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Capillary Instability of Axisymmetric, Active Liquid
Crystal Jets

Xiaogang Yang andQi Wang'

Abstract

We study linear stability of an infinitely long, axisymmetrcylindricalactive liquid crys-
tal (ALC) jetin a passive isotropic fluid matrix using a polar active lajarystal (ALC) model.
We identify three possible unstable modes (or mechanissritbleaesult of the interaction be-
tween the flow and the active (or self-propelled) moleculatiom. The first unstable mode is
related to thepolarity vector instabilitywhen coupled to the flow field at the presence of the
molecular activity. It can be traced back to the inherenaptyl vector instability in a bulk
active liquid crystal flow. However, it can be grossly amplifiin the ALC jet to encompass
up to infinitely many unstable growth rates when the long eagigtortional elastic interaction
is weak in certain parameter regimes; it can also be summtassother parameter regimes
completely. The second unstable mode is related to theicdhssmpillary or Rayleigh insta-
bility, which exists in a finite wave interva0, keyiot1]. The new feature for this instability lies
in the dependence of the cutoff wave numbey:f+¢) on the activity of the active matter sys-
tem. For ALC jets with sufficiently strong contractile adtyy the instability can be completely
suppressed though. The third unstable mode is due to the atgsicous stress. This unstable
mode can emerge in the intermediate wave number regime dficienily strong active vis-
cosity and even expand all the way to the zero wave numberwimen the Rayleigh unstable
mode is absent. It can also be suppressed in the regime ofaetiak viscous stress. At any
given values of the model parameters, the three types d@itisies can show up either indi-
vidually or in a certain combination, or be completely siggsed altogether. In this paper, we
discuss the positive growth rates associated with thehitsiies, the windows of instability
and their dependence on model parameters through extemsinerical computations aided
by asymptotic analysis.

1 Introduction

Active matter refers to the materials that are driven outqpfildorium by energy input at the
microscopic scale via biological or catalytic activitids a consequence, some emergent dynami-
cal structures may result in the material systems, suchnasrange order, anomalous fluctuations,
spontaneous flows, dynamical spatial-temporal structamdspatterns [1, 2, 3, 4,5, 6, 7, 8, 9, 10,
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11]. When coupled with regulatory signaling pathways,\&cthaterials can serve as models for
living systems such as cortical layers in the cytoskelefaretls and bacterial colonies in bacterial
biofilms [12, 13, 14, 15, 16].

Active particles in the active matter are generally angaitr in their configuration and motion,
and can form self-assembled ordered states with respeciaotation [17, 18]. The nature of
the ordered state depends on both the configuration of theidodl particle and the interaction
among the particles. A class of active materials with thesguires is the active liquid crystal,
which may form liquid crystalline phases at a sufficientlgtiparticle concentration or under
sufficiently strong particle-particle interactions [19]2When the particle immersed in a solution
possesses a distinctive head and tail, the particle-fligteayis called a polar active liquid crystal
solution. Examples in this class of materials include b@atsuspensions, asymmetric vibrated
granular rods, polarized migrating cells, and catalytiarged nano-particles in a solution. Self-
propelled particles are often modeled as polar active @esti where the activity is incorporated
via a self-propelled velocity of the individual particlehd interaction between the self-propelled
particle and the host fluid matrix is characterized by anvadiulk stress and, in some cases, an
additional active viscous stress. When the active partlel®onstrates a head-tail symmetry in
its configuration, the active liquid crystal system is cdlé apolar liquid crystal system, which
includes vibrated rods. We note that this system is alsoeeteto as the shaker in some literature,
where nematic steric interaction may be more prominent 2], The nature of the particle-
particle interaction is crucial in determining propertafsthe ordered state. Polar particles may
experience either polar interaction, i.e., the one thadsea orient particles head to head and tail
to tail, or interactions that are apolar, i.e., those thegrdrparticles regardless of their polarity, or
both [23, 24].

The polar active liquid crystal can order in polar statescdbed by a nonzero vector order
parameter and mean motion. The vector order parametereis mdtereed to as the polarity vector
or polar order parameter, whose orientation and magnituelgsares the direction and strength
of polarity, respectively. Apolar active particles gerlgraxperience apolar interactions and the
resulting ordered state exhibits the symmetry of nemaiiaidi crystals. A vector order parameter
that is invariant with respect to the head-tail reflectionacsecond order tensor order parame-
ter, can be employed to describe the broken symmetry [19, ZhEre exists a class of active
liquid crystals that exhibits nematic symmetry at largelesaue to the apolar steric interaction
and hydrodynamic coupling, but consists of self-propefiadicles (hence it is polar at the micro
scale.) Such a system includes swimmers in a bulk suspej2§p86]. These interactions lead to
large-scale nematics with weak or no polar order [27, 28}.this class of active liquid crystals, a
vector order parameter along with a tensor order parameter the minimal set of order param-
eters to describe its broken symmetry [18]. In the real wdhds class of active liquid crystals
includes gliding myxobacteria, suspensions of auto-gatalanus colloids and motile epithelial
cells [29, 30]. It therefore represents an important cldsstive matter systems of direct physical
relevance.

A useful theoretical framework for describing the colleetbehavior of active matter systems
is the continuum model that extends liquid crystal hydrayits to include new activities due
to the microscopic energy input [19]. For polar active ldjarystals, minimal continuum models
use a single vector to describe the broken symmetry [17,81 Fbr apolar active liquid crystals,
either a single vector with the reflective symmetry enforoedh second order tensor with the
built-in reflective symmetry can be employed to describertt@ecular orientation. For more
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general active liquid crystals whose active particles amaarily polar while the interactions may
be dominated by apolar interactions, both a single vecteasecond order tensor order parameter
are required to describe the broken symmetry [24]. In theséimuum models, sources of coarse-
grain molecular activities are implemented as low ordetysbations to the corresponding passive
liquid crystal systems [16, 19, 13, 32, 18]. A more detailegbtretical description of active liquid
crystals is the phase space or configurational space kitietary pioneered by Marchetti and
Liverpool and Shellet al., and extended by Forestal. [18, 33, 34, 35, 35, 36, 37, 38, 39]. In this
formulation of models for active liquid crystals, micropooscale symmetry is tacitly incorporated
through the interaction potential, self-propelled vetpas well as phenomenological active forces
[40]. This formulation can unify all three types of contimaunodels by paying careful attention
to closure procedures. For detailed reviews on the mathemhatodels for active matter systems,
please refer to some recent excellent review papers onais by a group of leading experts in
this field [17, 18].

Emergent spatial-temporal structures in active liquicstals are predominantly driven by in-
stabilities [33, 41, 42]. These instabilities can sustaacmscopic global structures in time and
space as well as transient defective structures [43, 44 ni&¥fing the active liquid crystal a very
interesting material system to study for the interactiotmeen hydrodynamics and molecular
driven activities. In reality, many active matter systemesexposed in domains where the bound-
ary between the active material system and the ambientrdafde materials is free, forming a
free surface dynamical initial-boundary value problemr ipgtance, when a liquid filament of
active materials is suspended in an ambient liquid matnixjriterface between the active material
and the host matrix is going to be determined by the propdrthieactive material and the host
matrix together with their interactions at the free intedaln this paper, we will focus on one of
such problems to investigate how active material’'s pragedan alter the interfacial instability of
a polar ALC filament or jet, also known as the capillary indiahto contrast the contribution of
the active material’s activity to classical interfacialdngdynamics.

Capillary instability of (passive) liquid crystal jets hasen studied by several groups in the
past [45, 46, 47, 48, 42, 49, 41, 50]. Bulk elasticity, molac@anisotropy, anchoring condition,
and long-range elasticity have been shown to be able to inmpacclassical Rayleigh capillary
instability by shifting the cut-off wave number and lowegitihe growth rate so as to "stabilize” the
jet [45, 46, 47, 48, 50]. With an long-range elastic effecthat free surface considered, Fel and
Zimmels reported an additional elastic instability in lomgves in the elastic regime [50]. In this
paper, we extend the studies to investigate how internaihegated molecular activities can affect
stability of the ALC jet.

We extend a minimal polar active liquid crystal model depeld by Marchettet al. [44, 18]
and couple it to a passive isotropic fluid matrix in a free acefproblem. We then use it to investi-
gate how a liquid filament or jet of active liquid crystals whgispended in an isotropic liquid ma-
trix can alter the classical Rayleigh instability and maeao induce additional instabilities that
are related to inherent instability in the active liquid gl system in certain parameter regimes.
In an infinitely long, isotropic liquid jet, the classicalgbary instability occurs in the wavelength
range that is confined by the radius of the liquid jet. Whenrttwdecular activity is taken into
account in the active liquid crystal model, the scenariolmamodified in such a way that certain
molecular activities can promote the instability while eth suppress it, making the active liquid
crystal an ideal candidate for enhanced material proogsbirthis study, we will also explore the
role of the so-called active viscous stress on stabilityhefftee surface liquid jet. Active liquid
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crystal flows are inherently unstable with and without a tang, in which spontaneous flows
can ensue at sufficiently strong activity or the presenceoahdaries [32, 51, 52, 53, 54, 55, 56].
In the problem we are going to study, we neglect the weakielastface force due to the long
range molecular interaction to highlight the role of molecactivities in the active liquid crystal
jet [47, 48, 50]. We also limit to essentially one type steathte jet profile in this study so that
some of the inherent instabilities within the active liqaigstal system may be suppressed such as
inhomogeneous patterns within the jet cross-section amdtdady state in the radial direction, etc.
[51, 52, 53, 54, 55, 56]. Results on stability of these stesdies deserves another comprehensive
investigation and therefore will not be included in thisdstu

The rest of the paper is organized into three sections. I¥imse will present the minimal
polar liquid crystal model coupled with a class of free scef@oundary conditions suitable to the
underlying free surface problem. Then, we study the lirzearistability property of a class of
steady state active liquid crystal jet flows subject to aslafsfree surface boundary conditions,
in which we explore the mechanisms leading to jet stabgliiad instabilities. Combining both
asymptotic analysis and numerical computations, we maghetnstabilities of the liquid jet flow
and link them to three active mechanisms in the model. Binak conclude the study in the last
section.

2 Mathematical Formulation for Free Surface Active Liquid
Crystal Jets

We consider an axisymmetric liquid jet consisting of acligeliid crystals in a passive fluid
matrix or ambient fluid. For the active liquid crystal, we ptla polar active liquid crystal solution
model developed recently [44, 18]. We assume that the mialeodentation represented by the
polarity orientation in the active liquid crystal soluti@described by the vector polarization field
p also known as the polarity vector. Swimming rodlike virus laapolarity vector defined by its
self-propelled moving direction and speed; live bactehniavs some directional preference during
their migration. For active liquid crystal systems, theguity vector is commonly used to describe
the motion as well as orientation of active molecules owaathicro-particles.

We denote the free energy of the material’'s systenfr by F[p, Op] = f, f(p,Op)dx, where
V is the material volumef is the bulk free energy density ( unit energy per unit volumé&he
molecular field, conjugate to the polarity vectoris given byh = —g—F. We denote the mass
average velocity field of the active liquid crystal solutiopv. With respect to this velocity field,
the strain rate tensor is denotedDy= 3(COv+Ov') and the vorticity tensor b@ = 3(Ov—DOvT),
where we denotéllv),s = dqVvg. Often, the active liquid crystal system is assumed to beedri
out of equilibrium by a constant chemical potential diffeceAp between ATP and its hydrolysis
products [15, 13, 14, 57].
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2.1 Governing system of equations

The hydrodynamic equations for incompressible polar ediquid crystals are summarized as
follows [15, 58]:

%—f+(v+wp)-Dp+Q-p: \—1/h+)\Aup+vD~p,

AoV 10 (pw) =DO-o, (2.1)

-v=0,

wherep is the material density, is a geometric parameter for active liquid crystal moles(&so
known as the tumbling parameter in the Ericksen-Leslie th¢gO]) and the stress tensoris
consisted of hydrostatic pressufé)( reactive stressx{), dissipative stresof), active stressg®),
and Ericksen stressf), respectively,

o=0"4+094+02+0%—Tl,
0" = —3(ph+hp) + 3(ph—hp),

od =2nD,
(2.2)
02 =B(Op+0Op") + ZAppp,

0= fl —K(Op)- (Op"),
0-0°=—(0Op)-h.

The active stress is consisted of two parts: the active Jlsiless {pp) and the active viscous
stress B(Op + Op')) in which B is the generalized active viscosity [58];is the viscosity of the
solution matrixwp is the self-moving (self-propelling) velocity of the polajuid crystal molecule
(or particle) [58]; an additional active molecular contrilon to the polarity vector is proportional
to Ap and characterized by coefficien{32, 14, 58]. We remark that the reactive stress is derived
using a virtual work principle from the system’s free enellyy, 15], the Ericksen stress is derived
from the same variational principle associated to the ieldé&tdy force [14, 60], and the active
stress is derived separately from an argument on force eswglting on the active particle. The
viscous stress can be derived from a prescribed dissipfaimtional via variation with respect to
the rate of strain tensor [61].

The molecular field, calculated from the free energy denséy be rewritten into the following
using the transport equation for the polarity vector:

h = - = hip—hy||p||?p+KO%p = yP + ywp - Op — YAApp — WD -, (2.3)
where the free energy of the system is given by [62, 63]

F = fASI0pI2 = % IplI + % Ipl|*dx, (2.4)
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andP = %—f +v-Op+Q-p is the convected co-rotational derivative, a frame-iraatrderivative,
for the polarity vectorK is the analog of the Frank elastic constant of the Ericksesiie theory
for liquid crystals h; andhy are two constants parameterizing the strength of the batkdnergy.
In this free energy, a one-constant approximation for tlamkelastic constant is adopted [20].

2.2 Interfacial boundary conditions

The governing equations given above are valid within theoregf active liquid crystals. At the
boundaries between the active liquid crystal solution d&edambient isotropic fluid, appropriate
boundary conditions must be supplied. The force balancedsry condition at the free surface
between the ALC and the passive fluid matrix is given by thetkeboundary condition [64]

(04+Mal)-n=1s-0-15= —TKN, (2.5)

wherell, is the ambient fluid pressune s the unit external normal of the jet free surfate= 1l
is the surface stress tensoiis the surface tension coefficient which is assumed a conistdims
study,ls = (I —nn) is the surface identity matrix, andis the mean curvature of the interfacial
surface. We remark that we neglect the contribution frometlastic surface energy between the
active liquid crystal and the ambient isotropic fluid in teisidy to highlight the role played by
the activity of the ALC system [47, 48, 45, 50]. The impact loiktelastic surface energy to the
capillary instability will be investigated in a sequel.

To describe the motion of the free surface, we need a kinerbatindary condition. We denote
the free surface by & ®(r,0,zt) =r — @(zt) in the cylindrical coordinate systefn 6,z). The
kinematic boundary condition is then given by

(2+V~D)(D:O. (2.6)
ot

In this study, we focus on the axisymmetric and torsionlekxcity field [64] When the velocity
field is an axisymmetric, torsionless flow field, the kinemn&tundary condition reduces to
This condition indicates that the free surface convects wie fluid flow, wherev = (v;,0,Vv;)
represents the torsionless velocity field in the cylindricerdinate.

In addition to these boundary conditions, the polarity seceeds boundary conditions at the
free surface as well. The boundary condition for the polaréctor is tricky for active material
systems since it depends on how the active molecule intanigictthe ambient fluid. To derive
the boundary condition, we introduce a surface free enevigg.denote the surface free energy
by Fs = Fs(p) = [y fs(p)dA, wheredV is the surface of the active material volunfe(p) is the
surface free energy density ( unit energy per unit area). peify fs(p) as follows, based on the
anchoring effect of the active liquid crystal at the freeface,

(2.7)

a 0 0]
fs(p) = - lIp = IPlItI2+ =2 P~ [IplInil?, (2.8)

wheren is the unit normal vector andis the unit tangential vector normal to the polar direction
&g in the cylindrical coordinate for the axisymmetric liquet, If a1 # 0,02 = 0, the surface free
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energy is zero whep is parallel tot, that means the direction gf is on the tangential plan at
the free surface in thér,z) plane. Ifa; = 0,a2 # 0, the surface free energy is zero whelis
parallel ton, that means the direction @fis normal to the free surface. In this paper, we limit
to the case ofi; > 0,0, = 0 so that the polarity vector aligns tangentially at the mimm of the
surface anchoring energy . The total free energy of the sysehen given byF!® = F + F,
we calculate the vanatloEF— In order to arrive at the reactive elastic stress, we neegs@mn
the contributions from the %oundary integrals in the vasratnto zero. This yields the boundary
condition for the polarity vector at the free surface:

K(Op)-n+0y(2p— ||put—ﬁ )=0. (2.9)

We setd = Gﬁl then the boundary condition can be rewritten into

op 1
P

p-t
TP p) =0. (2.10)

HIOH

We call this boundary condition the weak (soft) anchoringlr’mlary condition. In the limit of
d — 0, the boundary condition reduces to-2 ||p||t — |p 0. It's readily shown that

—lIpl[t—

o
p=lplt (2.11)

satisfies this condition, which is called the strong anaigdondition. In the limit o — o, the
boundary condition reduces to

op
— =0 2.12
an Y ( )
this is the Neumann boundary condition, also known as tleelfoeindary condition. In this paper,
we will examine how the linear stability of the ALC jet corpamds to the boundary conditions

with & € [0, o).

2.3 Dimensionless equations

The polarity vectop is dimensionless and is used in this model to measure thegstrand
direction of polarity. We use a characteristic time s¢gléength scaléy, "strength of polarityp,”,
and mass density scgbg = p to non-dimensionalize the physical variables and equstion

.t . X . Vvip ~ M3 -~ htip. .
t=—, X=—, v:—o, I'I:—Oz, hzo—g", pzﬂ.
to lo lo pPol§ Pol§ PL
Then, we obtain the following dimensionless group
2 ~ 244

W = mW? \7 topléV? A= tO)\AP-, V= Vv, hl = Oplé hl h2 = to—pléh27

lo olg polg polg
28 1 pa_ Pdd o 5 _ §ef 55 x_ T
K—pO—%K, ﬁ— = Mo’ B= B, pO—%ZAu, 5—57T pol3”
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whereReis the Reynolds number for the solvent in the ALC system, ldnd proportional to
the reciprocal of the Ericksen number. We chobsas the radius of the cylindrical jet and an
appropriatep. to ensure?i +hy = hy (that is pﬁ = V)‘hthl). Then, the dimensionless equation
yields a constant solutigh= po,V = 0, where||po|| = 1.

For simplicity, we drop the ™ on the dimensionless varialaled parameters. The system of

governing equations for the ALC system in the dimensioniess is summarized as follows

%—‘f+(v+wp)-Dp+Q-p: $h+Ap+vD-p,

¥ 4+0-(w)=0-0,

-v=0,
(2.13)
=Ml +0%+ 2D+ B(0Op+0p") +Zpp — Y(ph+hp) + 3(ph — hp),
0.0%°= _(Dp)h7
h = hip — ha|p||?p + K DO?p.
The dimensionless interfacial boundary conditions aremglyy
6<p(zt) +V26<p(zt) v =0,
(04+Mgl)-n=—1Kn, (2.14)
9
P+ %20 [plt— £&fp) =0.
We denoten; = hy + YA andhe = h+YyAp = hyp — hy||p||2p + KO?p. Then, we have
ph —hp = phe—hep, ph+hp = phe+hep — 2yApp,
(2.15)

0.0 = —(0p)-h = —(0p) - he+ A0 (||p|).

Notice that active parametaralso gives a contribution to the active stresgirpp as well as a
contribution to the pressur%y)\D (|lp||?1), which can be absorbed into the pressure terf.
Letl = {+yAv,M=T— y)\HpH2 we can eliminate parametgrif we usehy, he,, M instead of
hy,h, ¢, respectively. So we can further assume- 0 andh; = hl = hy in the dimensionless
equation system from now on. This simplification is equinél® adding a harmonic potential,
due to the molecular activity associated with the polargygter, to the equilibrium free energy,
demonstrating another source of active stress in the polaediquid crystal system.

In the following, we examine linear stability propertiesafkimple steady state of constant
radius and velocity of the governing system of equationgestibo the interfacial boundary con-
ditions, through which we can investigate the near equubrdynamics of the free surface active
liquid crystal jet.
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3 Linear Stability Analysis

It is easy to show thap = 1,v = vo,p = po = (0,0,1),1 = My is a steady state solution for
all the anchoring boundary conditions widhe [0, ), wherevg is a constant vector andp is a
constant pressure determined by the equilibrium forcengalat the interfacdl; — Mo+ tk = 0.

Without loss of generality, we set the constant velogigy= 0, then, the jet is also known as a

liquid filament. In this section, we investigate linear glipof the constant equilibrium state of
the jet or the filament, often referred to as the capillaryahsity or Rayleigh instability analysis

[64, 48, 47, 49, 42, 65]. We linearize the governing systeracpfations (including the boundary

conditions) around the steady state and seek solutiong dbtowing form

@=1+ee®kg v =2ee® Ky (1) p=po+ee™tpy(r), M =M+ KMy(r), (3.1)

whereq, is a constant unknown, and(r),p1(r),M1(r) are variable unknowns (which are func-

tions of r) to be determined by the linearized equations together thi¢hlinearized boundary
conditions.

For the torsionless mode [64], the linearization of the gowg equations together with the

boundary conditions yields the following linear ordinaiffetential equations,

where

apyr + ikwpir = (K (pY, + £y, — 5 P1r) — KK prr) + Y5tvy, + ik tvay,
o p1z+ikwprz = §(—2h2p1z + K(pg, + § P1,) — K*Kprz) +ikvvyz,

avy = —M5 + (V] + 2y, — Svae — Kvar) + 2B(pf, + Lpy, — Spur)+
B(ikpi, — k?p1r) + (0-cP)?,

aviz = —ikMy + 1 (Y, + v, — K2vi,) — 28K2p1, + B( Y, + L ph,+

ikpl, + ¥p1r) + (0-0P)9,

Vi, (r) + 20 kv, (r) = 0,

r

(0-6P)? = (ikpyr) — (v + 1) (ikapyr + K (—ikvy, +V4,))

+3 (V+ 1) (B (ikvar +V,)) — F (v + 1) (—Kprr),

(0-0P)2 = L2 par + Pl + 2ikpaz) — §(v+ 1) (ikapa)

— (v —1)(a(Epyr + Py +ikp1r) + 2 (R (—ikvar + V) — kv, + V)
+X(V+1)(—Kv) + Y (v — 1) (3 (E(ikvar +Vy,) +ikvy, + V) — KPvay)
— YV +1)(—Kp1z) — F (v — 1) (¥par + ikpy, —K2paz).

9

(3.2)

(3.3)
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(a) Free surface liquid jet

Figure 1: Definition of the coordinate system and the jet getoynThe jet is placed in a cylindrical
coordinate systerfr, 0,z) and its axis of symmetry is along tlze-axis. The jet surface is defined
by r = @(z,t) andn is the outward unit normal. Arrows indicate the polarity eg®rientation.

The leading order linearized boundary conditions-at0, 1 are given by
vir(0) =0, vy (1) =a@.

2V, (0) +ikvi(0) = 0, V4, (1) +Var (1) + ikviz(1) = O,

pr(0)=0, Py (1) =—3(pr(1)—ik@), pP0)=0, py(1)=0.
(3.4)
My (1) +2nv4, (1) +2Bp, (1) +T(K2— 1)@ = 0,

{(n+ I (v —1))(ikvar +V4,) + B(ikprr + Phy) + (T — Sk(V — )yw+ 2 (v — )Y\ par

—%V(V —1)p1r — V%;,ly(\/lz— iler)} lr=1 —ik{@ = 0.

Egs. (3.2, 3.3, 3.4) constitute a linear boundary value lpralof ordinary differential equation
system. We solve this boundary value problem to obtain thpedsion relatiom (k) and then to
analyze the positive growth rates as functions of key modspeters and discuss their physical
implications. Since an analytic solution is intractabletfe system, we solve the boundary value
problem consisted of linear ordinary differential equati@ogether with the boundary conditions
using a finite difference method numerically. The derivegivat the boundaries are discretized
using one-sided differencing.

The parameters and their values used in this study are istéable 1. The resultant dimen-
sionless parameters are given by:

N=21=107=1A=0,w=0,f=1,y=1v=05K =1x102h; =h, =10.  (3.5)

In order to benchmark the results of the ALC jet, we studydmstability of a limiting passive
liquid crystal jet firstly.
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Table 1: Model Parameters

Symbol | Parameter Value Unit

to Characteristic time scale 0.1 S

lo Characteristic length scale 1x10° |m

Po Density of the active liquid crystal solution 1x 103 kg-m~3

N Solvent viscosity 2x10% |[kg-m?tl.st
T Coefficient of surface tension 1x10°2 |kg-s2

A Coefficient of self-propelled motion 0 st

L Coefficient of the bulk active stress 1x101 | kg-m1l.s72
w Speed of self-propelled motion of active particle8 m-s1

B Generalized viscosity of ALC 1x10% | kg-s2

y Rotational viscosity (relaxation parameter) 1x10% |kg-mi.st
Y Geometric parameter of the active particle (—00,400) | 1

K Frank elastic constant 1x10° | kg-m-s2
hy Quadratic coefficient in the bulk free energy | 1 kg-m1.s72
ho Quartic coefficient in the bulk free energy 1 kg-m1.572
) Strength of boundary anchoring [0, 4-00) m-1

3.1 Rayleigh instability of passive liquid crystal jets

When we set the active parameters zeko= 0, = O,w = 0,3 = 0, our model reduces to
a model for passive liquid crystal jet without enforcipgas a unit vector, which is valid at the
defect. We note that Rey et al. studied the capillary intglaif a passive liquid crystal jet using
a lubrication theory based on the Ericksen-Leslie modeRequini-Papoular equation and Fel and
Zimmels studied it using the full Ericksen-Leslie modelgtwer with a long range surface elastic
effect involving the Gaussian curvature [47, 48, 50]. Wanglied it using an orientation tensor
based model [45, 46]0ur study here is limited to a simplified kinetic boundary d¢ition and a
more general anchoring boundary condition to set the stagbénchmarking the results on ALC
jets. In addition to the numerical method for the full boundaryueaproblem, we also employ
an asymptotic method to derive an analytic expression ®ipthsitive growth rate and the cutoff
wave number associated with the jet instability.

A classical simplifying assumption exploited here in thgmaptotic approach is that the wave-
length of the surface wave is much longer than that of theapitis (a slender jet approximation or
lubrication method) [47, 41, 42, 45]. So, in the long-wawnefin approximation, the characteristic
length scale in the r-direction is much smaller than thahez-direction. At the leading order, the
velocity perturbation is approximately given by(r,z t) = (rdv; (zt),0,0v,(zt)), the free surface
by @ =1+ d@and the polarity vector by = (0,0,1+ dp;). A straight forward derivation yields an
asymptotic model for the linearized systendat 0, which is given in the Appendix. After apply-
ing the normal mode, the dispersion relation of the asynpiobdel equation gives the following
growth rate formula:

X h?(1—k?)

o= (3N+W2)K2+4/(3n+W2)2kA+-2Tk2 (1-k2) (3.6)

The liquid crystal jet is unstable when<Qk < 1 with a cutoff wave number & = 1. This is
known as the capillary or Rayleigh instability for liquidge The maximum growth raw,,, and
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the corresponding wave numbekay is given, respectively, by:

U= v/T (224 6A) " e (V2+3v2a) g (3.7)
whereA = ”+%TW2 is the Ohnesorge number. In this approximate dispersiatioel, the distor-
tional elasticityK does not show up at all in the growth rate formula, indicaiisgole to the
Rayleigh instability is negligible in this model. To confiitnwe conduct a numerical computation
on the full linearized model and show that this approximaseelsion relation is extremely accu-
rate in the range of unstable wave numbetrsK< 1. Figure 2 shows the comparison between the
approximate growth rate and the growth rate calculated tranfull numerical computation. They
are indeed indistinguishable ke [0, 1]. Outside the unstable wave number interval, however, we
see visible deviation between the asymptotic result andtineerical one.

The asymptotic growth rate shows explicitly how the growdterdepends on the model pa-
rameters and the wave number. For the passive liquid crgttdhe Frank elastic constakithas
no effect to the positive growth rate (see Figure 2 (c).) Tlgloextensive numerical experiments,
we conclude that the boundary anchoring conditiop afr = 1 also has no effect to the positive
growth rate (see Figure 2 (d).) The positive growth rate adpends on viscosity, relaxation
parameter, geometric parameter and the surface tension coefficient The classical cutoff at
k = 1 retains and the terr%uyv2 acts as an additional material’s viscosity. The maximunwijno
rate and the corresponding wave number only depends ontthdesween the effective viscosity
and the surface tension. A higher viscosity reduces the throste while a higher surface ten-
sion promotes it. Since the molecular anisotropy is propoal to |v|, the more anisotropic of
the liquid crystal molecule is, the smaller the growth rate$o, the molecular anisotropy can in
fact reduce the growth rate in the capillary instabilityfdliows from the Ericksen-Leslie theory
that the Liquid crystal jet of tumbling liquid crystals (i,év| < 1) is more unstable than that of
flow-aligning liquid crystals || > 1).

3.2 Linear instability of active liquid crystal jets

Next, we study the active liquid crystal jet to investigatavhthe activity parameterized by
active parameterg, { and3 can impact on the jet stability. We focus on the impact of the t
activity parameterg andp primarily and remark on the role @fin the end. The upshot here is that
both activity parameter& and can have important and sometimes unexpected effect oritstabi
of the active liquid crystal jet. Specifically, the activguid crystal jet can be subject to three
types of instabilities depending on values of the activeapeaters and the molecular geometric
parameten: (i). for a moderate value of and any values of the other model parameters , the
classical Rayleigh instability persists; however, thaevacparametel can shift the cutoff wave
number in the classical Rayleigh instability to induce &ddial unstable wave modes or to reduce
or even suppress existing unstable wave modes, dependitige dype of the molecular activity;
(ii). the polarity vector instability inherent in the aativnatter system can be accessed in multiple
modes in certain parameter regimes by the ALC jet or comiglstgpressed in other parameter
regimes; (iii). the active viscous stress, when strong ghpoan induce new instabilities in waves
of intermediate wave numbers in certain parameter regirrethe following, we will elaborate
on the new instabilities and try to identify the parameteacgpwhere none, some or all of these
instabilities exist.
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Figure 2: The growth rate of a passive liquid crystal jet asiacfion of the wave number at
selected model parameters. NR represents the numericét vdsle AR does the analytic one.
The values of the model paramet&s=-0.01L,n=21=10v=1y=1A={(=w=p=0. The
numerical results (dots) agree very well with the analytcees (curves) in the range of unstable
wave numbers. They may deviate away from each other in théestaave number regime though.
(a). Growth rates at selected valuesneb, T with a strong anchoring condition at the interface.
(b). Growth rates at selected valuesmpi, T with a free boundary condition at the interface.
(c). Growth rates at selected valueskot= 0.001,0.01,0.1,1 while d = 1. (d). Growth rates at
selected values @ = 0.1,1,10,100 whileK = 0.01. The growth rate is insensitive ¥ and d

in the unstable wave number regime. But, the growth rate rhescsensitive to the two model
parameters in the stable wave number regime. So, Raylesghhbitity in this model is primarily
due to the jet surface tension, molecular geometry, itsdgyitamic properties and short-range
elastic properties other than its long-range elastic ptagseand the boundary anchoring condition.
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We note that active stregpp describes the force exerted by active particles on the sndiog
fluid. That the local flow generated by the active particlesi®nsile or contractile is determined
by the sign ofC [58]. It is extensile if¢ < 0; in this case the active particles/molecules are called
pushers. Itis contractile § > O; in this case the active particles/molecules are calldiénsu

3.2.1 Bulk activity induced polarity vector instability

Firstly, we consider the effect of the bulk active stresntépp to the ALC jet by setting
w =0, = 0. In this study, we want to evaluate the role of the inheretdnity vector instability,
previously identified in the ALC material in unconfined domsin long to intermediate wave
lengths, when coupled with flows in the jet. We remark that thherent instability belongs to
the unstable mode accessed by a perturbation transverse pwitary polarity direction and is
therefore different from the unstable mode studied in [3¥& begin with the investigation in the
zero wave number limitk= 0) with a strong anchoring boundary conditian=£ 0), where the
governing equations for the linearized boundary value leralzan be simplified significantly.

The componenpy; in the linearized system is decoupled from the rest of thegos and
solely governed by a Bessel equation

r2py,+rpy, —Bripi, =0, (3.8)

whereB = %th Note that only ifB < O (i.e.,a < —2—32,) the Bessel equation can have a nontriv-
ial, real solution corresponding 8,(0) = 0, p1z(1) = 0. So, there does not exist any instability
associated with the perturbation pp

If there is any instability, it must be given by the couplediations forpy, andvi,. The

governing equations for these components are given by

apir = %(p’l’r+%p’1r - %zplr)+"—§1\/lz,

(3.9)
vz = (VY + 2vp) + (% + i) — V(v — (B 4 ph) + 3vv - D22 4 ).
If we assume additionally that K is smatifollows from eq. (3.9) that
r2pf +rpy, + (Ar2—1)p; =0 (3.10)
together with the boundary conditions
p1r(0)=0, pw(1)=0, (3.11)
whereA = m%%il) In this case, the Bessel equation has nonzero real sodutiay if A > 0.

Then, from the definition oA,

2024+ 2na+(v—1) =0. (3.12)

If {(v—1) < 0, the equation has a root= —% + %\/r]ZA2 —2CA(v—1) > 0. Otherwiseq < 0.
The solution of the Bessel equation satisfymg(0) = 0 is given by

p1r = CrJi(VAr), (3.13)
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whereC; is an arbitrary constant arid is the Bessel function of the first kind. Usimg, (1) =0,
we havevA =&, n=1,2,..., where, are the positive roots of Bessel functids(). Then, the
growth rates can be represented by the roots as follows:

On=—2n&+3/N2E4-2{(v-1)&&n=1,2,.... (3.14)

Since&, — 4o, ap — —Z(‘gﬁl) asn — c. This shows that there exists infinitely many positive

growth ratesin, in the limit of K — 0.

For other boundary conditions parameterizedday 0, even though we can’t obtain an an-
alytical result asymptotically, we still find strong evidento support the existence of infinitely
manya, ~ —Z(‘é—al), asn — oo if the wave numbek is small and the elastic constaftis small
numerically. We list our numerical results in Table 2 for thifee types of boundary conditions

with —Z(‘;—Hl) = 1.5 at a few selected values df From the numerical results, we conclude that

Oon — —Z(‘;—;l) asK — 0" andn — .

The model parameters used for producing Table Z afr&,v = —-0.5n=2,1=10,y=1A =
w=[3=0. Table 2 also lists the growth rates at a few selected vallu®t see how the anchoring
boundary condition at the free surface affects the instgbilf & is small, the result of the soft
anchoring BC is very close to that of the strong anchoring B@;is large, the result of the soft

anchoring BC is close to that of the Neumann (free) BC.
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Figure 3: The effect of the Frank elastic constinat a small wave numbde= 0.00001. The
model parameters arg=2,1=10,y=1,0=0.1,A=w=[=0. N is the number of first N largest
growth rates at the wave number calculated numerically. Mthe growth rates fall below the
lower bound in the figure, they are not shown. As the long-eadligtortional elasticity enhances,
the instability can be suppressed completely. This modestébility is termed the polarity vector
instability owing to the coupling between the polarity figldd the flow field. (a). Growth rates
of active discotic liquid crystal jets. (b). Growth ratesadftive rodlike liquid crystal jets. The
guantity— Z(‘é_l) = 1.5isidentical in both (a) and (b). So are the correspondiowtir rate curves
in (a) and (b).

When the Frank elastic constant is not negligibly small, mumerical studies show that the
role of the distortional elasticity is to reduce the growthlee unstable modes and therefore has
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the tendency to stabilize the jet. Figure 3 plots the firstar§dst real parts of the eigenvalues
(ordered by the magnitude) of the full linear system at a wemall wave numberk(= 0.00001).
The maximum real part of the eigenvalues decreases whemahk Elastic constant (K) increases.
If K is small enough, the maximum is well approximated by 1.5 tfiermodel parameters given
above). IfK is larger than some critical valu&., the real parts of the eigenvalues are negative,
demonstrating the stabilizing effect of the distortionakécity. If K (small) andv < 1 are fixed,
there exists a critical value @t > 0 such that there are eigenvalues with positive real pafysion
(> (. Similarly, if v > 1 is fixed, there exists a critical valde < 0 such that there are eigenvalues
with positive real parts only whefi< (.. We note that the results are identical for the two group
parameterg = 4,v = —0.5 and{ = —4,v = 2.5 which yield the same valué(v — 1) = —6. This
clearly suggests that there exist a relationship betweem&ometry of the active liquid crystal
particle and the strength of the activity in this instalgildVe then, numerically calculate the stable
vs unstable regions in the parameter sp@g®) and plot it in Figure 4 for various boundary
conditions parameterized @yand the Frank elastic constdft
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(a) 5= 100. (b) K = 0.01.

Figure 4: The stable vs unstable region in parameter s@aeg in the zero-wave number limit
for the polarity vector instability. The values of the mogdarameters ang =2, 1=10,y=1 A =
w=[3=0. (a). The curves depict the critical valugsas a function of, which define boundaries
between the stable and the unstable region with respedeitise values ok = 0,0.01,0.03 0.05
atd = 100. Clearly, enhanced distortional elasticity can redheesize of the unstable region and
thereby stabilize the jet due to this instability. (b). Thewes depict the critical valueg as a
function ofv, which define boundaries between the stable and the unseite with respect to
selected values @=0.1,1,10,100 atk = 0.01. The strengthening anchoring boundary condition
can also reduce the size of the unstable region in the pagasy@ice. The results indicate that the
long-wave instability is possible only for pushers with aogeetric feature that promotes flow-
aligning ¢ > 1) and pullers with a geometric feature that promotes tumgtadr of a discotic shape
(v<1l).

From this study, we conclude thatgfv — 1) > 0, the instability is completely suppressed; if
{(v—1) <0, there can exit critical valueg andK. such that the instability can incur || >
|¢c| and K < K¢, where the maximum growth rate is achieved at the zero wawebeuk = 0
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with its value bounded by«‘é—;”. For all model parameters that we have explored, we record

monotonically decreasing growth rate curves as functidtiseowave numbek. Figure 5 depicts a
set of growth rate curves at selected model parametersevinemonotonically decreasing curves
represent the growth rates corresponding to the instabiliboking forward, wher3 # 0, the
monotonicity of the growth rate curve may be lost. We willaliss the case in the last subsection
when we consider the combined effect(adind3.
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128 Tl —Second mode |} 1.2t s —Second mode |
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Figure 5: Growth rate curves of three unstable polarity egtodes together with the Rayleigh
mode. The growth rates for the polarity vector instabilitg decreasing functions of the wave
numberk. The parameter values ake=0.01,n=2,1=10,y=1,0=0.1,=0A=w=3=0.
(a). Growth rates of active discotic liquid crystal jets).(Browth rates of active rodlike liquid
crystal jets.

This instability is tied to polarity vector and hydrodynammteraction via the bulk active stress
parameterized b¥, which is obviously absent in passive liquid crystal linkitom the asymptotic
formula for growth rate, we can trace it back to the inherestability in the active liquid crystal in
an infinite domain, where a single unstable mode exists iditleetion transverse to the orientation
of the underlying steady state polarity vector. In the centd an axisymmetric, cylindrical jet,
however, the single unstable mode can be amplified to encesnipfnitely many unstable modes
in some cases when Franks elasticity is wdék( 1) or completely suppressed in others for larger
K. This instability is unique to the active liquid crystal.jet

3.3 Activity modified Rayleigh instability

For the active liquid crystal jet flow, the classical Rayteigstability persists in a finite wave
number interval O< k < keutof f at @ moderate value @f wherekquiot ¢ is the cutoff wave number
equal to 1 for isotropic fluid and passive liquid crystal flowwst depends on model parameters for
active liquid crystal flowsWhen focused exclusively on the Rayleigh mode, the resitiking:
the bulk active stress (parametrizedd)ycan shift the cutoff wave numberdlf> O, the cutoff wave
number is shifted to the right{l¢of > 1) SO that more waves becomes unstable; whereas: i,
the cutoff wave number is shifted to the lefiy{k+ < 1) so that less waves are unstable. E.g.,

17



Soft Matter Page 18 of 32

for an active liquid crystal system consisting of pullersigrushers, pullers tend to destabilize the
jet while pushers tend to stabilize iThis result is shown in the growth rate curves depicted in
Figure 6 for both the discotic and rodlike active liquid dafs. We point out that the anchoring
boundary condition op atr = 1 and the Frank elastic constdfthave little or no effect to this
unstable mode analogous to the case of the passive liqusthtigt flow. The growth rate depends
on v in this unstable mode vigv|, demonstrating a symmetry with respect to the geometry of
the molecule. Moreover, the growth rate decreases as theajgo parameter increases in its
magnitude, confirming the anisotropy in the molecular gdoyrigas the impact of reducing the
growth. Figure 7 depicts the sensitivity of the growth reg@dunction of the geometric parameter
v and its symmetry with respect to the geometry of molecules.
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(& v=-0.5. (b) v=25.

Figure 6: Growth rates in the unstable Rayleigh mode. Theeamhpdrameter values ai€ =
0.0Ln=21=10y=1,A=w=[p=0,0= 1. A positive( shifts the cutoff wave number to the
right (Keutoff > 1) while a negative shifts it to the left Keuiorf < 1). The cutoff wave number
grows and decays monotonically with respecf t&Vhile the cutoff wave number shifts, the wave
number corresponding to the peak of the growth rate alsdssith respect tal. Hence, the
pusher has the tendency to stabilize the jet while the pdistabilizes it. (a). The growth rate
of an active discotic liquid crystal jet §t= —0.2,0,0.2, respectively. (b). The growth rate of an
active flow-aligning rodlike liquid crystal jet &= —0.2,0,0.2, respectively.

The activity parametef together with the other model parameters in Figure 6 can bsech
to be in the stable region in Figure 4 to suppress the polegeityor instability so that the Rayleigh
mode is the only unstable mode for the jet flow. We choose e ¢to highlight the new feature
in the Rayleigh instability. We note that the cutoff wave rhanin the Rayleigh instability is
independent of the flow-aligning parametealthough it depends on the activity parameiésee
Figure (7)).

When values of{,v) are located in the unstable region in Figure 4, the polaststor insta-
bility shows up besides the Rayleigh instability (see Feg8). As alluded to earlier, the polarity
vector instability depends strongly on the Frank elastitstantk and the BC ofpy, atr = 1 even
when it coexists with the Rayleigh mode.

In the Rayleigh mode, for pusher& £ 0), the cutoff wave number reduces as the magnitude
|C| increases. I < 0 is sufficiently small (i.e.|{| is large enough in magnitude), it may suppress
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Table 2: Growth rates calculated numerically

BCatr =1 pr(1)=0[3=001] =1 [3=100] p},(1)=0
Max of Re@) atK = 0.00001| 1.4920 1.4921 | 1.4950| 1.4960 1.4960
Max of Re@) atK = 0.01 1.2522 1.2557 | 1.3755| 1.4098 1.4102
Max of Re@) atK = 0.05 0.5362 0.5540 | 1.0898| 1.2395 1.2413
Max of Ref) atK = 0.2 0 0 0.0175| 0.6053 0.6124
Max of Ref) atK = 0.5 0 0 0 0 0
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Figure 7: Sensitivity of the unstable Rayleigh growth rate with the weak anchoring BC. The
model parameter values dfe=0.01Ln=2,1=10,y=1,A=w=p3=0,0=1. The enhancement
in geometric anisotropy can reduce the growth rate. (a)leRul (b). Pushers. The growth rate
only depends ofw| in the unstable region for both pullers (c) and pushers (d).
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Figure 8: Sensitivity of the unstable Rayleigh growth raigether with the unstable polarity vector
growth rate with respect to. The model parameter values &e-=0.01,n=2,1=10,y=1A =

w =3 =0,0= 1. The cutoff wave number is independenvokhile the peak of the growth curve
is not. The growth rates in the unstable Rayleigh mode depentletely onv|, demonstrating

a complete symmetry with respectvo The growth rates in the unstable polarity vector mode in
(a) and (b) overlap becaugév — 1) is identical in the rodlike liquid crystal and the discoticeo
shown.

the classical Rayleigh instability completely! Figuregpdepicts such a scenario where< 1
and there does not exist any positive growth rates-at—6. Hence, ifv < 1 and{ < 0 is small
enough, all unstable modes can be completely suppressbddda a stable jet! I > 1 and{ <0

is small enough, the Rayleigh’s unstable mode can be swuggatebut the unstable polarity vector
modes near the zero wave number limit survive; so, the j¢illissstable due to the polarity vector
instability. Figure 9-b depicts the scenario where the Bigyl instability is suppressed while the
polarity vector instability persists.
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Figure 9: Suppression of the Rayleigh capillary instapitite to a large activity. The model
parameter values akk=0.01,n=2,1=10y=1,A=w=[p=0,0=1. (a). Rayleigh instability
along with all other instabilities are completely suppesskading to a stable jet. (b). Rayleigh
instability is suppressed while unstable polarity vectodes persist for long-waves.

3.4 Active viscous stress induced instability

Finally, we examine how active viscous str@&lp + Op") impacts on stability of an active
liquid crystal jet. Firstly, we set the self-moving velgcitp and the bulk active stre€pp term to
zero to suppress the polarity vector instability and higfmiithe role played by the active viscous
stress. An interesting result shows up: in addition to thglé&tgh’s unstable mode already dis-
cussed, another window of instability may emerge in thermmégliate wave number regime whose
wave number is larger than that of the Rayleigh’s. This mddestability only shows up when the
strength of the active viscosity is strong enough regasdles is positive or negative and < 1.

In fact, the growth rate depends {f}} and there exists @ that depends on such that if| 3| > f3,
the new instability emerges together with the Rayleigh'stable mode. A§3| > B increases, the
growth rate in this new unstable mode increases as well.r€&ifd (a) depicts the most unstable
growth rate together with the unstable Rayleigh mode at askdected values @3, in which the
new instability emerges #t= 3 and is suppressed at smaller valuef.ofhe active viscous stress
seems to affect the growth rate in the unstable Rayleigh rbgdecreasing the growth rate in the
mode agp| increases (shown in Figure 10(a).) Wher 1, i.e., the ALC jet is consisted of flow-
aligning rods, the active viscous stress will not induceiasyabilities and an increase in values of
|B| can in fact decrease the growth rate in the Rayleigh modeHjgeee 10(b).)

We next consider the combined effect of the bulk active sté¢gp) and the active viscous
stres3(0p + OpT). Firstly, we examine the case for ALC jet consisting of prgjé.e.,l > 0. If
v > 1, the polarity vector instability is suppressed and thvaetiscous stress does not induce any
new instability at all so that the Rayleigh mode may be thg eristing unstable mode. Although
the active viscous stress does not induce any new instasjlit plays the role of reducing the cutoff
wave number in the Rayleigh instability and thereby lowgtime growth rate, an effect completely
opposite to that of the bulk active stress witk+ 0. Figure 11(b) depicts the "stabilizing” effect of
active viscosityp, wheref3 shifts the cutoff wave number to smaller than Bat 2.4. Once again,

21



Soft Matter Page 22 of 32

n nn
Wk o
I T

Real part of growth rate a
Real part of growth rate a

=0. L L L I _02 i i i i i i
0 20 0.5 1 15 2 25 0 0.2 0.4 0.6 0.8 1 1.2
Wave number k Wave number k
(@) {=0,v=—05. (b) Z=0,v=15.

Figure 10: Growth rates of ALC jets &t= 0 and a few selected values[af The model parameter
values are&K = 0.01,n =2,1=10,v=-05y=1,A=w=0,0 = 100. (a). Growth rates of
the unstable Rayleigh mode and the active viscous stresseddnode at < 1. There exists a
critical value. such that if 0< |B| < B¢, the unstable Rayleigh mode is the only unstable mode;
for |B| > Bc, an additional instability may emerge in a wave number wr@ebeyond that of the
unstable Rayleigh mode’s. The active viscous stress caampinduce an additional instability,
but also increase the growth rate in the unstable Rayleigihemdhe growth rate depends only on
IB|. (b). Growth rates of the unstable Rayleigh mode at1. In this case, the Rayleigh mode is
the only unstable mode. An increase in valuef3dflecreases the growth rate.
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the growth rate depends ¢f| instead of3 directly.
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(@) {=0.6,v=—0.5. (b) Z=1.4,v=15.

Figure 11: Unstable growth rates for ACL jets consisting oflgrs. The model parameter values
areK =0.0Ln=2,1=10,y=1,A=w=0,6=100. (a). Case of < 1. All three unstable modes
may coexist. The role df| is to reduce the growth rate for the polarity vector mode &piomote
the growth rate in the active viscous stress induced urestabde. In the meantime, it increases
slightly the Rayleigh growth rate. (b). Casewf- 1. The Rayleigh mode is the only unstable
mode. The active viscous stress actually reduces the gretgtand shifts the cutoff wave number
to smaller wave numbers, playing a role completely oppasiteat of the bulk active stregpp.

If v<1,{(v—1) <0, where the polarity vector instability may exist in addlitio the Rayleigh
instability. The active viscous stress can reduce the blestaolarity vector mode in small wave
number region and in the meantime induce a new instabilitggmons of intermediate wave num-
bers shown in Figure 11(a). In Figure 11(a), the growth raie to the polarity vector instability
actually breaks up into polarity vector unstable mode whdebays with respect 3| and the
new, active viscous stress induced unstable mode, whichsgrith respect tof|. As we varyv,
the growth rate curve due to the polarity vector instabititsty decay to partially negative so that
the new mode emerges as a separate unstable window in thenwaneer space shown in Figure
10(a). At the presence of nonzero active viscosity, the ramoity in the polarity vector growth
rate curves is lost. In Figure 11(a), the growth rate cureesHe polarity vector mode decrease
only in the range of small wave numbers; they then turn araatecome increasing, crossing the
Rayleigh growth rate curve, and then become decreasing agtie range of intermediate wave
numbers, creating a local maximum for the new mode that wétmahctive viscous stress induced
unstable mode. If the two windows of instability for the twostable modes are well separated
in the case of largé3|, the distinction is apparent. Otherwise, it’s difficult tefthe the boundary
between the two unstable modes in the joined window of inlgiab

Secondly, we look at the ALC jet consisting of pusher molesf < 0.) If v > 1, there exist
two critical values of¢, {; and{r. When 0> ( > (., the Rayleigh’s mode is the only unstable
mode. Forl. > { > (R, there may coexist the unstable polarity vector and Ralyleigde. For
(r > (, the unstable Rayleigh mode is suppressed so that only stahla polarity vector mode
survives. The details can be tabulated in the following.
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1. If 0> ( > (c, the active viscous stress does not induce any new ingtabilRayleigh mode
is the only unstable modé&3| changes growth rate curve of the Rayleigh mode by increasing
the cutoff wave number and meanwhile reducing the growth sste Figure 12(a).

2. If {c > { > (R, there is no new instability due to the active viscofityAn increase in values
of |B| reduces the growth in the unstable polarity vector modeenini¢reasing the cutoff
wave number for the Rayleigh mode. Figure 12(b) depicts thertl rates corresponding to
the two unstable modes.

3. If {r > ¢, the Rayleigh instability is suppressed and the polarittaeinstability is the only
survival unstable mode. An increase in valueg3dfapparently reduces the growth rate (see
Figure 12(c)).
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Figure 12: Growth rates at selected valuep fir { < 0 andv > 1. The model parameter values are
K=001Ln=21=10y=1A=w=0,0=100. (a). In this parameter regime, only Rayleigh
instability exists. (b). In this parameter regime, the R&yh and the polarity vector instability
coexist. (c). In this regime, only the polarity vector irstay exists.

If v < 1, the polarity vector instability is completely supprebsséhere exists a critical valug
such that if 0> { > (R, the unstable Rayleigh mode together with an active visstress induced
unstable mode can coexist. F6t > ¢, the Rayleigh’s unstable mode is suppressed so that the
active viscous stress induced mode may be the sole unstable. i8pecifically, we summarize the
details below.

1. For 0> C > (R, there exists g such that the active viscous stress induced instability
emerges wheif3| > |Bc| in addition to the unstable Rayleigh mode. Figure 13(a) depi
the growth rates corresponding to the two unstable modes.

2. For 0> { > (r and|B| < B¢, the Rayleigh mode is the only unstable mode. An increase in
values ofiB| shifts the cutoff wave number to the right, making more wawvestable, and in
the meantime slightly elevate the growth rate in the unst&ayleigh mode. Figure 13(b)
depicts the Rayleigh growth rate curve at three selectacegadff.

3. For{r > , there exists & such that the active viscous stress induced instabilitggyiv
the only unstable mode whefl| > |B¢|. Figure 13(c) shows the growth rate variation with
respect to three selected valuegof
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Figure 13: Growth rates at selected valueddbr v < 1 and{ < 0. The values of parameters
areK =001Ln=21=10y=1A=w=0,0=100. (a). Case of 6 { > {r and|B| > Bc.
Two unstable modes may coexists. (b). When the Rayleigh nstee only unstable mode at
0 < |B| < Be, the active viscous stress shifts the cutoff wave numbehéoright to make more
waves unstable, meanwhile elevates the growth rate in thiabile Rayleigh mode. (c). Case of
{r > C. Only the active viscous stress induced instability exasts sufficiently largef|.

Finally, we comment on the role of the self-propelling vaéipparameterized by. We have
conducted extensive numerical studies and found that ngésthe growth rate of the unstable
modes marginally. When either @f or 3 are nonzero in the model, the imaginary part of the
growth rates can be nonzero indicating the existence ofggaijing waves associated with some
of the unstable modes.

In summary, the active viscous stress can induce new itisgadmly whenv < 1. In the case
of v > 1, the role of active viscosity to the growth rate seems to fiq@osite to that of, in that
while nonzero( shifts the cutoff wave number in the Rayleigh mof@eshifts it to the opposite
direction. An increase if3| in general reduces the growth rate in the Rayleigh and tharippl
vector mode. In the case of< 1, it reduces the growth rate in the polarity vector mode for
long waves while elevating the growth rate in the Rayleigldeaand in the meantime, induces
a new instability for intermediate waves. A quantitativedst on how these active parameters
impact on the jet stability in a detailed phase diagram(foi, ) will be time consuming and
postponed to a future study. Figure 12-c seems to suggdeghthaolarity vector instability and
the active stress induced instability are in fact given by shme growth rate curve; therefore,
they belong to the same unstable mode. However, when thesighyhstability is present, it is
clearly shown in our numerical analysis that they belongvo $eparate families of growth rates.
Thereby, it is indiscernible from our numerical analysisriea out here that if they are the same
mode. Physically, they are clearly related to two separaehanisms. In light of this, we will
describe the instability induced by the active viscousssti@s a new mode of instability, maybe
more accurately, a new mechanism of instability.

4 Conclusion

We have studied linear stability of an infinitely long axigymtric, cylindrical active as well
as passive liquid crystal jet with a focus on the torsiontisturbances. Three unstable modes
associated with the activities are identified: the polaréggtor mode, the modified Rayleigh mode,
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and the active viscous stress induced unstable mode. Fiadlf the bulk active parametérand
the active viscosity3 can both affect the Rayleigh instability in such a way that ¢otoff wave
number and the growth rate can be modified as results of thisiteace. Secondly, a diagnostic
measure given bg(v — 1) emerges for a second unstable mode related to the flow-abpplarity
vector instability. This inherent instability is complitsuppressed if (v — 1) > 0. It can emerge
as an additional unstable mode only whgm — 1) < 0 and in certain ranges &f andd. Both
the Frank elastic constant and the boundary anchoring tondian expand the region of stability
in the phase spadg,v). On top of it, the active viscosity can induce additionaltab&e mode
providedv < 1. So, for a flow-aligning rod ACL system, the active viscpsibes not introduce
any instabilities. It only does so when< 1. In this case, it can be stabilizing and destabilizing
depending on the active paramefeaand the geometric parameter

At sufficiently strong bulk activity parameterized fy 0, the unstable Rayleigh mode can be
completed suppressed leading to a stable active liquidairjets! The condition for attaining a
completely stable ALC jet depends on the geometry of the Aldlecules, the activity parameter
¢, active viscosity3, and long range elastic interaction parameterized by thekelastic constant.
There are parameter regimes where each of the three unstaldies can survive individually, in
various combinations or suppressed completely. Thesedgalamics of ALC jets can provide
various mechanisms for processing free surface activelicqystal flows. For instance, the mod-
ified Rayleigh instability may lead to a change of drop shaptha molecular activities are either
extensile or contractile in comparison with the drop forioratn a passive or an isotropic fluid.
By tuning the ALC material property to completely stabiline jet flow may enhance formation
of long fibers which may has a direct application in regemezanedicine in neural science and
organ fabrication. By fine-tuning the three types instéibsi, we may be able to select the droplet
size and shapes. The exotic behavior in jet instability &biva liquid crystals needs to be verified
experimentally. Nonetheless, the current theoreticalystertainly sheds light on this class of fas-
cinating active matter system and in the meantime posedignesbout the validity of the active
viscous stress as well.
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5 Appendix: Derivation of A Slender Jet Model and Its Disper-
sion Relation

In long-wave approximations, the length scale in the rafio® is much smaller that in the
z-direction. At the leading order, the velocity perturbatis approximately given byv(r,zt) =
(rdve(zt),0,0v,(z 1)), the free surface big= 1+ dp and the polarity vectgo = (0,0,1+ dp;). It

follows from the incompressible conditid’ﬁf + %% = 0 that

00V,
0z

+2rdv; = 0. (5.1)
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Using the kinematic boundary condition (2.7), we obtainftist order equation

00V, _ 2@

5 = g (5.2)

Next, we usg = (0,0,1+ dp,) and the molecular fielth, = 0,hg = 0,h, = —2hy0p; + Kazi’fz to
obtain the transport equation pfat this order,

0dp; _ h; N 0dv, (5.3)

ot y Vo

We rewriteo = o' — I, wherea! is the extra stress tensor, the second dynamic boundarjticond
(2.5) is given by

1 1

(M=)l —0‘)~n]-n:t(ﬁ+%). (5.4)
So, the capillary pressufé; becomes
Mi=1-1 <6(p+ a;%p), (5.5)
where we approximate
Ro=vVITrar~r=1+8p R,=3T"~ 1 (5.6)

The pressurél can be expressed in terms of the capillary pressure [42, 66]

1 k& >k k 1 >k
M= _§(022+ Oy +Ogg) = _g(ozz_ 2My), (5.7)

where we use the boundary conditions [66]:

O, = —I{,0g9 =0, atr =R=1, (5.8)
and
. 00V,
0},= —M+2n azz' (5.9)

Thenll =T; — r]ag‘z’z. The only nonzero component of total stress tersisr[66]

ddv,
ozz == —I_I'[ + 3]'] azz —V thZ' (510)

The axial momentum balance equation becomes

0dv; 00z
ot 0z’

(5.11)
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From equations (5.2) and (5.11), we obtain

2 2 2 3 2
T = 12 (B0+ 52) + 33k + 3 25 (Pehe). (5.12)
After introducing the normal mode
5p(z,t) = ee™ %y, Bpy(zt) = ee™ K7y, (5.13)

and substituting them into equation (5.12), we obtain

oo = Tk?(1— k?)@o — 3nk2aqo + $k3(2h + Kk?) po. (5.14)

Solving the p, equation (5.3) for steady state§,E +v% —= 0, we obtain(2hy + K1k?)po =

—2ya@p. Substituting this into (5.14), we have the dispersion &éqador the approximate model

a2+ (3n +w2>k2a—%k2(1—k2> —0. (5.15)
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