbers in microfluidic experiments. The low

values of the Reynolds (comparing inertial to viscous forces),

Weber (inertial to capillary forces), Bond (gravity to capillary

forces) and capillary (viscous to capillary forces) numbers in-

dicate that surface tension and viscous forces should domi-

nate in microfluidics. However, we shall see in the following

that inertial forces cannot always be disregarded. Note that

we sometimes refer to millifluidic experiments, which involve

confinements ranging from 0.5 mm to 2 mm. We will see be-

low that similar behaviors are expected for both micro- and

millifluidics as long as the confinement is below the capillary

length. In the first part of this review, we focus on isolated

bubbles: after looking at the consequences of confinement
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Fig. 1 a: Microfluidic co-flowing junction. Reprinted with

permission from [ 39]. Copyright 2007 by the American Physical

Society.b: Flow-focusing of a gas jet by liquid streams into an

orifice of width 100 µm. Reprinted with permission from
[ 30].Copyright 2009, Royal Society of Chemistry.

on bubble generation, we go over developments in the under-

standing of bubble dynamics in confined channels since the

pioneering work of Bretherton24–28. The second part focuses

on foams and reviews how the microscales can affect their ge-

ometry, how bubbles organize at such scales, and what their

flow properties are, extending the results obtained for single

bubbles.

2 Isolated bubbles

2.1 Generation

Microfluidic devices can allow for high-throughput produc-

tion of bubbles with very well-controlled size and generation

frequency: as fast as 100 Hz, with diameters ranging from 10

to 500 µm, and a polydispersity lower than 5 %7,31,32. The

typical geometries involved, such as the T-junction33–36, the

flow-focusing junction32,37,38(Fig. 1(b)), the co-flowing junc-

tion39,40 (Fig. 1(a)), the liquid cross-flow41 or the 2.5D geom-

etry42 are now well-known implements in the microfluidics

toolbox. The formation of bubbles/droplets has been exten-

sively investigated, published and reviewed, taking into ac-

count various parameters such as the viscosity ratio, flow rates,

gas pressure, channel geometry, channel wettability (to cite a

few)1–3,37. In this context, we wish to specifically underline

some points of interest in the generation of bubbles in some

of the above-mentioned geometries, with a particular focus on

situations where the confinement by the channel walls plays a

role.

The general picture for bubble generation in flow-focusing

and T-junction geometries is that the dispersed phase blocks

the outlet channel so that the upstream pressure in the liquid
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75005 Paris, France. Fax: +33-1-40-79-51-61; Tel: +33-1-40-79-51-57;

E-mail: marie-caroline.jullien@espci.fr

‡
These authors contributed equally to this work

phase builds up and pinches the dispersed phase. Garstecki

et al. suggested that the breakup proceeds through a series

of equilibrium states37; such a scenario for breakup in a T-

junction has been confirmed in numerical simulations35 for

droplets at small Ca (< 10−2). In such configurations, breakup

is driven by normal stress instead of tangential stress.† How-

ever, a closer look at various bubble generation mechanisms

reveals further subtleties.

At such small Ca, capillary phenomena are expected to be

dominant over hydrodynamic forces. However, the presence

of the walls tends to stabilize capillary instabilities. Guillot et

al. studied the stability of a jet produced in a co-flowing junc-

tion (Fig. 1(a)), in different geometries: axisymmetric39, or

with a rectangular channel cross-section29. In this situation,

reminiscent of the Rayleigh-Plateau instability, they showed

via linear stability analysis that the jet is always unstable in the

axisymmetric geometry, and identified the three main param-

eters at play: the capillary number, the viscosity ratio between

the two phases, and the confinement (the ratio of the jet radius

to the channel radius). They quantified two distinct instability

regimes. For low inner-phase flowrates, the instability is ab-

solute: it propagates upstream and downstream, and the inner

phase breaks up into droplets at the nozzle, whereas for large

inner phase flowrates, the instability is convected downstream

and a continuous jet is maintained over a distance. In this ge-

ometry, bubble formation is due to the interplay between cap-

illarity forces and viscous friction, and they note that increas-

ing the confinement leads to a decrease of the rate of develop-

ment of perturbations. However, if the channel cross-section is

rectangular instead of axisymmetric, the confinement can sta-

bilize the jet, preventing perturbations from developing once

the jet width becomes comparable to the smallest dimension

of the section. Bubble formation was also investigated with

an analogous theoretical approach in a flow-focusing geome-

try43. Varying the section aspect ratio at the flow-focusing ori-

fice, Dollet et al. observed two regimes over time (Fig. 2): i)

in the first regime, the width of the gas thread thins but remains

larger than the channel height, corresponding to what they call

a 2D collapse, until ii) the gas thread is thin enough to become

3D, and the collapse is driven by inertia. The higher the as-

pect ratio of the channel cross-section, the longer the liquid

thread spends in the 2D regime. This is of particular interest

for bubble generation purposes: the 2D regime is always sta-

ble as fluctuations are dissipated by the outer phase viscosity,

and spending a long time in this regime leads to a good bubble

monodispersity. Conversely, the 3D regime is always unsta-

ble, which limits reproducibility and leads to polydispersed

bubbles, but reaching it faster allows for higher production

† At larger capillary numbers in a T-junction, the dispersed phase does not block

the outlet channel anymore and the bubble size results from a competition be-

tween interfacial tension and viscous stress, and thus depends on the capillary

number.
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Table 1 Typical values of the problem parameters and their associated relevant numbers

Parameters Relevant numbers

Parameter: symbol Typical values Definition Orders of magnitude

Liquid viscosity: η 10−3 - 1 Pa.s Capillary number: Ca = ηU/γ 10−7 - 10−1

Bubble velocity: U 10 - 1000 µm.s−1 Reynolds number: Re = ρUL/η 10−5 - 10−1

Surface tension: γ 20 - 70 mN.m−1 Bond number: Bo = ρgL2/γ 10−5 - 10−1

Length scale: L 10 - 500 µm Weber number: We = ρU2L/γ 10−11 - 10−5

Fluid density: ρ 103 kg.m−3 Capillary length: lc 2 mm

Fig. 2 Snapshots of the gas thread during collapse in a flow

focusing junction, for a given channel aspect ratio. a-b: 2D collapse

at short times, top view and sketch of the cross-sectional view; c-d:

3D collapse, top view and sketch of the cross-sectional view.

Reprinted with permission from [ 43]. Copyright 2008 by the

American Physical Society.

frequencies. This result is in agreement with previous works,

which predicted the bubble volume to depend on the flow pa-

rameters and not the capillary number for flow-focusing or T-

junctions32–34,36,37.

Recently, Van Hoeve et al.44 shed more light on the effect

of inertia on bubble pinch-off. They studied the collapse of a

gaseous thread in a liquid, in a flow-focusing geometry. Us-

ing a videocamera at 1 Mfps, the authors could investigate the

bubble collapse with an impressive time resolution, which al-

lowed them to follow the evolution of several parameters, such

as the two neck radii of curvature, the bubble volume and the

gas velocity. At short times, the gas at the neck is replaced by

liquid due to a pressure gradient in the continuous phase. The

collapse is induced by this filling effect and is driven by sur-

face tension and viscosity, which leads to a neck radius scaling

as τ1/3, where τ = tc − t (tc is the collapse time), consistently

with previous observations43,44. Close to pinch-off, the 3D

collapse can be accounted for by solving the Rayleigh-Plesset

equation, taking into account viscosity and surface tension. By

mapping the different pressure contributions over time, they

find that the pinch-off is mainly driven by inertia in the liquid

phase, even though surface tension is non negligible; in this

regime the neck radius scales as τ2/5, consistently with their

experimental results.

Above a critical flow rate, two bubbles of different sizes

are produced within one period32. As the flowrate increases

(over a range of Ca from 10−4 to 10−1 and We from 10−4 to

102), the period doubling is followed by cascades of period

doubling and chaotic bubbling45.

The fact that capillary instabilities can be suppressed un-

der micro-confinement has important consequences on bubble

generation, as seen above, but also on bubble/droplet breakup.

Leshansky et al. theoretically investigated the breakup of bub-

bles in a T-junction in a 2D geometry46,47. They postulated

that instabilities such as Rayleigh-Plateau cannot emerge in

such a finite medium. Instead, a bubble breaks (or not) de-

pending on its initial extension and on the capillary number.

Their model is based on the geometry of the interface shape,

coupled to a lubrication analysis in a narrow gap where the

surface tension competes with the viscous drag. Experimental

results are in good agreement with this theoretical approach in

the case of droplets48, though the prefactors are slightly dif-

ferent and seem to depend on the viscosity ratio, a parameter

that should be taken into account in the models; however the

scalings are recovered. The fact that a 2D model manages to

capture the main features of 3D experiments suggests that the

flow in the gutters, i.e. the continuous phase that bypasses the

bubble in the corners of the rectangular channel, Fig. 3(b),

does not play a significant role. To our best knowledge this

question has not yet been addressed.

Bubble generation is also affected by the presence of sur-

factants that can rigidify interfaces49–51; such surfactants are,

for instance, often used in the development of ultrasound con-

trast agents in order to avoid gas dissolution into the con-

tinuous phase13,14. Surfactants can be more or less soluble

in water (down to insoluble). This affinity for water affects

their adsorption and desorption rates. For example, an insol-

uble surfactant has a high desorption time (compared to clas-

sic advection times) and thus moves with the interface with-

out desorbing into the bulk. This property leads to different

possible boundary conditions for the interface: respectively

mobile/immobile for soluble/insoluble surfactants (the second

case leading to a rigidified interface)26,27,50,52. Van Hoeve et
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Fig. 3 Schematics of the common geometries used to study the flow

of confined bubbles. a: round capillary; b: rectangular channel

(here with a square cross section); c: Hele-Shaw cell. The liquid

phase is represented in blue, the gas in white. There is a lubrication

film of thickness h between the bubble and the walls.

al. studied theoretically the size of bubbles generated from a

gaseous cylindrical jet in a co-axial geometry40, and found a

small variation due to the change in boundary condition at the

interface. Without surfactant, i.e. with shear stress continu-

ity at the interface, they predict that the bubble radius should

scale as R ∼ Q̃5/12 with the flow rate ratio between the two

phases, for Q̃ ≡ Qg/Ql < 1. This scaling is modified by the

presence of high molecular weight surfactants that rigidify the

interface and change the boundary condition. The discontinu-

ity of the shear stress at the rigid interface leads to different

velocity profiles in the dispersed phase, which affects the bub-

ble radius: R ∼ Q̃1/2.

2.2 Dynamics

The problem of a single confined bubble pushed by a viscous

fluid has been addressed since the late 50s and is still not fully

understood. Efforts have been made to rationalize this issue

from a theoretical point of view, and numerical developments

allow for the prediction of velocities with a great accuracy.

From the experimental perspective, microfluidic techniques

have made it possible to handle small and reproducible fluid

volumes in perfectly known confined geometries. Many recent

experiments have been focusing on the dynamics of a single

bubble traveling in a confined geometry, with a typical length-

scale under 1mm.

2.2.1 General framework. The first theoretical approach

to understanding the behavior of a bubble pushed by its sur-

rounding fluid is the classic work of Taylor and Saffman in

195953. In their historical paper, they considered an air bubble

moving in a water phase in a Hele-Shaw geometry, as sketched

Fig. 4 Schematics of the bubble profile at the front meniscus. Zone

I: constant thickness zone, zone II: dynamical meniscus, zone III:

cap region. Scaling laws are given for the thickness h or the spatial

extension of specific zones24 .

in Fig. 3(c). Their analysis is based on a potential flow and

the bubble is assimilated to a cylinder occupying the whole

height of the cavity: there is no meniscus or water film be-

tween the bubble and the walls, and all the dissipation occurs

in the liquid phase around the bubble, where the equations can

be averaged over the height of the cell due to confinement.

This first model leads to a family of possibilities for the ve-

locity and shape of the bubble, but experiments showed that

the solution is unique for a given outer fluid velocity. Mini-

mizing the product of the parameters leads to a bubble veloc-

ity U = 2V , where V is the carrier fluid velocity: though not

based on physical arguments, this solution was in good agree-

ment with the experiments at that time.

The presence of a thin film of water between the bubble and

the wall and its influence on bubble velocity was first inves-

tigated by Bretherton in 196124. He understood that viscous

dissipation can occur in this lubrication film, so that know-

ing the shape of the interface is necessary to determine the

bubble velocity. In this seminal work, a bubble is squeezed

in a thin round capillary and pushed by a viscous fluid, Fig.

3(a). The capillary radius r is small enough that the cor-

responding Reynolds and Bond numbers are very small; as

the bubble travels along the capillary, a thin film of thick-

ness h is left by the advancing meniscus. The profile of the

bubble can be divided into two main regions, see schemat-

ics in Fig. 4: the cap region (zone III), where the surface

tension dominates, and the inner film region (zones I and II),

where viscous dissipation and surface tension forces are of the

same order of magnitude. The film thickness h is constant in

zone I, and is set by the radius of the capillary r and Ca. In

zone II, referred to as the dynamical meniscus in reference to
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Fig. 5 Dependence of the dimensionless film thickness with the

capillary number and tube radius H. Reprinted with permission

from [ 28].

the Landau-Levich theory54, the viscous stress modifies the

static profile at small Ca. A prediction for h is obtained by

solving the Stokes equations (Re ≪ 1, stationary, no external

forces) in the lubrication approximation (small slope, only y-

derivatives), with boundary conditions of zero tangential stress

at the interface and no slip at the wall, and adding the flux

conservation: hBreth/r = 0.643(3Ca)2/3, where r is defined in

Fig. 3(a) and Fig. 424. In turn, the pressure drop due to the

presence of the bubble is ∆P = 3.58(3Ca)2/3γ/r, and the ve-

locity ratio is U/V = 1/(1−1.23 (3Ca)2/3). In the following,

we review later refinements of this result, paying particular

attention to how the geometry of the channel (shape of the

cross-section, curvature and height variations along the chan-

nel) affects the bubble dynamics, as well as the influence of

surfactants at the interface.

In the case of droplets, numerical simulations taking into

account the inner phase viscosity as well as intermolecular

forces in the lubrication films recovered Bretherton’s scalings,

for both round capillaries and Hele-Shaw cells28,55. However,

a new dynamical regime was uncovered at very low Ca, in

which the film thickness is entirely determined by the dis-

joining pressure28,56 (in the case of repulsive forces). In this

regime, h plateaus at an asymptotic value set by the inter-

molecular forces, see Fig. 5. To our knowledge, this was never

investigated experimentally, but it should have consequences

in microfluidics since the typical parameter range should al-

low reaching this regime, Fig. 5. For instance, Ca = 10−6 and

r = 100 µ m give hBreth ≈ 10 nm, while surface interactions

should be felt over about ≈ 100 nm. On a different note, these

studies also evidenced the presence of a stagnation point at the

surface of the bubble, which position depends on η̃ , the vis-

cosity ratio between the two phases, and Ca. This stagnation

point generates a counter flow in the liquid phase, and these

recirculations can be put to use for mixing purposes57 (which

Flat region Constriction

Fig. 6 Lubrication film profiles for a confined bubble at different

Ca. h increases with Ca. The bubble travels from right to left, notice

the constriction at the rear meniscus. Dots are extracted from

experiments60 and full lines are theoretical curves. Reprinted with

permission from[ 27]. Copyright 2013, AIP Publishing LLC.

is a challenge at such low Reynolds numbers58).

The fact that Bretherton’s prediction holds for a Hele-Shaw

geometry is not surprising, considering that, for R ≫ H (see

Fig. 3(c)), the Hele-Shaw and round capillary geometries are

similar in first approximation. Using two small parameters,

Ca1/3 and a characteristic length in the z-direction to account

for a 3D effect, a double Taylor expansion of Bretherton’s

equations recovers the same scaling law for the film thickness

at the first order in Ca1/3 with no corrections to add at the sec-

ond order, while the third dimension plays no role at least for

the first two orders59.

A different approach consists in solving numerically the

shape of the meniscus from an arc-length formulation of the

lubrication equation61. Treating the problem like a dynamical

system with three variables (pressure, curvilinear abscissa and

angle) yields trajectories in the phase space that represent pos-

sible bubble shapes. The right profile for the film and dynami-

cal meniscus is chosen by imposing the shapes of the front and

rear static menisci as boundary conditions. For round capillar-

ies, this technique extends the analysis of Bretherton to higher

Ca and finite bubbles, as long as their length exceeds the ra-

dius of the capillary. Profiles are obtained for the menisci by

solving Bretherton’s equations at the front, and the problem of

a meniscus flowing on a static film of known thickness at the

rear. This major difference leads to the formation of a con-

striction at the end of the bubble, see Fig. 6. This analysis can

be extended to the Hele-Shaw geometry25. In the schemat-

ics in Fig. 7, the different scalings are illustrated for half a

bubble. When going from the sides to the center, one crosses

successively the capillary-static region (zone III), the transi-
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Fig. 7 Top view of a bubble in a Hele-Shaw cell. Zones I, II and III

stand for the corresponding regions in the film profile in a round

capillary, Fig. 4. The light gray area follows Bretherton’s scaling

with an asymptotic value ∝ Ca2/3. The dark gray lateral area

corresponds to a constriction with a minimum thickness ∝ Ca4/5.

Scalings for the spatial extensions are also provided. Adapted with

permission from[ 25]. Copyright 1990, AIP Publishing LLC.

tion region with changes in scaling depending on the lateral

position (zone II) and the thin film region (zone I). This ap-

proach recovers Bretherton’s result for the region of constant

h in the main part of the bubble (light gray, h ∝ Ca2/3), and a

constriction in the side region (dark gray), where the minimum

film thickness scales as Ca4/5. Theoretical and numerical re-

sults of this problem were recently reviewed by Cantat27, with

a good experimental agreement for the film profiles60 (Fig. 6).

Interestingly, the profile of the meniscus in rectangular

channels was shown to be qualitatively different62. In this

case, the shape of the dynamical meniscus (and, consequently,

the dissipation) depends on the length of the bubble and

Bretherton’s scaling for the film thickness is lost. Three differ-

ent regions are identified along the bubble axis, see Fig. 8(b).

In the deposition region at the front of the bubble, the lubrica-

tion layer is a flat Bretherton’s film with particular boundary

conditions in the transverse direction to match the curvature

imposed by the corners. This flat film turns into a parabolic

profile in the second region, at x = H Ca−1. Towards the rear

of the bubble, for x≫H Ca−1, the film thins as the continuous

phase leaks into the corners of the channel (see Fig. 8(b) for

the respective scalings, and Fig. 8(a) for the final shape of the

bubble62). In calculating the drag force, a difference from the

axisymmetric case arises from curvature rearrangements in the

film at the rear of the bubble, but the force essentially scales

like Ca2/3 whatever the bubble length and geometry (which

affect the numerical prefactors)62. Hence, the classical scal-

ing law for the pressure drop, ∆P ∝ Ca2/3, is maintained, at

the exception of very low Ca (≈ 10−8), where corner flows

predominate and the pressure drop follows ∆P ∝ Ca. How-

Fig. 8 a: 3D view of the bubble profile in a square channel. b:

Shape of an elongated bubble in a rectangular channel. Top:

Schematic view of the bubble with the different regions and their

spatial extensions. The bubble travels from right to left. Bottom:

View of the constrictions and scaling laws in the different regions.

Reprinted with permission from [ 62 ].

ever, such a regime is rarely reached in typical experimental

conditions in microfluidics.

Finally, note that the pressure drops can reach significant

values in microfluidics (typically around a few kPa). Because

of the gas compressibility, this can lead to the volumetric ex-

pansion of the bubbles, depending on the channel length63–65.

2.2.2 Influence of surfactants. As a strong effort was

put into the experimental validation of the previous theo-

ries, models had to be refined to account for the presence of

impurities or surfactants in a number of these experiments.

Whether the model concerned a small amount of impuri-

ties61(concentration gradient in the bulk) or a concentrated

solution52(where the mass transfer is adsorption-controlled),

it was shown that the higher the concentration, the thicker the

lubrication film. The values for h are bounded between the

clean surface expression derived by Bretherton and an upper

limit of 42/3 hBreth, which corresponds to no flow in the film,

i.e. zero interface velocity: this is referred to as the rolling

case. The pressure difference follows the same trends. An in-

teresting point to raise is the fact that the surfactants can mod-

ify the rheology of the interface and the associated boundary

6 | 1–15

Page 6 of 15Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Table 2 Scaling laws for h, ∆P and U/V depending on the mobility

of the surfactant. The corresponding references are indicated into

brackets.

Mobile Immobile

h
hBreth = 0.67 r Ca2/3 22/3 hBreth

[ 24,27,66,67] [ 27,68 ]

∆P β1 Ca2/3 [ 27] β1 Ca2/3 +β2 Ca1/3 [ 27]

U

V

∝ Ca1/3 [ 66] 2

1+0.182 Ca−2/3
[ 68]

2

1+β1 H/R Ca−1/3
[ 67] 2

1+β1 H/R Ca−1/3+β2 Ca−2/3
[ 67]

condition26,27. In the sliding case, where the velocity of the

interface is equal to the bubble velocity, the dissipation occurs

both in the lubrication films and the menisci26,27. This leads

to ∆P ∝ β1 Ca2/3 +β2 Ca1/3, where β1 and β2 are constants,

and the two terms account respectively for the dissipation in

the menisci and in the films.

Though the previous experiments concerned round capil-

laries, similar results were obtained in Hele-Shaw configu-

rations. A first discrepancy with the prediction by Saffman

and Taylor was observed for large bubbles flowing in glyc-

erin solutions in a Hele-Shaw cell69. For circular bubbles (in

top view), the measured velocity was U = 0.2V ; this differ-

ence was attributed to the possibly three-dimensional nature

of the flow. To solve this velocity inconsistency, Maruvada

et al.68 took into account the rigidification of the interface

due to surfactants, and found h = 22/3hBreth for a rigid sur-

face (sliding case). Assuming the bubble to be elliptic, they

derived U/V = (k+1)/(1+0.2 k I Ca−2/3), where I is a def-

inite integral that accounts for the film thickness variation in

the transverse direction, and k is a shape factor. This expres-

sion becomes U/V = 2/(1+ 0.182 Ca−2/3) for circular bub-

bles, in good agreement with their millifluidic experiments for

[c]SDS < cmc, where cmc is the critical micelle concentration.

Recently, a different expression for the bubble velocity was

introduced by Rabaud et al., who performed microfluidics ex-

periments in which they flowed bubbles in a Hele-Shaw geom-

etry66. They modeled the drag force as the sum of a viscous

drag (liquid on bubble) and a friction force (bubble on wall),

where the scaling law for the friction force is derived from

Bretherton arguments, considering that the dissipation occurs

in the dynamical meniscus. This yields an expression with two

unknown parameters for the drag force, awall and afluid, which

can be estimated experimentally by balancing the drag force

with buoyancy. Following the analysis gives in turn a veloc-

ity ratio Ux/V ∝ afluid/awall ×Ca1−α , where 1/2 < α < 2/3

reflects the mobility of the surfactant and Ux is the axial ve-

locity, with a very good experimental agreement. The power

law discrepancy with the previous result68 is attributed to the

friction area (related to the dynamical meniscus), considered

to be non constant with the velocity. Lastly, an expression for

the bubble velocity was derived analytically from a compre-

hensive model in Dangla’s PhD thesis (not yet published)67.

They find U/V = 2/(1+β1 H/R Ca−1/3+β2 Ca−2/3), where

β1 and β2 are constants. The relative values of β1 and β2 re-

flect the surfactant ability to rigidify the interface (β2 6= 0) or

not (β2 = 0)66. Table 2 provides the scaling laws for h, ∆P

and U/V depending on the mobility of the surfactant.

A situation more representative of typical microfluidics ex-

periments is a succession of bubbles traveling trough a rect-

angular channel, separated by slugs of continuous phase.

The influence of the surfactant concentration on the pressure

drop was investigated in this configuration by separating three

zones: the gutters Fig. 3(b), the curved caps at the front

and rear of the bubbles, and the liquid slugs between bub-

bles70. Assuming that the film flows are negligible compared

to the corner flows, the expression for the pressure drop writes

∆P ∝ γ/H[β1 Ca2/3 +Ca/H(χ1 dbubbles + χ2 Lfilm)], where

dbubbles is the distance from cap to cap between two follow-

ing bubbles, Lfilm is the length of the film region, and χ1 and

χ2 are constants. Experimental observations show that the

surfactant concentration affects the relative importance of the

terms in this expression. If [c] < 0,1cmc or [c] ≫ cmc, the

first term dominates as the dissipation mainly occurs in the

cap regions, and the classical scaling holds. However, for in-

termediate concentrations, dissipation in the gutters plays a

significant role and the second term becomes non negligible,

consistently with previously mentioned results in a rectangu-

lar channel62. This can be understood as the competition be-

tween adsorption/desorption and convection of the surfactant

along the interface. At intermediate concentrations, a surfac-

tant concentration gradient builds from the front to the rear,

resulting in a pressure drop and the associated flow in the gut-

ters. This notably affects the bubble velocity, as bubbles are

much slower for intermediate concentrations of surfactants: in

this case experimental measurements find U/V = 0.47 instead

of U/V = 0.83 at small or high concentrations70.

Lastly, in Teletzke et al.28, the authors briefly evoked the

possibility of surfactant concentration gradients that could ac-

count for the discrepancy between theoretical and experimen-

tal film thicknesses. According to these authors, the concen-

tration is maximum at the tip because of the presence of a stag-

nation point and its associated reverse flow, while the mini-

mum lies somewhere in the transition region. This Marangoni-

induced counter flow could explain the thicker observed film.

2.2.3 Geometrical effects along the channel. Modifying

the channel geometry along its length has interesting conse-

quences on bubble dynamics. For instance, curvature along

the length of the channel speeds the bubbles up relatively to
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Fig. 9 Mechanisms involved in the migration of a bubble under a

temperature gradient. Thermocapillarity drives the bubble towards

the lower surface tension area, i.e. towards the high temperatures for

air in water + SDS at the cmc. The temperature-induced dilation of

PDMS drives the bubbles towards the cold side, where the bubble

can adopt a minimum surface area. Reprinted with permission

from[ 74 ]. Copyright 2011, AIP Publishing LLC.

the outer phase velocity (and the corresponding straight chan-

nel). More precisely, it was shown numerically that the rel-

ative bubble velocity increases monotically with the channel

curvature, for circular or square cross-sections71. Numerical

simulations showed that the lubrication film is thinner on the

inside of the bend than on the outside. Using different radii

to take this into account, an analysis similar to Bretherton’s

yields ho = hi (1+w/Ri)
5/3, where the subscripts o and i stand

for outer and inner; w is the width of the channel and Ri is the

inner radius of curvature.

Another example is the influence of thickness variations

along the channel on bubble mobility. Microfluidic experi-

ments often rely on soft lithography and the use of elastomers

such as PDMS as channel material. However, PDMS can

swell when exposed to certain solvents or temperature vari-

ations, deforming the channels; this in turn will lead to devi-

ations in droplet/bubble trajectories72. However, it is possi-

ble to take advantage of PDMS dilation in a controlled man-

ner in order to propel bubbles. A thermomechanical effect

was characterized by creating a well-controlled temperature

gradient along such a microfluidic system73,74. The bubbles

were observed to migrate towards the cold side, i.e. in a di-

rection opposed to the expected one, due to the Marangoni

flux balance towards the hot side. A very slight tilt in the

wall (0.1 %), due to the temperature-induced dilation of the

PDMS, is enough to counterbalance the thermocapillary mi-

gration (Fig. 9). Taking into account both contributions as

well as the dissipation at the meniscus, the bubble velocity

writes as: |U | =

∣

∣

∣

∣

∣

γ

η

(

R

ξ

)3/2(
1

H

∂H

∂x
−

1

γ

∂γ

∂x

)3/2
∣

∣

∣

∣

∣

, where ξ

is an adjustable parameter. It is worth noticing that the ther-

momechanical effect (corresponding to the second term in the

expression) vanishes for an increasing cavity thickness, and

classical thermocapillary migration is thus recovered for chan-

nels thicker than about 100 µm.

2.2.4 Towards foams: increasing the bubble density.

Following this understanding of the physical mechanisms at

Fig. 10 Sketch of a bubble train. Reprinted with permission

from[ 77]. Copyright 2006, AIP Publishing LLC.

play and inspired by the widely spread logic gates encoun-

tered in the fields of informatics or electronics, Prakash and

co-workers75 reported universal computation in an all-fluidic

two-phase microfluidic system to do microfluidic bubble logic.

The concept is simple: a bubble traveling in a channel repre-

sents a bit as well as the transportation of material (through

AND/OR/NOT logic gates for instance), hence merging the

fields of chemistry and computation. The collective dynamics

of bubbles in microfluidic networks has also raised physical

interest, as they constitute well-controlled model experiments

of non linear collective behavior. Indeed, each bubble con-

fined in a channel branch locally increases the hydrodynamic

resistance of the network, affecting the trajectories of the fol-

lowing bubbles76.

Increasing the bubble density leads to the formation of bub-

ble trains (Fig. 10), i.e. lines of bubbles so closely packed

that they are separated by a thin film of continuous phase. The

static meniscus shape is different from the single bubble case,

which in turns imposes different bubble shapes61. Surpris-

ingly, no difference was found in the expression of the pres-

sure drop. Another peculiar result is that the lubrication film

around bubble trains is thinner in Hele-Shaw geometry than

for a round capillary. In rectangular channels, bubble train dy-

namics were studied via a computational analysis using finite

element methods77. Mapping the stress along the lubrication

film showed that it was negligible compared to the stress in

the menisci. The effect of the bubble size is quite negligible,

provided that Lfilm > 10 r Ca1/3. Once the bubbles in such a

train are packed close enough to be brought into contact, they

form the simplest foam structure, the bamboo foam.

3 Foams

The structure of a foam can be characterized by two parame-

ters: the volume fraction of the dispersed phase, φd , and the

volume of the bubbles Vbubble. In wet foams, the bubbles main-

tain a spherical shape (or a pancake shape for a 2D foam).

As the liquid fraction decreases, the bubbles are more close-

packed and become faceted, separated by thin liquid films in

dry foams.
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3.1 Structure

3.1.1 Generation and stability. As we saw above, mi-

crofluidics offers several tools to generate bubbles with well-

controlled volume, monodispersity, density or generation fre-

quency, opening the way to a broad range of available foam

geometries. Many bubble/foam lattices have been reported,

their structure being controlled via the flow parameters and

channel/nozzle geometry; a few examples are displayed in

Fig. 11(a). To cite a few, T-junctions were used to create

bubble pearl-necklaces, mono/polydisperse foams, 2D (with a

single bubble layer) or 3D foams34,41. Flow-focusing devices

led to bubbly flows, bamboo foams, packed foams, pancakes,

or hexagonal structures with one, two or three rows in the

direction transverse to the channel30,32,78,79. Well-controlled

mono-, bi- and tri-disperse foams were even created using

multi-flow-focusing devices79.

Using geometrical arguments to account for the different

nozzle geometries (T-junction, flow-focusing and co-flow)

and different channel aspect ratios Λ ≡ H/w, Vuong and co-

workers78 established a complete phase diagram of the foam

structure in the (φd ,V
∗) space (where V ∗ = Vbubble/w2H is

the dimensionless bubble volume). An example of this di-

agram, obtained for Λ = 0.2, is shown in Fig. 11(b). The

lines correspond to their numerical predictions for the tran-

sitions between the different regimes, and the symbols rep-

resent their experimental observations. It is readily shown

that their approach reproduces the experimental observations.

These phase diagrams give a global picture of the generation

of structure-controlled foams and pave the way towards more

complex issues, such as the generation of foam crystals or the

3D arrangements of such materials.

In order to stabilize the structure of a liquid foam, one has

to control foam ageing, which involves three phenomena: i)

the drainage of the liquid phase due to gravity, ii) the diffu-

sion of gas through the liquid films, and iii) the coalescence of

neighboring bubbles80,81. Note however that in the particular

case of a 2D microfoam placed horizontally (i.e. ~g is paral-

lel to the smallest dimension of the cavity), drainage due to

gravity is negligible. Different strategies were devised to en-

hance bubble stability by counterbalancing or reducing these

effects. A first strategy is to coat the bubbles with particles of

adsorption and desorption energies much larger than kBT 82–84.

Depending on the physico-chemical formulation, superstabil-

ity was achieved by slowing down either one of the three

ageing phenomena (e.g. coarsening, using silica nanoparti-

cles and short-chain amphiphiles83), or several (all three, us-

ing myristic acid-CTACl foams85,86). Some dispersions also

gel in the continuous phase of the foam83. To produce super-

stable foams with a controlled geometry, procedures such as

in situ hydrophobisation of particles in microfluidic devices

were also reported84. To sum things up, achieving foams with

Fig. 11 a: Examples of bubble lattices in the (Vbubble,φd) space. b:

Mapping of the different foam structures generated in a rectangular

microchannel of aspect ratio Λ = H/w = 0.2. The lines represent

the transition between the different regimes, and the symbols

account for experimental data: filled symbols are obtained using a

flow-focusing device; x-filled symbols are obtained using a co-flow

geometry. The symbol shapes correspond to the following regimes:

(♦) dripping for spheres and pancakes, (�) slugs, (©) alternating

foam for spheres and pancakes, (△) packed foam for pancakes, (▽)

bamboo foam. Reprinted with permission from[ 78 ]. Copyright

2012, AIP Publishing LLC.

good stability properties can imply complex physico-chemical

questions that are currently being addressed83,84.

A different route towards drainage control is to mechani-

cally prevent it by generating flows against the direction of

gravity at the film interfaces87,88. Examples of this type of

strategy at the centimeter scale include electroosmotic89 or

Marangoni flows using photo-surfactants90,91. Recent work

reported foam drainage control via thermocapillarity in a

two-dimensional microfluidic chamber92. In this study, a
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Fig. 12 Geometry of a 2D foam under microconfinement93 . a: the

foam appears dry seen from above as the bubbles adopt polygonal

shapes; b: in a cross-section plane the thin film of height ε and

thickness e0 occupies only a small fraction of the cavity height.

Hele-Shaw cell is placed vertically and the thermocapillary

Marangoni stress generated at the air-water interface by a con-

stant temperature gradient is strong enough to counterbalance,

or even go against, the natural direction imposed by gravity.

3.1.2 Specificities of the microscale. An important ques-

tion to address is the influence of the confinement below the

capillary length on the structure of the foam. Will a micro-

foam adopt the same geometry as a foam at larger scales, or

will the greater pressures involved affect its structure?

In the 2D case, this question was investigated by Marchalot

and co-workers93 by studying the coarsening of a static mi-

crofoam, constituted of a single bubble layer squeezed be-

tween the two plates of a Hele-Shaw cell, without flow. At the

macroscopic scale, the ageing of 2D foams is well-described

by Von Neumann’s law, which assumes the existence of thin

films between bubbles94. As smaller bubbles diffuse in larger

bubbles, the area A of each bubble evolves with time follow-

ing dA/dt = Deff(n− 6), where n is the number of sides of

the polygonal bubble, and Deff is an effective diffusion coeffi-

cient related mainly to the surface tension, the diffusion of gas

in the liquid, and the permeability of gas in the liquid films

between the bubbles. 2D microfoams undergo a similar time

evolution, but much more slowly: Deff was found to be about

one order of magnitude smaller than the coefficient measured

for similar solutions at larger scales95. This difference is due

to the height ε of the liquid film between two neighbouring

bubbles, represented on Fig. 12. Although the microfoam ap-

pears dry in top view, the liquid layer between bubbles is, for

the most part, thick enough to slow down significantly the dif-

fusion of the dispersed phase. The height ε over which thin

films do form, at the center of the cell, was theoretically esti-

mated to be of order ∼ H/1093. Below the capillary length,

the radius of curvature in the pseudo-Plateau borders is set

by the confinement: R = H/2, which prevents the formation

of thin films between bubbles. More precisely, a theoretical

study by Gay et al. predicts that the radius of curvature in

the pseudo-Plateau borders undergoes successive transitions

Fig. 13 Log-log representation of the different regimes for a 2D

foam squeezed between two solid plates, with low liquid fraction

(≪ 1), in terms of the bubble perimeter P, the Plateau border radius

R and the cell height H. Reprinted from [ 96] with kind permission

from Springer Science and Business Media.

upon progressive increase of the confinement96. For constant

(φd ,Vbubble), the pseudo-Plateau borders go through three dis-

tinct regimes (E: dry floor tiles, CD, AB: dry pancakes) un-

der progressive squeezing of the foam between the cell plates,

see Fig. 13. In this work, the authors predict a film height

ε ≃ H2/3R provided H ≪ R. When confined below the capil-

lary length, i.e. for both micro- and millifluidics, such a scal-

ing leads to a film height which is less than ∼10 % of the

cavity height96. Though the two approaches considered dif-

ferent pseudo-Plateau border geometries (circular93 versus el-

liptical96 shape at the interface), they are in good agreement

in spite of a slight discrepancy in the film height. Confocal

microscopy or tomography might be fruitfully performed to

investigate the real geometry of the meniscus.

Other specific structures can form only for bubbles smaller

than the capillary length. At the macroscale, it is assumed that

a 3D wet, monodisperse foam cannot crystallize in bulk from

bubbles larger than the capillary length: order prevails only at

the boundaries. However, smaller bubbles (∼ 100 µm) placed

at a free water/air interface will order and remain wet over

N ∼ (lc/R)2 bubble layers, forming substantial microcrys-

tals (R is the bubble radius and lc the capillary length)97–99.

Such ordered systems exhibit fcc (face-centered cubic) or bcc

(body-centered cubic) structures (see Fig. 14), and a transi-

tion from fcc packing at the bottom to a bcc Kelvin structure

at the top has been observed in 100-bubble-high foam sam-

ples99. Soft sphere computer simulations were carried out to

provide an image processing tool allowing the interpretation

of the observed experimental ordering99.

Bubbles also self-organize readily under flow when con-

fined to a monolayer; it is then possible to study the diffraction

gratings from the bubble lattice. Hashimoto et al.7 developped

a microfluidic device able to tune the volume fraction and the

size of the bubbles, and observed a transition between disorga-
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Fig. 14 Top view of a pool of highly monodisperse bubbles

(diameter ∼ 250 µm), generated from an aqueous detergent

solution. This reveals different grains, ordered in familiar crystalline

structures. Reprinted with permission from[ 99]. Copyright 2007,

with permission from Elsevier.

nized (at low gas volume fraction) and highly-organized flow-

ing lattices, associated with different stabilities of the diffrac-

tion pattern. The advantages of such a device are manifold,

the most important beeing the tunability of the bubble lattice

within one second. Using a 2.5D geometry Malloggi et al.8

were able to produce lattices with droplets ranging from 900

nm to 3 µm.

The development of such highly-controlled materials has

important applications in several domains. For instance,

microfluidics-generated microfoams were used to template

fast and inexpensive scaffolds for cell culture, with uniform

pore sizes9–11. Such foams constitute a promising building

block for this new research field, even though the degree of

interconnectivity between pores remains to be improved for

tissue engineering applications. The field of micro-fabricated

devices for food engineering also expands at a high rate, as

the design of novel food microstructures to enhance product

quality might require 1 - 100 µm microfoams and microemul-

sions100,101.

3.2 Dynamics

When characterizing foam generation processes, several au-

thors measured a different liquid fraction at the outlet than at

the inlet, due to viscous dissipation in the lubrications films

between the bubbles and the walls30,32. This is due to rheo-

logical specificities of foams, upon which this section focuses.

3.2.1 Viscous dissipation and foam rearrangements.

The analysis introduced by Bretherton24, evoked in the first

part of this review, was extended to the case of flowing foams

where dissipation mainly occurs in the menisci (pseudo-

Plateau borders) and in the lubrication films (for immobile in-

terfaces). There is a general consensus that the viscous force

scales as FD = λUα , where λ depends on both the interfacial

Fig. 15 Top views of a foam flowing around a bend without

structural rearrangements. Experimental pictures are compared to

computations based on the quasi-static and viscous froth models.

Reprinted with permission from[ 19]. Copyright 2005, with

permission from Elsevier.

mobility and the liquid fraction, and 1/2 < α < 2/3 depends

on the nature of the surfactant (α = 2/3 for a soluble sur-

factant and α = 1/2 for an insoluble surfactant)102–105. We

have seen in a previous section that the scaling is rather a

linear combination of α=(1/3,2/3)27,67. These results come

from experimental and theoretical studies mostly conducted

at the macroscopic scale. However, foam dynamics were in-

vestigated at the millimeter scale (with channel depths varying

between 0.5 and 1.5 mm, and a channel width of 10 mm) in or-

dered 2D foams by Drenckhan, Weaire and co-workers, who

used two numerical models to rationalize their experimental

results19,97. At low velocities, a quasi-static model consid-

ering a succession of equilibrium states can account for the

experimental observations, Fig. 15 (left). However, at larger

velocities, the viscous effects become dominant and the struc-

ture of the foam is distorted by the drag of the films along

the top and bottom walls, Fig. 15 (top right). To account for

this drag, the viscous froth model adds to the Laplace pressure

a viscous term λ vα
⊥, where v⊥ is the velocity normal to the

film106. The pressure difference between two adjacent bub-

bles then writes ∆P− γκ +λ vα
⊥ = 0, where κ is the local cur-

vature of the film, and α accounts for the surface mobility.

In a nutshell, the scaling law for the dissipation is the same

for isolated bubbles and foams, though changes in the prefac-

tors arise due to modification of the interface shape (since the

meniscus has to be reconnected to the film between adjacent

bubbles)25,77. As long as the dissipation mainly occurs in the

menisci and in the lubrication film (for insoluble surfactants),

we do not expect the modification of the foam geometry due

to confinement (i.e. the absence of films between adjacent

bubbles) to affect the different scalings for flowing foams, but

this remains to be proved. For instance, the role of the gutters

(i.e. Plateau borders) might not be negligible in rectangular

channels62,70. To our knowledge, this was not thoroughly in-
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Fig. 16 Transition between two hexagonal structures for flowing

crystal. a: Flow velocity as a function of the applied gas pressure Pg

(at Ql = 5 µl/min). The intermediate regime was shown to exhibit a

plateau in velocity, corresponding to a selfregulated situation where

a structure transforms continuously into the other107 . b-d:

Intermediate regime with the coexistence of the two lattices. The

vertical line represents the position of the front and the arrows its

direction of propagation. Reprinted with permission from [ 30].

Copyright 2009, Royal Society of Chemistry.

vestigated in microfluidic experiments, though Marmottant et

al. found indirect qualitative agreement30,31,107.

Weaire et al. also predicted dynamical rearrangements in

the structure of the foam, known as T180,81, above a critical

velocity. They correspond to a switch in bubble neighbors and

lead to a decrease in the total interface19,97. Fig. 16(a) shows,

in a microfluidics experiment, a transition between hex-one

(metastable state) and hex-two (stable state) lattices produced

by a flow-focusing device30,31,107, associated with a T1 topo-

logical rearrangement . We saw that the pressure drop associ-

ated to a foam scales as ∆P ∝ Caα , but it also depends on the

structure of the foam, and more precisely on Lpro j, the total

length of the films touching the walls projected on a direction

transverse to the flow102. The hex-one structure thus presents

larger resistance to the flow than the hex-two structure, which

explains why the hex-one structure cannot be observed at low

pressures. Depending on the foam velocity relative to the T1

transformation velocity, three regimes are observed: i) station-

ary instability, see Fig. 16(b); ii) advected instability, Fig.

16(c), iii) absolute instability, Fig. 16(d).

Fig. 17 Qualitative indications of the bubble-wall (white dashed

arrow) and bubble-bubble (red dashed arrow) interactions

experienced by the pinched bubble (blue) in a constricted

microchannel. Reprinted with permission from [ 16]. Copyright

2013, Royal Society of Chemistry.

3.2.2 Flow through constrictions. Another type of mi-

croconfinement, particularly relevant to oil-recovery applica-

tions, arises when foams flow through constricted pores. In-

vestigating bubble interactions in constricted capillaries, Lion-

tas et al.16 observed two regimes: i) neighbor-neighbor pinch-

off, where a bubble is squeezed by two neighboring bubbles at

a constriction (see Fig. 17(b)), and ii) neighbor-wall pinch-off

(Fig. 17(a)). In the first case, the neck width decreases almost

linearly with time, a behavior reminiscent of bubble pinch-

off in a high viscosity external phase (> 100 cP). Conversely,

in the second regime, the next width scales like t0.52, which

is consistent with experiments at low external-phase viscosity

(< 10cP). They attribute the high external effective viscos-

ity in the first regime to the fact that the neighboring bubbles

are nearly stationary during pinch-off. A good understanding

of the dynamics of films in constricted pores would have far-

reaching consequences in the substantial field of applications

that is Enhanced Oil Recovery (EOR)17,18,108.

3.3 Discussion

To this day, the topic of foams in microfluidics has been much

less addressed in the literature than that of bubbles; moreover,

most of these works focus on 2D foams (with the exception

of reports on technological achievements, such as 3D bubble

lattices). The field of investigation thus remains quite open,

all the more so since such studies would be relevant to several

domains of application, in static (development of new materi-

als) or flowing conditions (EOR). For instance, the design and

high-throughput fabrication of new materials with novel struc-

tural properties need complementary studies on 3D foams as

well as the scaling-up of the production methods. Perspectives

from the fundamental point of vue are further developed in the

conclusion.
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4 Conclusions

To provide a general picture of the physics at play for dis-

persed two-phase flows at the microscale, we reviewed fun-

damental questions such as the mechanisms governing bub-

ble generation in microchannels, the dynamics of a bubble

carried by a continuous phase at an imposed flow rate, the

geometry of foams confined below the capillary length, the

self-organization of bubbles into crystals, and the rheology of

confined foams. We stressed the influence of the microcon-

finement and how it can lead to somewhat counter-intuitive

mechanisms, such as the importance of inertial effects in bub-

ble generation. We also pinpointed differences compared to

the macroscopic scale, e.g. in the structure of microfoams.

Importantly for practical purposes, we saw that a con-

fined bubble flows at a velocity given by U/V = 2/(1 +
β1 H/R Ca−1/3 + β2 Ca−2/3), where β1 and β2 are con-

stants67, while the thickness of the lubrication film scales

like h ∝ Ca2/3 with a prefactor depending on the boundary

conditions24,26,27. Though the dynamics of confined bubbles

has been well investigated and some problems can be con-

sidered as solved, such as the production of bubbles with a

well-controlled size, many issues remain to be addressed. One

can cite the influence of intermolecular forces on the lubrica-

tion film -which should be felt at the scale of microfluidic de-

vices28. Another interesting topic would be the dipolar inter-

action between two adjacent bubbles, and whether it is mod-

ified by the stress-free boundary condition at the interfaces

compared to droplets5,109,110. Subsidiary studies on the influ-

ence of gas compressibility on the dynamics of isolated bub-

bles or bubble trains would also be instructive63,65.

In turn, the dynamics of foams at the macroscale is gov-

erned by the same scaling laws as the bubble dynamics, since

the dissipation occurs mainly in the menisci and lubrication

films along the walls; the films between neighboring bubbles

appear to play no role. However, the rheology of microfoams

could be investigated more thoroughly, as the foam geometry

is affected by the microscales. Indeed, working at scales be-

low the capillary length makes it impossible to achieve fully-

dry foams since the film height is negligible compared to the

radii of the pseudo-Plateau borders -these might be assimilated

to gutters and affect the dynamics. This difference might have

consequences on the dynamics of microfoams flowing around

obstacles, when the pseudo-Plateau borders become tangential

to the flow -a situation that has so far only been investigated at

the macroscale105.

At the film level, bubbles and foams pertain to a common

field of investigation that focuses on the dynamics at the inter-

face, with and without surfactants. For instance, rolling bub-

bles (see section 2.2.2) undergo interface creation at the bub-

ble front, and simultaneous interface destruction at the rear.

The comparative dynamics of bubbles and foams for given

Fig. 18 Thorough understanding of liquid foams pave the way

towards porous materials with highly controlled structural

properties. Reprinted with permission from[ 112 ]. Copyright 2012,

with permission from Elsevier.

surfactant mobilities remain to be explored; the underlying

question being the unification of isolated bubble and foam sur-

face rheologies. These results could be further incremented by

considering Marangoni effects on the interface dynamics, be

they solutal or due to a temperature gradient.

It is also worth mentioning that once the dynamics of bub-

bles and foams are established, these objects can be used as

tools to investigate physical phenomena at the micro-scale.

This is illustrated in two studies previously cited in this re-

view: Rabaud et al. used the buoyancy of isolated bubbles

to estimate the strength of Bjerkness acoustic forces66, while

Miralles et al. opposed thermocapillarity to gravity in a micro-

foam92.

We mentioned how microfluidics gives access to structures

unachievable at the macroscopic scale: for instance, monodis-

perse bubbles will self-organize into materials with crystalline

structures97,98. Technical effort is also being put into the de-

velopment of materials containing controlled, organized gas

micro-inclusions at an intermediate density (between isolated

bubbles and close-packed foams): such materials would ex-

hibit interesting acoustic properties. The stability of foams

can be enhanced via physico-chemical means, e.g. by adding

silica nanoparticles83,84 or fatty acids86,111 in the liquid phase,

or via hydrodynamic flows countering drainage92. The knowl-

edge acquired over the past few decades on foaming and flow

chemistry has led to the generation of porous solids with well-

controlled morphologies112 (Fig. 18); microfluidics opens the

way towards the development of a new generation of foamy

materials with novel structural properties112.
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