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Capillary Instability of Axisymmetric, Active Liquid
Crystal Jets

Xiaogang Yang∗andQi Wang†

Abstract

We study linear stability of an infinitely long, axisymmetric, cylindricalactive liquid crys-
tal (ALC) jetin a passive isotropic fluid matrix using a polar active liquid crystal (ALC) model.
We identify three possible unstable modes (or mechanisms) as the result of the interaction be-
tween the flow and the active (or self-propelled) molecular motion. The first unstable mode is
related to thepolarity vector instabilitywhen coupled to the flow field at the presence of the
molecular activity. It can be traced back to the inherent polarity vector instability in a bulk
active liquid crystal flow. However, it can be grossly amplified in the ALC jet to encompass
up to infinitely many unstable growth rates when the long range distortional elastic interaction
is weak in certain parameter regimes; it can also be suppressed in other parameter regimes
completely. The second unstable mode is related to the classical capillary or Rayleigh insta-
bility, which exists in a finite wave interval[0,kcuto f f]. The new feature for this instability lies
in the dependence of the cutoff wave number (kcuto f f) on the activity of the active matter sys-
tem. For ALC jets with sufficiently strong contractile activity, the instability can be completely
suppressed though. The third unstable mode is due to the active viscous stress. This unstable
mode can emerge in the intermediate wave number regime at a sufficiently strong active vis-
cosity and even expand all the way to the zero wave number limit when the Rayleigh unstable
mode is absent. It can also be suppressed in the regime of weakactive viscous stress. At any
given values of the model parameters, the three types of instabilities can show up either indi-
vidually or in a certain combination, or be completely suppressed altogether. In this paper, we
discuss the positive growth rates associated with the instabilities, the windows of instability
and their dependence on model parameters through extensivenumerical computations aided
by asymptotic analysis.

1 Introduction

Active matter refers to the materials that are driven out of equilibrium by energy input at the
microscopic scale via biological or catalytic activities.As a consequence, some emergent dynami-
cal structures may result in the material systems, such as long-range order, anomalous fluctuations,
spontaneous flows, dynamical spatial-temporal structuresand patterns [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
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11]. When coupled with regulatory signaling pathways, active materials can serve as models for
living systems such as cortical layers in the cytoskeleton of cells and bacterial colonies in bacterial
biofilms [12, 13, 14, 15, 16].

Active particles in the active matter are generally anisotropic in their configuration and motion,
and can form self-assembled ordered states with respect to orientation [17, 18]. The nature of
the ordered state depends on both the configuration of the individual particle and the interaction
among the particles. A class of active materials with these features is the active liquid crystal,
which may form liquid crystalline phases at a sufficiently high particle concentration or under
sufficiently strong particle-particle interactions [19, 20]. When the particle immersed in a solution
possesses a distinctive head and tail, the particle-fluid system is called a polar active liquid crystal
solution. Examples in this class of materials include bacterial suspensions, asymmetric vibrated
granular rods, polarized migrating cells, and catalytic charged nano-particles in a solution. Self-
propelled particles are often modeled as polar active particles, where the activity is incorporated
via a self-propelled velocity of the individual particle. The interaction between the self-propelled
particle and the host fluid matrix is characterized by an active bulk stress and, in some cases, an
additional active viscous stress. When the active particledemonstrates a head-tail symmetry in
its configuration, the active liquid crystal system is called an apolar liquid crystal system, which
includes vibrated rods. We note that this system is also refereed to as the shaker in some literature,
where nematic steric interaction may be more prominent [21,22]. The nature of the particle-
particle interaction is crucial in determining propertiesof the ordered state. Polar particles may
experience either polar interaction, i.e., the one that tends to orient particles head to head and tail
to tail, or interactions that are apolar, i.e., those that orient particles regardless of their polarity, or
both [23, 24].

The polar active liquid crystal can order in polar states, described by a nonzero vector order
parameter and mean motion. The vector order parameter is often refereed to as the polarity vector
or polar order parameter, whose orientation and magnitude measures the direction and strength
of polarity, respectively. Apolar active particles generally experience apolar interactions and the
resulting ordered state exhibits the symmetry of nematic liquid crystals. A vector order parameter
that is invariant with respect to the head-tail reflection, or a second order tensor order parame-
ter, can be employed to describe the broken symmetry [19, 24]. There exists a class of active
liquid crystals that exhibits nematic symmetry at large scales due to the apolar steric interaction
and hydrodynamic coupling, but consists of self-propelledparticles (hence it is polar at the micro
scale.) Such a system includes swimmers in a bulk suspension[25, 26]. These interactions lead to
large-scale nematics with weak or no polar order [27, 28]. For this class of active liquid crystals, a
vector order parameter along with a tensor order parameter form the minimal set of order param-
eters to describe its broken symmetry [18]. In the real world, this class of active liquid crystals
includes gliding myxobacteria, suspensions of auto-catalytic Janus colloids and motile epithelial
cells [29, 30]. It therefore represents an important class of active matter systems of direct physical
relevance.

A useful theoretical framework for describing the collective behavior of active matter systems
is the continuum model that extends liquid crystal hydrodynamics to include new activities due
to the microscopic energy input [19]. For polar active liquid crystals, minimal continuum models
use a single vector to describe the broken symmetry [17, 31, 18]. For apolar active liquid crystals,
either a single vector with the reflective symmetry enforcedor a second order tensor with the
built-in reflective symmetry can be employed to describe themolecular orientation. For more
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general active liquid crystals whose active particles are primarily polar while the interactions may
be dominated by apolar interactions, both a single vector and a second order tensor order parameter
are required to describe the broken symmetry [24]. In these continuum models, sources of coarse-
grain molecular activities are implemented as low order perturbations to the corresponding passive
liquid crystal systems [16, 19, 13, 32, 18]. A more detailed theoretical description of active liquid
crystals is the phase space or configurational space kinetictheory pioneered by Marchetti and
Liverpool and Shelleyet al., and extended by Forestet al. [18, 33, 34, 35, 35, 36, 37, 38, 39]. In this
formulation of models for active liquid crystals, microscopic scale symmetry is tacitly incorporated
through the interaction potential, self-propelled velocity, as well as phenomenological active forces
[40]. This formulation can unify all three types of continuum models by paying careful attention
to closure procedures. For detailed reviews on the mathematical models for active matter systems,
please refer to some recent excellent review papers on this topic by a group of leading experts in
this field [17, 18].

Emergent spatial-temporal structures in active liquid crystals are predominantly driven by in-
stabilities [33, 41, 42]. These instabilities can sustain macroscopic global structures in time and
space as well as transient defective structures [43, 44, 13], making the active liquid crystal a very
interesting material system to study for the interaction between hydrodynamics and molecular
driven activities. In reality, many active matter systems are exposed in domains where the bound-
ary between the active material system and the ambient deformable materials is free, forming a
free surface dynamical initial-boundary value problem. For instance, when a liquid filament of
active materials is suspended in an ambient liquid matrix, the interface between the active material
and the host matrix is going to be determined by the property of the active material and the host
matrix together with their interactions at the free interface. In this paper, we will focus on one of
such problems to investigate how active material’s properties can alter the interfacial instability of
a polar ALC filament or jet, also known as the capillary instability, to contrast the contribution of
the active material’s activity to classical interfacial hydrodynamics.

Capillary instability of (passive) liquid crystal jets hasbeen studied by several groups in the
past [45, 46, 47, 48, 42, 49, 41, 50]. Bulk elasticity, molecular anisotropy, anchoring condition,
and long-range elasticity have been shown to be able to impact the classical Rayleigh capillary
instability by shifting the cut-off wave number and lowering the growth rate so as to ”stabilize” the
jet [45, 46, 47, 48, 50]. With an long-range elastic effect atthe free surface considered, Fel and
Zimmels reported an additional elastic instability in longwaves in the elastic regime [50]. In this
paper, we extend the studies to investigate how internally generated molecular activities can affect
stability of the ALC jet.

We extend a minimal polar active liquid crystal model developed by Marchettiet al. [44, 18]
and couple it to a passive isotropic fluid matrix in a free surface problem. We then use it to investi-
gate how a liquid filament or jet of active liquid crystals when suspended in an isotropic liquid ma-
trix can alter the classical Rayleigh instability and moreover to induce additional instabilities that
are related to inherent instability in the active liquid crystal system in certain parameter regimes.
In an infinitely long, isotropic liquid jet, the classical capillary instability occurs in the wavelength
range that is confined by the radius of the liquid jet. When themolecular activity is taken into
account in the active liquid crystal model, the scenario canbe modified in such a way that certain
molecular activities can promote the instability while others suppress it, making the active liquid
crystal an ideal candidate for enhanced material processing. In this study, we will also explore the
role of the so-called active viscous stress on stability of the free surface liquid jet. Active liquid
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crystal flows are inherently unstable with and without a boundary, in which spontaneous flows
can ensue at sufficiently strong activity or the presence of boundaries [32, 51, 52, 53, 54, 55, 56].
In the problem we are going to study, we neglect the weak elastic surface force due to the long
range molecular interaction to highlight the role of molecular activities in the active liquid crystal
jet [47, 48, 50]. We also limit to essentially one type steadystate jet profile in this study so that
some of the inherent instabilities within the active liquidcrystal system may be suppressed such as
inhomogeneous patterns within the jet cross-section and the steady state in the radial direction, etc.
[51, 52, 53, 54, 55, 56]. Results on stability of these steadystates deserves another comprehensive
investigation and therefore will not be included in this study.

The rest of the paper is organized into three sections. Firstly, we will present the minimal
polar liquid crystal model coupled with a class of free surface boundary conditions suitable to the
underlying free surface problem. Then, we study the linearized stability property of a class of
steady state active liquid crystal jet flows subject to a class of free surface boundary conditions,
in which we explore the mechanisms leading to jet stabilities and instabilities. Combining both
asymptotic analysis and numerical computations, we map outthe instabilities of the liquid jet flow
and link them to three active mechanisms in the model. Finally, we conclude the study in the last
section.

2 Mathematical Formulation for Free Surface Active Liquid
Crystal Jets

We consider an axisymmetric liquid jet consisting of activeliquid crystals in a passive fluid
matrix or ambient fluid. For the active liquid crystal, we adopt a polar active liquid crystal solution
model developed recently [44, 18]. We assume that the molecular orientation represented by the
polarity orientation in the active liquid crystal solutionis described by the vector polarization field
p also known as the polarity vector. Swimming rodlike virus has a polarity vector defined by its
self-propelled moving direction and speed; live bacteria show some directional preference during
their migration. For active liquid crystal systems, the polarity vector is commonly used to describe
the motion as well as orientation of active molecules or active micro-particles.

We denote the free energy of the material’s system byF = F[p,∇p] =
∫
V f (p,∇p)dx, where

V is the material volume,f is the bulk free energy density ( unit energy per unit volume ). The
molecular field, conjugate to the polarity vectorp is given byh = −δF

δp . We denote the mass
average velocity field of the active liquid crystal solutionby v. With respect to this velocity field,
the strain rate tensor is denoted byD= 1

2(∇v+∇vT) and the vorticity tensor byΩ= 1
2(∇v−∇vT),

where we denote(∇v)αβ = ∂αvβ. Often, the active liquid crystal system is assumed to be driven
out of equilibrium by a constant chemical potential difference∆µ between ATP and its hydrolysis
products [15, 13, 14, 57].
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2.1 Governing system of equations

The hydrodynamic equations for incompressible polar active liquid crystals are summarized as
follows [15, 58]:

∂p
∂t +(v+wp) ·∇p+Ω ·p = 1

γ h+λ∆µp+νD ·p,

∂(ρv)
∂t +∇ · (ρvv) = ∇ ·σ,

∇ ·v = 0,

(2.1)

whereρ is the material density,ν is a geometric parameter for active liquid crystal molecules (also
known as the tumbling parameter in the Ericksen-Leslie theory [59]) and the stress tensorσ is
consisted of hydrostatic pressure (Π), reactive stress (σr ), dissipative stress (σd), active stress (σa),
and Ericksen stress (σe), respectively,

σ = σr +σd +σa+σe−ΠI ,

σr =−ν
2(ph+hp)+ 1

2(ph−hp),

σd = 2ηD,

σa = β(∇p+∇pT)+ζ∆µpp,

σe = f I −K(∇p) · (∇pT),

∇ ·σe=−(∇p) ·h.

(2.2)

The active stress is consisted of two parts: the active (bulk) stress (ζpp) and the active viscous
stress (β(∇p+∇pT)) in which β is the generalized active viscosity [58];η is the viscosity of the
solution matrix;wp is the self-moving (self-propelling) velocity of the polarliquid crystal molecule
(or particle) [58]; an additional active molecular contribution to the polarity vector is proportional
to ∆µ and characterized by coefficientλ [32, 14, 58]. We remark that the reactive stress is derived
using a virtual work principle from the system’s free energy[14, 15], the Ericksen stress is derived
from the same variational principle associated to the elastic body force [14, 60], and the active
stress is derived separately from an argument on force couples acting on the active particle. The
viscous stress can be derived from a prescribed dissipationfunctional via variation with respect to
the rate of strain tensor [61].

The molecular field, calculated from the free energy density, can be rewritten into the following
using the transport equation for the polarity vector:

h =−δF
δp = h1p−h2‖p‖2p+K∇2p = γṖ+ γwp ·∇p− γλ∆µp− γνD ·p, (2.3)

where the free energy of the system is given by [62, 63]

F =
∫
V{K

2‖∇p‖2− h1
2 ‖p‖2+ h2

4 ‖p‖4}dx, (2.4)
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andṖ= ∂p
∂t +v ·∇p+Ω ·p is the convected co-rotational derivative, a frame-invariant derivative,

for the polarity vector,K is the analog of the Frank elastic constant of the Ericksen-Leslie theory
for liquid crystals,h1 andh2 are two constants parameterizing the strength of the bulk free energy.
In this free energy, a one-constant approximation for the Frank elastic constant is adopted [20].

2.2 Interfacial boundary conditions

The governing equations given above are valid within the region of active liquid crystals. At the
boundaries between the active liquid crystal solution and the ambient isotropic fluid, appropriate
boundary conditions must be supplied. The force balance boundary condition at the free surface
between the ALC and the passive fluid matrix is given by the kinetic boundary condition [64]

(σ+ΠaI) ·n = I s ·∇ · τs=−τκn, (2.5)

whereΠa is the ambient fluid pressure,n is the unit external normal of the jet free surface,τs= τI s

is the surface stress tensor,τ is the surface tension coefficient which is assumed a constant in this
study,I s = (I −nn) is the surface identity matrix, andκ is the mean curvature of the interfacial
surface. We remark that we neglect the contribution from theelastic surface energy between the
active liquid crystal and the ambient isotropic fluid in thisstudy to highlight the role played by
the activity of the ALC system [47, 48, 45, 50]. The impact of this elastic surface energy to the
capillary instability will be investigated in a sequel.

To describe the motion of the free surface, we need a kinematic boundary condition. We denote
the free surface by 0= Φ(r,θ,z, t) = r − φ(z, t) in the cylindrical coordinate system(r,θ,z). The
kinematic boundary condition is then given by

(
∂
∂t

+v ·∇)Φ = 0. (2.6)

In this study, we focus on the axisymmetric and torsionless velocity field [64]. When the velocity
field is an axisymmetric, torsionless flow field, the kinematic boundary condition reduces to

∂φ(z, t)
∂t

+vz
∂φ(z, t)

∂z
−vr = 0. (2.7)

This condition indicates that the free surface convects with the fluid flow, wherev = (vr ,0,vz)
represents the torsionless velocity field in the cylindrical coordinate.

In addition to these boundary conditions, the polarity vector needs boundary conditions at the
free surface as well. The boundary condition for the polarity vector is tricky for active material
systems since it depends on how the active molecule interactwith the ambient fluid. To derive
the boundary condition, we introduce a surface free energy.We denote the surface free energy
by Fs = Fs(p) =

∫
∂V fs(p)dA, where∂V is the surface of the active material volume,fs(p) is the

surface free energy density ( unit energy per unit area). We specify fs(p) as follows, based on the
anchoring effect of the active liquid crystal at the free surface,

fs(p) =
α1

2
‖p−‖p‖t‖2+

α2

2
‖p−‖p‖n‖2, (2.8)

wheren is the unit normal vector andt is the unit tangential vector normal to the polar direction
eθ in the cylindrical coordinate for the axisymmetric liquid jet. If α1 6= 0,α2 = 0, the surface free
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energy is zero whenp is parallel tot, that means the direction ofp is on the tangential plan at
the free surface in the(r,z) plane. If α1 = 0,α2 6= 0, the surface free energy is zero whenp is
parallel ton, that means the direction ofp is normal to the free surface. In this paper, we limit
to the case ofα1 > 0,α2 = 0 so that the polarity vector aligns tangentially at the minimum of the
surface anchoring energy . The total free energy of the system is then given byFtot = F +Fs,
we calculate the variationδF tot

δp . In order to arrive at the reactive elastic stress, we need toassign
the contributions from the boundary integrals in the variation into zero. This yields the boundary
condition for the polarity vector at the free surface:

K(∇p) ·n+α1(2p−‖p‖t− p · t
‖p‖p) = 0. (2.9)

We setδ = K
α1

, then the boundary condition can be rewritten into

∂p
∂n

+
1
δ
(2p−‖p‖t− p · t

‖p‖p) = 0. (2.10)

We call this boundary condition the weak (soft) anchoring boundary condition. In the limit of
δ → 0, the boundary condition reduces to 2p−‖p‖t− p·t

‖p‖p = 0. It’s readily shown that

p = ‖p‖t (2.11)

satisfies this condition, which is called the strong anchoring condition. In the limit ofδ → ∞, the
boundary condition reduces to

∂p
∂n

= 0, (2.12)

this is the Neumann boundary condition, also known as the free boundary condition. In this paper,
we will examine how the linear stability of the ALC jet corresponds to the boundary conditions
with δ ∈ [0,∞).

2.3 Dimensionless equations

The polarity vectorp is dimensionless and is used in this model to measure the strength and
direction of polarity. We use a characteristic time scalet0, length scalel0, ”strength of polaritypL”,
and mass density scaleρ0 = ρ to non-dimensionalize the physical variables and equations:

t̃ =
t
t0
, x̃ =

x
l0
, ṽ =

vt0
l0

, Π̃ =
Πt2

0

ρ0l2
0

, h̃ =
ht2

0 pL

ρ0l2
0

, p̃ =
p
pL

.

Then, we obtain the following dimensionless group

w̃= t0pL
l0

w, γ̃ = t0p2
L

ρ0l20
γ, λ̃ = t0λ∆µ, ν̃ = ν, h̃1 =

t2
0 p2

L
ρ0l20

h1, h̃2 =
t2
0 p4

L
ρ0l20

h2,

K̃ =
t2
0 p2

L
ρ0l40

K, 1
η̃ = Re=

ρ0l20
ηt0

, β̃ =
t2
0 pL

ρ0l30
β, ζ̃ =

t2
0 p2

L
ρ0l20

ζ∆µ, δ̃ = δ
l0
, τ̃ = τt2

0
ρ0l30

.
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whereRe is the Reynolds number for the solvent in the ALC system, andK is proportional to
the reciprocal of the Ericksen number. We choosel0 as the radius of the cylindrical jet and an
appropriatepL to ensurẽγλ̃ + h̃1 = h̃2 (that is p2

L = γλ+h1
h2

). Then, the dimensionless equation
yields a constant solutioñp = p0, ṽ = 0, where‖p0‖= 1.

For simplicity, we drop the ˜ on the dimensionless variablesand parameters. The system of
governing equations for the ALC system in the dimensionlessform is summarized as follows

∂p
∂t +(v+wp) ·∇p+Ω ·p = 1

γ h+λp+νD ·p,

∂v
∂t +∇ · (vv) = ∇ ·σ,

∇ ·v = 0,

σ =−ΠI +σe+ 2
ReD+β(∇p+∇pT)+ζpp− ν

2(ph+hp)+ 1
2(ph−hp),

∇ ·σe=−(∇p) ·h,

h = h1p−h2‖p‖2p+K∇2p.

(2.13)

The dimensionless interfacial boundary conditions are given by

∂φ(z,t)
∂t +vz

∂φ(z,t)
∂z −vr = 0,

(σ+ΠaI) ·n =−τκn,

∂p
∂n +

1
δ(2p−‖p‖t− p·t

‖p‖p) = 0.

(2.14)

We denotēh1 = h1+ γλ andhe = h+ γλp = h̄1p−h2‖p‖2p+K∇2p. Then, we have

ph−hp = phe−hep, ph+hp = phe+hep−2γλpp,

∇ ·σe=−(∇p) ·h =−(∇p) ·he+
1
2γλ∇ · (‖p‖2I).

(2.15)

Notice that active parameterλ also gives a contribution to the active stress inγλνpp as well as a
contribution to the pressure12γλ∇ · (‖p‖2I), which can be absorbed into the pressure term−ΠI .
Let ζ̄ = ζ+ γλν,Π̄ = Π− 1

2γλ‖p‖2, we can eliminate parameterλ if we useh̄1,he, ζ̄,Π̄ instead of
h1,h,ζ,Π respectively. So we can further assumeλ = 0 andh1 = h̄1 = h2 in the dimensionless
equation system from now on. This simplification is equivalent to adding a harmonic potential,
due to the molecular activity associated with the polarity vector, to the equilibrium free energy,
demonstrating another source of active stress in the polar active liquid crystal system.

In the following, we examine linear stability properties ofa simple steady state of constant
radius and velocity of the governing system of equations subject to the interfacial boundary con-
ditions, through which we can investigate the near equilibrium dynamics of the free surface active
liquid crystal jet.
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3 Linear Stability Analysis

It is easy to show thatφ = 1,v = v0,p = p0 = (0,0,1),Π = Π0 is a steady state solution for
all the anchoring boundary conditions withδ ∈ [0,∞), wherev0 is a constant vector andΠ0 is a
constant pressure determined by the equilibrium force balance at the interface:Πa−Π0+ τκ = 0.
Without loss of generality, we set the constant velocityv0 = 0, then, the jet is also known as a
liquid filament. In this section, we investigate linear stability of the constant equilibrium state of
the jet or the filament, often referred to as the capillary instability or Rayleigh instability analysis
[64, 48, 47, 49, 42, 65]. We linearize the governing system ofequations (including the boundary
conditions) around the steady state and seek solutions of the following form

φ = 1+ εeαt+ikzφ1, v = εeαt+ikzv1(r), p = p0+ εeαt+ikzp1(r), Π = Π0+ εeαt+ikzΠ1(r), (3.1)

whereφ1 is a constant unknown, andv1(r),p1(r),Π1(r) are variable unknowns (which are func-
tions of r) to be determined by the linearized equations together withthe linearized boundary
conditions.

For the torsionless mode [64], the linearization of the governing equations together with the
boundary conditions yields the following linear ordinary differential equations,

αp1r + ikwp1r =
1
γ (K(p′′1r +

1
r p′1r − 1

r2 p1r)−k2Kp1r)+
ν−1

2 v′1z+ ik ν+1
2 v1r ,

αp1z+ ikwp1z =
1
γ (−2h2p1z+K(p′′1z+

1
r p′1z)−k2Kp1z)+ ikνv1z,

αv1r =−Π′
1+η(v′′1r +

1
r v′1r − 1

r2v1r −k2v1r)+2β(p′′1r +
1
r p′1r − 1

r2 p1r)+

β(ikp′1z−k2p1r)+(∇ ·σp)0
r ,

αv1z =−ikΠ1+η(v′′1z+
1
r v′1z−k2v1z)−2βk2p1z+β(p′′1z+

1
r p′1z+

ikp′1r +
ik
r p1r)+(∇ ·σp)0

z,

v′1r(r)+
v1r(r)

r + ikv1z(r) = 0,

(3.2)

where

(∇ ·σp)0
r = ζ(ikp1r)− γ

2(ν+1)(ikαp1r +
ik
2 (−ikv1r +v′1z))

+νγ
2 (ν+1)( ik

2 (ikv1r +v′1z))−
wγ
2 (ν+1)(−k2p1r),

(∇ ·σp)0
z = ζ(1

r p1r + p′1r +2ikp1z)− γ
2(ν+1)(ikαp1z)

− γ
2(ν−1)(α(1

r p1r + p′1r + ikp1z)+
1
2(

1
r (−ikv1r +v′1z)− ikv′1r +v′′1z))

+νγ
2 (ν+1)(−k2v1z)+

νγ
2 (ν−1)(1

2(
1
r (ikv1r +v′1z)+ ikv′1r +v′′1z)−k2v1z)

−wγ
2 (ν+1)(−k2p1z)− wγ

2 (ν−1)( ik
r p1r + ikp′1r −k2p1z).

(3.3)
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(a) Free surface liquid jet

Figure 1: Definition of the coordinate system and the jet geometry. The jet is placed in a cylindrical
coordinate system(r,θ,z) and its axis of symmetry is along thez−axis. The jet surface is defined
by r = φ(z, t) andn is the outward unit normal. Arrows indicate the polarity vector orientation.

The leading order linearized boundary conditions atr = 0,1 are given by

v1r(0) = 0, v1r(1) = αφ1.

2v′1r(0)+ ikv1z(0) = 0, v′1r(1)+v1r(1)+ ikv1z(1) = 0,

p1r(0) = 0, p′1r(1) =−1
δ(p1r(1)− ikφ1), p′1z(0) = 0, p′1z(1) = 0.

−Π1(1)+2ηv′1r(1)+2βp′1r(1)+ τ(k2−1)φ1 = 0,

{

(η+ γ
4ν(ν−1))(ikv1r +v′1z)+β(ikp1r + p′1z)+(ζ− i

2k(ν−1)γw+ 1
2(ν−1)γλ)p1r

−α
2γ(ν−1)p1r − ν−1

4 γ(v′1z− ikv1r)
}

|r=1− ikζφ1 = 0.

(3.4)

Eqs. (3.2, 3.3, 3.4) constitute a linear boundary value problem of ordinary differential equation
system. We solve this boundary value problem to obtain the dispersion relationα(k) and then to
analyze the positive growth rates as functions of key model parameters and discuss their physical
implications. Since an analytic solution is intractable for the system, we solve the boundary value
problem consisted of linear ordinary differential equations together with the boundary conditions
using a finite difference method numerically. The derivatives at the boundaries are discretized
using one-sided differencing.

The parameters and their values used in this study are listedin Table 1. The resultant dimen-
sionless parameters are given by:

η = 2,τ = 10,ζ = 1,λ = 0,w= 0,β = 1,γ = 1,ν = 0.5,K = 1×10−2,h1 = h2 = 10. (3.5)

In order to benchmark the results of the ALC jet, we study linear stability of a limiting passive
liquid crystal jet firstly.
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Table 1: Model Parameters

Symbol Parameter Value Unit
t0 Characteristic time scale 0.1 s
l0 Characteristic length scale 1×10−3 m
ρ0 Density of the active liquid crystal solution 1×103 kg·m−3

η Solvent viscosity 2×10−2 kg·m−1 ·s−1

τ Coefficient of surface tension 1×10−3 kg·s−2

λ Coefficient of self-propelled motion 0 s−1

ζ Coefficient of the bulk active stress 1×10−1 kg·m−1 ·s−2

w Speed of self-propelled motion of active particles0 m·s−1

β Generalized viscosity of ALC 1×10−4 kg·s−2

γ Rotational viscosity (relaxation parameter) 1×10−2 kg·m−1 ·s−1

ν Geometric parameter of the active particle (−∞,+∞) 1
K Frank elastic constant 1×10−9 kg·m·s−2

h1 Quadratic coefficient in the bulk free energy 1 kg·m−1 ·s−2

h2 Quartic coefficient in the bulk free energy 1 kg·m−1 ·s−2

δ Strength of boundary anchoring [0,+∞) m−1

3.1 Rayleigh instability of passive liquid crystal jets

When we set the active parameters zero:λ = 0,ζ = 0,w = 0,β = 0, our model reduces to
a model for passive liquid crystal jet without enforcingp as a unit vector, which is valid at the
defect. We note that Rey et al. studied the capillary instability of a passive liquid crystal jet using
a lubrication theory based on the Ericksen-Leslie model andRapini-Papoular equation and Fel and
Zimmels studied it using the full Ericksen-Leslie model together with a long range surface elastic
effect involving the Gaussian curvature [47, 48, 50]. Wang studied it using an orientation tensor
based model [45, 46].Our study here is limited to a simplified kinetic boundary condition and a
more general anchoring boundary condition to set the stage for benchmarking the results on ALC
jets. In addition to the numerical method for the full boundary value problem, we also employ
an asymptotic method to derive an analytic expression for the positive growth rate and the cutoff
wave number associated with the jet instability.

A classical simplifying assumption exploited here in the asymptotic approach is that the wave-
length of the surface wave is much longer than that of the jet radius (a slender jet approximation or
lubrication method) [47, 41, 42, 45]. So, in the long-wavelength approximation, the characteristic
length scale in the r-direction is much smaller than that in the z-direction. At the leading order, the
velocity perturbation is approximately given byδv(r,z, t)= (rδvr(z, t),0,δvz(z, t)), the free surface
by φ = 1+δφ and the polarity vector byp = (0,0,1+δpz). A straight forward derivation yields an
asymptotic model for the linearized system atδ = 0, which is given in the Appendix. After apply-
ing the normal mode, the dispersion relation of the asymptotic model equation gives the following
growth rate formula:

α∗ = τk2(1−k2)

(3η+γν2)k2+
√

(3η+γν2)2k4+2τk2(1−k2)
. (3.6)

The liquid crystal jet is unstable when 0< k < 1 with a cutoff wave number atk = 1. This is
known as the capillary or Rayleigh instability for liquid jets. The maximum growth rateα∗

max and
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the corresponding wave numberkmax is given, respectively, by:

α∗
max=

√
τ
(

2
√

2+6A
)−1

, kmax=
(

√

2+3
√

2A
)−1

, (3.7)

whereA =
η+ 1

3γν2
√

τ is the Ohnesorge number. In this approximate dispersion relation, the distor-
tional elasticityK does not show up at all in the growth rate formula, indicatingits role to the
Rayleigh instability is negligible in this model. To confirmit, we conduct a numerical computation
on the full linearized model and show that this approximate dispersion relation is extremely accu-
rate in the range of unstable wave numbers 0≤ k≤ 1. Figure 2 shows the comparison between the
approximate growth rate and the growth rate calculated fromthe full numerical computation. They
are indeed indistinguishable ink∈ [0,1]. Outside the unstable wave number interval, however, we
see visible deviation between the asymptotic result and thenumerical one.

The asymptotic growth rate shows explicitly how the growth rate depends on the model pa-
rameters and the wave number. For the passive liquid crystaljet, the Frank elastic constantK has
no effect to the positive growth rate (see Figure 2 (c).) Through extensive numerical experiments,
we conclude that the boundary anchoring condition ofp at r = 1 also has no effect to the positive
growth rate (see Figure 2 (d).) The positive growth rate onlydepends on viscosityη, relaxation
parameterγ, geometric parameterν and the surface tension coefficientτ. The classical cutoff at
k = 1 retains and the term13γν2 acts as an additional material’s viscosity. The maximum growth
rate and the corresponding wave number only depends on the ratio between the effective viscosity
and the surface tension. A higher viscosity reduces the growth rate while a higher surface ten-
sion promotes it. Since the molecular anisotropy is proportional to |ν|, the more anisotropic of
the liquid crystal molecule is, the smaller the growth rate is. So, the molecular anisotropy can in
fact reduce the growth rate in the capillary instability. Itfollows from the Ericksen-Leslie theory
that the Liquid crystal jet of tumbling liquid crystals (i.e., |ν| < 1) is more unstable than that of
flow-aligning liquid crystals (|ν|> 1).

3.2 Linear instability of active liquid crystal jets

Next, we study the active liquid crystal jet to investigate how the activity parameterized by
active parametersw, ζ andβ can impact on the jet stability. We focus on the impact of the two
activity parametersζ andβ primarily and remark on the role ofw in the end. The upshot here is that
both activity parametersζ andβ can have important and sometimes unexpected effect on stability
of the active liquid crystal jet. Specifically, the active liquid crystal jet can be subject to three
types of instabilities depending on values of the active parameters and the molecular geometric
parameterν: (i). for a moderate value ofζ and any values of the other model parameters , the
classical Rayleigh instability persists; however, the active parameterζ can shift the cutoff wave
number in the classical Rayleigh instability to induce additional unstable wave modes or to reduce
or even suppress existing unstable wave modes, depending onthe type of the molecular activity;
(ii). the polarity vector instability inherent in the active matter system can be accessed in multiple
modes in certain parameter regimes by the ALC jet or completely suppressed in other parameter
regimes; (iii). the active viscous stress, when strong enough, can induce new instabilities in waves
of intermediate wave numbers in certain parameter regimes.In the following, we will elaborate
on the new instabilities and try to identify the parameter space where none, some or all of these
instabilities exist.
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(a) Strong anchoring BC:p1r(1) = 0
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(b) Free BC:p′1r(1) = 0
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(c) Varying elastic constantK while δ = 1

0 0.2 0.4 0.6 0.8 1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Wave number k

R
ea

l p
ar

t o
f g

ro
w

th
 r

at
e 

α

 

 

AR
NR, δ = 100
NR, δ = 10
NR, δ = 1
NR, δ = 0.1

(d) Varyingδ while K = 0.01

Figure 2: The growth rate of a passive liquid crystal jet as a function of the wave number at
selected model parameters. NR represents the numerical result while AR does the analytic one.
The values of the model parametersK = 0.01,η = 2,τ = 10,ν = 1,γ = 1,λ = ζ = w= β = 0. The
numerical results (dots) agree very well with the analytical ones (curves) in the range of unstable
wave numbers. They may deviate away from each other in the stable wave number regime though.
(a). Growth rates at selected values ofη,ν,τ with a strong anchoring condition at the interface.
(b). Growth rates at selected values ofη,ν,τ with a free boundary condition at the interface.
(c). Growth rates at selected values ofK = 0.001,0.01,0.1,1 while δ = 1. (d). Growth rates at
selected values ofδ = 0.1,1,10,100 whileK = 0.01. The growth rate is insensitive toK andδ
in the unstable wave number regime. But, the growth rate becomes sensitive to the two model
parameters in the stable wave number regime. So, Rayleigh instability in this model is primarily
due to the jet surface tension, molecular geometry, its hydrodynamic properties and short-range
elastic properties other than its long-range elastic properties and the boundary anchoring condition.
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We note that active stressζpp describes the force exerted by active particles on the surrounding
fluid. That the local flow generated by the active particles isextensile or contractile is determined
by the sign ofζ [58]. It is extensile ifζ < 0; in this case the active particles/molecules are called
pushers. It is contractile ifζ > 0; in this case the active particles/molecules are called pullers.

3.2.1 Bulk activity induced polarity vector instability

Firstly, we consider the effect of the bulk active stress term ζpp to the ALC jet by setting
w= 0,β = 0. In this study, we want to evaluate the role of the inherent polarity vector instability,
previously identified in the ALC material in unconfined domains in long to intermediate wave
lengths, when coupled with flows in the jet. We remark that this inherent instability belongs to
the unstable mode accessed by a perturbation transverse to the primary polarity direction and is
therefore different from the unstable mode studied in [32].We begin with the investigation in the
zero wave number limit (k = 0) with a strong anchoring boundary condition (δ = 0), where the
governing equations for the linearized boundary value problem can be simplified significantly.

The componentp1z in the linearized system is decoupled from the rest of the equations and
solely governed by a Bessel equation

r2p′′1z+ rp′
1z−Br2p1z = 0, (3.8)

whereB= αγ+2h2
K . Note that only ifB< 0 (i.e.,α <−2h2

γ ,) the Bessel equation can have a nontriv-
ial, real solution corresponding top′1z(0) = 0, p1z(1) = 0. So, there does not exist any instability
associated with the perturbation onpz.

If there is any instability, it must be given by the coupled equations forp1r and v1z. The
governing equations for these components are given by

αp1r =
K
γ (p

′′
1r +

1
r p′1r − 1

r2 p1r)+
ν−1

2 v′1z,

αv1z = η(v′′1z+
1
r v′1z)+ζ( p1r

r + p′1r)− α
2 γ(ν−1)( p1r

r + p′1r)+
1
4γ(ν−1)2(

v′1z
r +v′′1z).

(3.9)

If we assume additionally that K is small, it follows from eq. (3.9) that

r2p′′1r + rp′
1r +(Ar2−1)p1r = 0 (3.10)

together with the boundary conditions

p1r(0) = 0, p1r(1) = 0, (3.11)

whereA= −2α2

2αη+ζ(ν−1) . In this case, the Bessel equation has nonzero real solutions only if A> 0.
Then, from the definition ofA,

2
Aα2+2ηα+ζ(ν−1) = 0. (3.12)

If ζ(ν−1)< 0, the equation has a rootα =−ηA
2 + 1

2

√

η2A2−2ζA(ν−1)> 0. Otherwise,α ≤ 0.
The solution of the Bessel equation satisfyingp1r(0) = 0 is given by

p1r =C1J1(
√

Ar), (3.13)
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whereC1 is an arbitrary constant andJ1 is the Bessel function of the first kind. Usingp1r(1) = 0,
we have

√
A= ξn,n= 1,2, ..., whereξn are the positive roots of Bessel functionJ1(ξ). Then, the

growth rates can be represented by the roots as follows:

αn =−1
2ηξ2

n+
1
2

√

η2ξ4
n−2ζ(ν−1)ξ2

n,n= 1,2, .... (3.14)

Sinceξn → +∞, αn → −ζ(ν−1)
2η asn → ∞. This shows that there exists infinitely many positive

growth ratesαn in the limit of K → 0+.
For other boundary conditions parameterized byδ > 0, even though we can’t obtain an an-

alytical result asymptotically, we still find strong evidence to support the existence of infinitely
manyαn ∼ −ζ(ν−1)

2η , asn → ∞ if the wave numberk is small and the elastic constantK is small
numerically. We list our numerical results in Table 2 for allthree types of boundary conditions
with −ζ(ν−1)

2η = 1.5 at a few selected values ofδ. From the numerical results, we conclude that

αn →−ζ(ν−1)
2η asK → 0+ andn→ ∞.

The model parameters used for producing Table 2 areζ = 4,ν =−0.5,η= 2,τ= 10,γ= 1,λ=
w= β = 0. Table 2 also lists the growth rates at a few selected valuesof δ to see how the anchoring
boundary condition at the free surface affects the instability. If δ is small, the result of the soft
anchoring BC is very close to that of the strong anchoring BC;if δ is large, the result of the soft
anchoring BC is close to that of the Neumann (free) BC.
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(a) ζ = 4,ν =−0.5.
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(b) ζ =−4,ν = 2.5.

Figure 3: The effect of the Frank elastic constantK at a small wave numberk = 0.00001. The
model parameters areη= 2,τ= 10,γ= 1,δ= 0.1,λ=w= β= 0. N is the number of first N largest
growth rates at the wave number calculated numerically. When the growth rates fall below the
lower bound in the figure, they are not shown. As the long-range distortional elasticity enhances,
the instability can be suppressed completely. This mode of instability is termed the polarity vector
instability owing to the coupling between the polarity fieldand the flow field. (a). Growth rates
of active discotic liquid crystal jets. (b). Growth rates ofactive rodlike liquid crystal jets. The
quantity−ζ(ν−1)

2η = 1.5 is identical in both (a) and (b). So are the corresponding growth rate curves
in (a) and (b).

When the Frank elastic constant is not negligibly small, ournumerical studies show that the
role of the distortional elasticity is to reduce the growth of the unstable modes and therefore has
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the tendency to stabilize the jet. Figure 3 plots the first 15 largest real parts of the eigenvalues
(ordered by the magnitude) of the full linear system at a verysmall wave number (k = 0.00001).
The maximum real part of the eigenvalues decreases when the Frank elastic constant (K) increases.
If K is small enough, the maximum is well approximated by 1.5 (forthe model parameters given
above). IfK is larger than some critical valueKc, the real parts of the eigenvalues are negative,
demonstrating the stabilizing effect of the distortional elasticity. If K (small) andν < 1 are fixed,
there exists a critical value ofζc > 0 such that there are eigenvalues with positive real parts only if
ζ> ζc. Similarly, if ν> 1 is fixed, there exists a critical valueζc < 0 such that there are eigenvalues
with positive real parts only whenζ < ζc. We note that the results are identical for the two group
parametersζ = 4,ν =−0.5 andζ =−4,ν = 2.5 which yield the same value:ζ(ν−1) =−6. This
clearly suggests that there exist a relationship between the geometry of the active liquid crystal
particle and the strength of the activity in this instability. We then, numerically calculate the stable
vs unstable regions in the parameter space(ζ,ν) and plot it in Figure 4 for various boundary
conditions parameterized byδ and the Frank elastic constantK.
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(a) δ = 100.
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Figure 4: The stable vs unstable region in parameter space(ζ,ν) in the zero-wave number limit
for the polarity vector instability. The values of the modelparameters areη = 2,τ = 10,γ = 1,λ =
w= β = 0. (a). The curves depict the critical valuesζc as a function ofν, which define boundaries
between the stable and the unstable region with respect to selected values ofK = 0,0.01,0.03,0.05
at δ = 100. Clearly, enhanced distortional elasticity can reducethe size of the unstable region and
thereby stabilize the jet due to this instability. (b). The curves depict the critical valuesζc as a
function ofν, which define boundaries between the stable and the unstableregion with respect to
selected values ofδ = 0.1,1,10,100 atK = 0.01. The strengthening anchoring boundary condition
can also reduce the size of the unstable region in the parameter space. The results indicate that the
long-wave instability is possible only for pushers with a geometric feature that promotes flow-
aligning (ν > 1) and pullers with a geometric feature that promotes tumbling or of a discotic shape
(ν < 1).

From this study, we conclude that ifζ(ν−1) > 0, the instability is completely suppressed; if
ζ(ν−1) < 0, there can exit critical valuesζc andKc such that the instability can incur if|ζ| >
|ζc| and K < Kc, where the maximum growth rate is achieved at the zero wave number k = 0
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with its value bounded by−ζ(ν−1)
2η . For all model parameters that we have explored, we record

monotonically decreasing growth rate curves as functions of the wave numberk. Figure 5 depicts a
set of growth rate curves at selected model parameters, where the monotonically decreasing curves
represent the growth rates corresponding to the instability. Looking forward, whenβ 6= 0, the
monotonicity of the growth rate curve may be lost. We will discuss the case in the last subsection
when we consider the combined effect ofζ andβ.
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(a) ζ = 4,ν =−0.5.
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(b) ζ =−4,ν = 2.5.

Figure 5: Growth rate curves of three unstable polarity vector modes together with the Rayleigh
mode. The growth rates for the polarity vector instability are decreasing functions of the wave
numberk. The parameter values areK = 0.01,η = 2,τ = 10,γ = 1,δ = 0.1,β = 0,λ = w= β = 0.
(a). Growth rates of active discotic liquid crystal jets. (b). Growth rates of active rodlike liquid
crystal jets.

This instability is tied to polarity vector and hydrodynamic interaction via the bulk active stress
parameterized byζ, which is obviously absent in passive liquid crystal limit.From the asymptotic
formula for growth rate, we can trace it back to the inherent instability in the active liquid crystal in
an infinite domain, where a single unstable mode exists in thedirection transverse to the orientation
of the underlying steady state polarity vector. In the context of an axisymmetric, cylindrical jet,
however, the single unstable mode can be amplified to encompass infinitely many unstable modes
in some cases when Franks elasticity is weak (K ≪ 1) or completely suppressed in others for larger
K. This instability is unique to the active liquid crystal jet.

3.3 Activity modified Rayleigh instability

For the active liquid crystal jet flow, the classical Rayleigh instability persists in a finite wave
number interval 0< k< kcuto f f at a moderate value ofζ, wherekcuto f f is the cutoff wave number
equal to 1 for isotropic fluid and passive liquid crystal flows, but depends on model parameters for
active liquid crystal flows.When focused exclusively on the Rayleigh mode, the result isstriking:
the bulk active stress (parametrized byζ) can shift the cutoff wave number. Ifζ > 0, the cutoff wave
number is shifted to the right (kcuto f f > 1) so that more waves becomes unstable; whereas ifζ < 0,
the cutoff wave number is shifted to the left (kcuto f f < 1) so that less waves are unstable. E.g.,
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for an active liquid crystal system consisting of pullers and pushers, pullers tend to destabilize the
jet while pushers tend to stabilize it.This result is shown in the growth rate curves depicted in
Figure 6 for both the discotic and rodlike active liquid crystals. We point out that the anchoring
boundary condition ofp at r = 1 and the Frank elastic constantK have little or no effect to this
unstable mode analogous to the case of the passive liquid crystal jet flow. The growth rate depends
on ν in this unstable mode via|ν|, demonstrating a symmetry with respect to the geometry of
the molecule. Moreover, the growth rate decreases as the geometric parameter increases in its
magnitude, confirming the anisotropy in the molecular geometry has the impact of reducing the
growth. Figure 7 depicts the sensitivity of the growth rate as a function of the geometric parameter
ν and its symmetry with respect to the geometry of molecules.
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Figure 6: Growth rates in the unstable Rayleigh mode. The model parameter values areK =
0.01,η = 2,τ = 10,γ = 1,λ = w= β = 0,δ = 1. A positiveζ shifts the cutoff wave number to the
right (kcuto f f > 1) while a negativeζ shifts it to the left (kcuto f f < 1). The cutoff wave number
grows and decays monotonically with respect toζ. While the cutoff wave number shifts, the wave
number corresponding to the peak of the growth rate also shifts with respect toζ. Hence, the
pusher has the tendency to stabilize the jet while the pullerdestabilizes it. (a). The growth rate
of an active discotic liquid crystal jet atζ = −0.2,0,0.2, respectively. (b). The growth rate of an
active flow-aligning rodlike liquid crystal jet atζ =−0.2,0,0.2, respectively.

The activity parameterζ together with the other model parameters in Figure 6 can be chosen
to be in the stable region in Figure 4 to suppress the polarityvector instability so that the Rayleigh
mode is the only unstable mode for the jet flow. We choose this case to highlight the new feature
in the Rayleigh instability. We note that the cutoff wave number in the Rayleigh instability is
independent of the flow-aligning parameterν although it depends on the activity parameterζ (see
Figure (7)).

When values of (ζ,ν) are located in the unstable region in Figure 4, the polarityvector insta-
bility shows up besides the Rayleigh instability (see Figure 8). As alluded to earlier, the polarity
vector instability depends strongly on the Frank elastic constantK and the BC ofp1r at r = 1 even
when it coexists with the Rayleigh mode.

In the Rayleigh mode, for pushers (ζ < 0), the cutoff wave number reduces as the magnitude
|ζ| increases. Ifζ < 0 is sufficiently small (i.e.,|ζ| is large enough in magnitude), it may suppress
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Table 2: Growth rates calculated numerically

BC atr = 1 p1r(1) = 0 δ = 0.01 δ = 1 δ = 100 p′1r(1) = 0
Max of Re(α) atK = 0.00001 1.4920 1.4921 1.4950 1.4960 1.4960

Max of Re(α) at K = 0.01 1.2522 1.2557 1.3755 1.4098 1.4102
Max of Re(α) at K = 0.05 0.5362 0.5540 1.0898 1.2395 1.2413
Max of Re(α) at K = 0.2 0 0 0.0175 0.6053 0.6124
Max of Re(α) at K = 0.5 0 0 0 0 0
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(a) ζ = 0.2.
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(b) ζ =−0.2.
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(c) ζ = 0.2.

0 0.2 0.4 0.6 0.8 1 1.2
−0.1

0

0.1

0.2

0.3

0.4

0.5

Wave number k

R
ea

l p
ar

t o
f g

ro
w

th
 r

at
e 

α

 

 

ν = 0.6
ν  = −0.6
ν = 1.5
ν  = −1.5

(d) ζ =−0.2.

Figure 7: Sensitivity of the unstable Rayleigh growth rate to ν with the weak anchoring BC. The
model parameter values areK = 0.01,η= 2,τ= 10,γ= 1,λ= w= β= 0,δ = 1. The enhancement
in geometric anisotropy can reduce the growth rate. (a). Pullers. (b). Pushers. The growth rate
only depends on|ν| in the unstable region for both pullers (c) and pushers (d).
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ζ = 0.5, ν = −0.5
ζ = 0.5, ν = 2.5

(a) ζ > 0
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ζ = −0.5, ν = −0.5
ζ = −0.5, ν = 2.5

(b) ζ < 0

Figure 8: Sensitivity of the unstable Rayleigh growth rate together with the unstable polarity vector
growth rate with respect toν. The model parameter values areK = 0.01,η = 2,τ = 10,γ = 1,λ =
w= β = 0,δ = 1. The cutoff wave number is independent ofν while the peak of the growth curve
is not. The growth rates in the unstable Rayleigh mode dependcompletely on|ν|, demonstrating
a complete symmetry with respect toν. The growth rates in the unstable polarity vector mode in
(a) and (b) overlap becauseζ(ν−1) is identical in the rodlike liquid crystal and the discotic one
shown.

the classical Rayleigh instability completely! Figure (9-a) depicts such a scenario whereν < 1
and there does not exist any positive growth rates atζ = −6. Hence, ifν < 1 andζ < 0 is small
enough, all unstable modes can be completely suppressed leading to a stable jet! Ifν > 1 andζ < 0
is small enough, the Rayleigh’s unstable mode can be suppressed, but the unstable polarity vector
modes near the zero wave number limit survive; so, the jet is still unstable due to the polarity vector
instability. Figure 9-b depicts the scenario where the Rayleigh instability is suppressed while the
polarity vector instability persists.
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ζ = −6, ν = −0.5

(a) ν < 1

0 0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

Wave number k

R
ea

l p
ar

t o
f g

ro
w

th
 r

at
e 

α

 

 

ζ = −6, ν = 1.5

(b) ν > 1

Figure 9: Suppression of the Rayleigh capillary instability due to a large activity. The model
parameter values areK = 0.01,η = 2,τ = 10,γ = 1,λ = w= β = 0,δ = 1. (a). Rayleigh instability
along with all other instabilities are completely suppressed leading to a stable jet. (b). Rayleigh
instability is suppressed while unstable polarity vector modes persist for long-waves.

3.4 Active viscous stress induced instability

Finally, we examine how active viscous stressβ(∇p+∇pT) impacts on stability of an active
liquid crystal jet. Firstly, we set the self-moving velocity wp and the bulk active stressζpp term to
zero to suppress the polarity vector instability and highlight the role played by the active viscous
stress. An interesting result shows up: in addition to the Rayleigh’s unstable mode already dis-
cussed, another window of instability may emerge in the intermediate wave number regime whose
wave number is larger than that of the Rayleigh’s. This mode of instability only shows up when the
strength of the active viscosity is strong enough regardless if it is positive or negative andν < 1.
In fact, the growth rate depends on|β| and there exists aβc that depends onν such that if|β|> βc,
the new instability emerges together with the Rayleigh’s unstable mode. As|β|> βc increases, the
growth rate in this new unstable mode increases as well. Figure 10 (a) depicts the most unstable
growth rate together with the unstable Rayleigh mode at a fewselected values ofβ, in which the
new instability emerges atβ = 3 and is suppressed at smaller values ofβ. The active viscous stress
seems to affect the growth rate in the unstable Rayleigh modeby increasing the growth rate in the
mode as|β| increases (shown in Figure 10(a).) Whenν > 1, i.e., the ALC jet is consisted of flow-
aligning rods, the active viscous stress will not induce anyinstabilities and an increase in values of
|β| can in fact decrease the growth rate in the Rayleigh mode (seeFigure 10(b).)

We next consider the combined effect of the bulk active stress ζ(pp) and the active viscous
stressβ(∇p+∇pT). Firstly, we examine the case for ALC jet consisting of pullers, i.e.,ζ > 0. If
ν > 1, the polarity vector instability is suppressed and the active viscous stress does not induce any
new instability at all so that the Rayleigh mode may be the only existing unstable mode. Although
the active viscous stress does not induce any new instabilities, it plays the role of reducing the cutoff
wave number in the Rayleigh instability and thereby lowering the growth rate, an effect completely
opposite to that of the bulk active stress withζ > 0. Figure 11(b) depicts the ”stabilizing” effect of
active viscosityβ, whereβ shifts the cutoff wave number to smaller than 1 atβ = 2.4. Once again,
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β = 0
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(a) ζ = 0,ν =−0.5.
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(b) ζ = 0,ν = 1.5.

Figure 10: Growth rates of ALC jets atζ = 0 and a few selected values ofβ. The model parameter
values areK = 0.01,η = 2,τ = 10,ν = −0.5,γ = 1,λ = w = 0,δ = 100. (a). Growth rates of
the unstable Rayleigh mode and the active viscous stress induced mode atν < 1. There exists a
critical valueβc such that if 0< |β| < βc, the unstable Rayleigh mode is the only unstable mode;
for |β| > βc, an additional instability may emerge in a wave number interval beyond that of the
unstable Rayleigh mode’s. The active viscous stress can notonly induce an additional instability,
but also increase the growth rate in the unstable Rayleigh mode. The growth rate depends only on
|β|. (b). Growth rates of the unstable Rayleigh mode atν > 1. In this case, the Rayleigh mode is
the only unstable mode. An increase in values of|β| decreases the growth rate.
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the growth rate depends on|β| instead ofβ directly.
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(a) ζ = 0.6,ν =−0.5.
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(b) ζ = 1.4,ν = 1.5.

Figure 11: Unstable growth rates for ACL jets consisting of pullers. The model parameter values
areK = 0.01,η= 2,τ= 10,γ= 1,λ= w= 0,δ = 100. (a). Case ofν < 1. All three unstable modes
may coexist. The role of|β| is to reduce the growth rate for the polarity vector mode while promote
the growth rate in the active viscous stress induced unstable mode. In the meantime, it increases
slightly the Rayleigh growth rate. (b). Case ofν > 1. The Rayleigh mode is the only unstable
mode. The active viscous stress actually reduces the growthrate and shifts the cutoff wave number
to smaller wave numbers, playing a role completely oppositeto that of the bulk active stressζpp.

If ν< 1,ζ(ν−1)< 0, where the polarity vector instability may exist in addition to the Rayleigh
instability. The active viscous stress can reduce the unstable polarity vector mode in small wave
number region and in the meantime induce a new instability inregions of intermediate wave num-
bers shown in Figure 11(a). In Figure 11(a), the growth rate due to the polarity vector instability
actually breaks up into polarity vector unstable mode whichdecays with respect to|β| and the
new, active viscous stress induced unstable mode, which grows with respect to|β|. As we varyν,
the growth rate curve due to the polarity vector instabilitymay decay to partially negative so that
the new mode emerges as a separate unstable window in the wavenumber space shown in Figure
10(a). At the presence of nonzero active viscosity, the monotonicity in the polarity vector growth
rate curves is lost. In Figure 11(a), the growth rate curves for the polarity vector mode decrease
only in the range of small wave numbers; they then turn aroundto become increasing, crossing the
Rayleigh growth rate curve, and then become decreasing again in the range of intermediate wave
numbers, creating a local maximum for the new mode that we call the active viscous stress induced
unstable mode. If the two windows of instability for the two unstable modes are well separated
in the case of large|β|, the distinction is apparent. Otherwise, it’s difficult to define the boundary
between the two unstable modes in the joined window of instability.

Secondly, we look at the ALC jet consisting of pusher molecules (ζ < 0.) If ν > 1, there exist
two critical values ofζ, ζc andζR. When 0> ζ > ζc, the Rayleigh’s mode is the only unstable
mode. Forζc > ζ > ζR, there may coexist the unstable polarity vector and Rayleigh mode. For
ζR > ζ, the unstable Rayleigh mode is suppressed so that only the unstable polarity vector mode
survives. The details can be tabulated in the following.

23

Page 23 of 32 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



1. If 0> ζ > ζc, the active viscous stress does not induce any new instabilities. Rayleigh mode
is the only unstable mode.|β| changes growth rate curve of the Rayleigh mode by increasing
the cutoff wave number and meanwhile reducing the growth rate, see Figure 12(a).

2. If ζc > ζ > ζR, there is no new instability due to the active viscosityβ. An increase in values
of |β| reduces the growth in the unstable polarity vector mode while increasing the cutoff
wave number for the Rayleigh mode. Figure 12(b) depicts the growth rates corresponding to
the two unstable modes.

3. If ζR> ζ, the Rayleigh instability is suppressed and the polarity vector instability is the only
survival unstable mode. An increase in values of|β| apparently reduces the growth rate (see
Figure 12(c)).

0 0.2 0.4 0.6 0.8 1 1.2
−0.1

0

0.1

0.2

0.3

0.4

Wave number k

R
ea

l p
ar

t o
f g

ro
w

th
 r

at
e 

α

 

 

 β = 0
 β = 2
 β = 4

(a) ζ =−0.2,ν = 1.5.
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(b) ζ =−0.6,ν = 2.5.
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(c) ζ =−6,ν = 1.5.

Figure 12: Growth rates at selected values ofβ for ζ< 0 andν> 1. The model parameter values are
K = 0.01,η = 2,τ = 10,γ = 1,λ = w= 0,δ = 100. (a). In this parameter regime, only Rayleigh
instability exists. (b). In this parameter regime, the Rayleigh and the polarity vector instability
coexist. (c). In this regime, only the polarity vector instability exists.

If ν< 1, the polarity vector instability is completely suppressed. There exists a critical valueζR

such that if 0> ζ > ζR, the unstable Rayleigh mode together with an active viscousstress induced
unstable mode can coexist. ForζR > ζ, the Rayleigh’s unstable mode is suppressed so that the
active viscous stress induced mode may be the sole unstable mode. Specifically, we summarize the
details below.

1. For 0> ζ > ζR, there exists aβc such that the active viscous stress induced instability
emerges when|β| > |βc| in addition to the unstable Rayleigh mode. Figure 13(a) depicts
the growth rates corresponding to the two unstable modes.

2. For 0> ζ > ζR and|β| < βc, the Rayleigh mode is the only unstable mode. An increase in
values of|β| shifts the cutoff wave number to the right, making more wavesunstable, and in
the meantime slightly elevate the growth rate in the unstable Rayleigh mode. Figure 13(b)
depicts the Rayleigh growth rate curve at three selected values ofβ.

3. For ζR > ζ, there exists aβc such that the active viscous stress induced instability gives
the only unstable mode when|β| > |βc|. Figure 13(c) shows the growth rate variation with
respect to three selected values ofβ.
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(a) ζ =−0.2,ν =−0.5.
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(b) ζ =−1.4,ν = 0.5.
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(c) ζ =−6,ν =−0.5.

Figure 13: Growth rates at selected values ofβ for ν < 1 andζ < 0. The values of parameters
areK = 0.01,η = 2,τ = 10,γ = 1,λ = w = 0,δ = 100. (a). Case of 0> ζ > ζR and |β| > βc.
Two unstable modes may coexists. (b). When the Rayleigh modeis the only unstable mode at
0 < |β| < βc, the active viscous stress shifts the cutoff wave number to the right to make more
waves unstable, meanwhile elevates the growth rate in the unstable Rayleigh mode. (c). Case of
ζR > ζ. Only the active viscous stress induced instability existsat a sufficiently large|β|.

Finally, we comment on the role of the self-propelling velocity parameterized byw. We have
conducted extensive numerical studies and found that it changes the growth rate of the unstable
modes marginally. When either ofw or β are nonzero in the model, the imaginary part of the
growth rates can be nonzero indicating the existence of propagating waves associated with some
of the unstable modes.

In summary, the active viscous stress can induce new instability only whenν < 1. In the case
of ν > 1, the role of active viscosity to the growth rate seems to be opposite to that ofζ in that
while nonzeroζ shifts the cutoff wave number in the Rayleigh mode,β shifts it to the opposite
direction. An increase in|β| in general reduces the growth rate in the Rayleigh and the polarity
vector mode. In the case ofν < 1, it reduces the growth rate in the polarity vector mode for
long waves while elevating the growth rate in the Rayleigh mode, and in the meantime, induces
a new instability for intermediate waves. A quantitative study on how these active parameters
impact on the jet stability in a detailed phase diagram for(ν,ζ,β) will be time consuming and
postponed to a future study. Figure 12-c seems to suggest that the polarity vector instability and
the active stress induced instability are in fact given by the same growth rate curve; therefore,
they belong to the same unstable mode. However, when the Rayleigh instability is present, it is
clearly shown in our numerical analysis that they belong to two separate families of growth rates.
Thereby, it is indiscernible from our numerical analysis carried out here that if they are the same
mode. Physically, they are clearly related to two separate mechanisms. In light of this, we will
describe the instability induced by the active viscous stress as a new mode of instability, maybe
more accurately, a new mechanism of instability.

4 Conclusion

We have studied linear stability of an infinitely long axisymmetric, cylindrical active as well
as passive liquid crystal jet with a focus on the torsionlessdisturbances. Three unstable modes
associated with the activities are identified: the polarityvector mode, the modified Rayleigh mode,
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and the active viscous stress induced unstable mode. First of all, the bulk active parameterζ and
the active viscosityβ can both affect the Rayleigh instability in such a way that the cutoff wave
number and the growth rate can be modified as results of their existence. Secondly, a diagnostic
measure given byζ(ν−1) emerges for a second unstable mode related to the flow-coupled polarity
vector instability. This inherent instability is completely suppressed ifζ(ν−1)> 0. It can emerge
as an additional unstable mode only whenζ(ν−1) < 0 and in certain ranges ofK andδ. Both
the Frank elastic constant and the boundary anchoring condition can expand the region of stability
in the phase space(ζ,ν). On top of it, the active viscosity can induce additional unstable mode
providedν < 1. So, for a flow-aligning rod ACL system, the active viscosity does not introduce
any instabilities. It only does so whenν < 1. In this case, it can be stabilizing and destabilizing
depending on the active parameterζ and the geometric parameterν.

At sufficiently strong bulk activity parameterized byζ < 0, the unstable Rayleigh mode can be
completed suppressed leading to a stable active liquid crystal jets! The condition for attaining a
completely stable ALC jet depends on the geometry of the ALC molecules, the activity parameter
ζ, active viscosityβ, and long range elastic interaction parameterized by the Frank elastic constant.
There are parameter regimes where each of the three unstablemodes can survive individually, in
various combinations or suppressed completely. These richdynamics of ALC jets can provide
various mechanisms for processing free surface active liquid crystal flows. For instance, the mod-
ified Rayleigh instability may lead to a change of drop shape as the molecular activities are either
extensile or contractile in comparison with the drop formation in a passive or an isotropic fluid.
By tuning the ALC material property to completely stabilizethe jet flow may enhance formation
of long fibers which may has a direct application in regenerative medicine in neural science and
organ fabrication. By fine-tuning the three types instabilities, we may be able to select the droplet
size and shapes. The exotic behavior in jet instability for active liquid crystals needs to be verified
experimentally. Nonetheless, the current theoretical study certainly sheds light on this class of fas-
cinating active matter system and in the meantime poses questions about the validity of the active
viscous stress as well.
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5 Appendix: Derivation of A Slender Jet Model and Its Disper-
sion Relation

In long-wave approximations, the length scale in the r-direction is much smaller that in the
z-direction. At the leading order, the velocity perturbation is approximately given byδv(r,z, t) =
(rδvr(z, t),0,δvz(z, t)), the free surface byφ = 1+δφ and the polarity vectorp = (0,0,1+δpz). It

follows from the incompressible condition∂vz
∂z + 1

r
∂(rvr)

∂r = 0 that

∂δvz

∂z
+2rδvr = 0. (5.1)
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Using the kinematic boundary condition (2.7), we obtain thefirst order equation

∂δvz

∂z
=−2

∂δφ
∂t

. (5.2)

Next, we usep = (0,0,1+δpz) and the molecular fieldhr = 0,hθ = 0,hz = −2h2δpz+K ∂2δpz
∂z2 to

obtain the transport equation ofp at this order,

∂δpz

∂t
=

hz

γ
+ν

∂δvz

∂z
. (5.3)

We rewriteσ =σt −ΠI , whereσt is the extra stress tensor, the second dynamic boundary condition
(2.5) is given by

[((Π−Πa)I −σt) ·n] ·n = τ(
1

Rrz
+

1
Rrθ

). (5.4)

So, the capillary pressureΠτ becomes

Πτ = τ− τ
(

δφ+
∂2δφ
∂z2

)

, (5.5)

where we approximate

Rrθ =
√

1+ r ′2r ≈ r = 1+δφ, Rrz =
(1+r ′2)3/2

−r ′′ ≈ −1
δφ′′ . (5.6)

The pressureΠ can be expressed in terms of the capillary pressure [42, 66]

Π =−1
3
(σ∗

zz+σ∗
rr +σ∗

θθ) =−1
3
(σ∗

zz−2Πτ), (5.7)

where we use the boundary conditions [66]:

σ∗
rr =−Πτ,σ∗

θθ = σ∗
rr at r = R= 1, (5.8)

and

σ∗
zz=−Π+2η

∂δvz

∂z
. (5.9)

ThenΠ = Πτ −η∂δvz
∂z . The only nonzero component of total stress tensorσ is [66]

σzz=−Πτ +3η
∂δvz

∂z
−νpzhz. (5.10)

The axial momentum balance equation becomes

∂δvz

∂t
=

∂σzz

∂z
. (5.11)
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From equations (5.2) and (5.11), we obtain

∂2δφ
∂t2 =−τ ∂2

∂z2

(

δφ+ ∂2δφ
∂z2

)

+3η ∂3δφ
∂t∂2z

+ ν
2

∂2

∂z2 (pzhz) . (5.12)

After introducing the normal mode

δφ(z, t) = εeαt+ikzφ0, δpz(z, t) = εeαt+ikzp0, (5.13)

and substituting them into equation (5.12), we obtain

α2φ0 = τk2(1−k2)φ0−3ηk2αφ0+
ν
2k2(2h2+Kk2)p0. (5.14)

Solving the pz equation (5.3) for steady states:hz
γ + ν∂δvz

∂z = 0, we obtain(2h2 + K1k2)p0 =
−2γναφ0. Substituting this into (5.14), we have the dispersion equation for the approximate model

α2+(3η+ γν2)k2α− τ
2

k2(1−k2) = 0. (5.15)
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