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Reactions promoted by stoichiometric amounts of silver salts 

suffer from high cost, limited availability and raise 

environmental concerns. This manuscript describes studies 

leading to the discovery of a general replacement for silver 

with an inexpensive and convenient organic salt in palladium 10 

catalysed direct C(sp
2
)–H and C(sp

3
)–H arylation reactions. 

One of the fundamental goals in chemical research is the 

development of broadly applicable, cost-effective, practical and 

sustainable synthetic methods. In this context, the development of 

C–H bond arylation processes has attracted significant interest as 15 

more environmentally-friendly alternatives to traditional cross-

couplings. These new transformations use readily available 

starting materials, thus avoiding the preparation and use of 

organometallic reagents as coupling partners and the associated 

generation of stoichiometric amounts of metallic waste.1 20 

 In 2005, Daugulis and Zaitsev developed a method for the 

direct arylation of anilides with iodoarenes using a catalytic 

system involving Pd(OAc)2 in combination with stoichiometric 

AgOAc.2 This powerful system and its various modifications 

have since been successfully applied to a great variety of C–H 25 

arylation processes involving iodoarene coupling partners 

(Scheme 1).3,4 However, to date one of the major drawbacks of 

these methodologies is the requirement for stoichiometric silver 

additives.5 Silver(I) salts are a uniquely appropriate partner for 

Pd, Au, Cu, Rh, Ru and Pt catalysts, particularly when halide 30 

abstraction is required in the catalytic process.6 However, due to 

the ability of silver salts to also act as oxidants and Lewis acids, 

sometimes undesired side reactions are observed.7 Furthermore, 

when used as stoichiometric reagents, these expensive silver salts 

considerably increase the overall cost of the process and generate 35 

significant amounts of metal waste. Therefore those 

transformations are prohibitively expensive for industry. 

Importantly, whereas there are alternatives to Ag salts in their 

role of oxidants, the only other well-known halide scavengers 

(Pb, Tl and Hg salts) are highly toxic and rarely used for this 40 

purpose. 

 Recent studies on the use of Ag salts as additives in Au-

catalyzed reactions have shown that, in addition to abstracting a 

halogen, Ag may play additional roles essential to the catalytic 

process and form mixed Au-Ag active species.8 In the case of C–45 

H arylation reactions, it is possible that Ag salts may also be 

acting as terminal oxidants, assisting in the oxidative addition 

step or facilitating the C–H activation. A recent mechanistic study 

on the role of additives in palladium acetate-catalyzed ortho-C–H 

bond functionalizations suggested that Ag interacts with Pd in a 50 

cooperative manner for an enhanced heterobimetallic C–H 

activation.9 We now report studies that demonstrate that the role 

of silver salts in several C–H arylation processes with iodoarenes 

is exclusively that of iodide capture. Furthermore, we have 

identified that in these processes silver salts can be conveniently 55 

replaced with a more redox stable and inexpensive quaternary 

ammonium salt while maintaining the high reactivity and broad 

substrate class scope displayed by the previous Pd/Ag systems. 

To the best of our knowledge, this is the first example of a silver 

replacement of general applicability to a wide range of C–H 60 

arylation processes. 

 
Scheme 1 Selected Examples of the General Scope of Current Protocols 

for C–H Arylation Using Iodoarenes and Stoichiometric Silver Salts. 

 Our initial efforts were directed at assessing the role of Ag 65 

salts in a common C–H arylation methodology: the ortho-

arylation of benzoic acid 1a with iodoarene 2a (Table 1). 

Reaction under standard, Ag salt-mediated, conditions led to 

formation of biaryl product 3aa in 87% yield (entry 1).4ac 
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Replacement of AgOAc with KOAc led to a reduction in yield to 

9%, roughly consistent with two turnovers of the Pd catalyst 

(entry 2). A qualitative colorimetric test suggested the presence of 

PdI2 in the reaction mixture.10 Replacing Pd(OAc)2 with PdI2 led 

to no reaction (entry 3). Finally, using PdI2 in combination with 5 

AgOAc fully restored the high reactivity of the system (entry 4). 

These results suggest that in these reactions Pd(OAc)2 is a 

competent catalyst for the C–H arylation process, but is poisoned 

by iodide after two turnovers (Scheme 2). Thus, the silver salt is 

required for regenerating catalytically active Pd(OAc)2 from 10 

inactive PdI2 via the formation and precipitation of the highly 

insoluble AgI salts, and not for the C–H arylation itself. 

Table 1 Mechanistic studies on the role of Ag salt additives
 a

 

 

entry Pd cat. additive (equiv) 3aa (%)
b
 

1 Pd(OAc)2  AgOAc (1) 87 

2 Pd(OAc)2 KOAc (1) 9 

3
 

PdI2 KOAc (1) 0 

4
 

PdI2 AgOAc (1) 84 

a
 Reactions were carried out using 0.5 mmol of 1a and 3 equiv of 2a. 15 

b
 Yields were determined by 

1
H NMR analysis using an internal standard.  

 

 
Scheme 2 Poisoning and Regeneration of Pd Catalyst in C–H Arylation. 

 Having established that Ag salts are not intrinsically required 20 

for the C–H arylation process, we hypothesised that a more 

benign acetate salt could equally facilitate regeneration of the Pd 

catalyst if the acetate counter-cation produced a highly insoluble 

iodide salt within the reaction medium. To examine the validity 

of this hypothesis we investigated the replacement of AgOAc 25 

with a variety of acetate salts (Table 2). The addition of NaOAc, 

CsOAc or Cu(OAc)2 proved to be ineffective for the regeneration 

of the catalyst (entries 1-3).11 To our delight, a survey of 

quaternary ammonium salts (entries 4-7) revealed that 

tetramethylammonium acetate could be used to regenerate the 30 

catalyst (entry 5), leading to the product in 45% yield (ca 9 

catalyst turnovers). Further, NMe4OAc could be formed in situ by 

the equimolar combination of the more readily available and 

inexpensive NMe4Cl and KOAc (entry 8). An experiment using 

unreactive PdI2 demonstrated that, like AgOAc, NMe4OAc salts 35 

are able to regenerate catalytically active Pd species in situ (entry 

9). Increasing the equivalents of base and iodide abstractor gave 

an improved yield (entries 10 and 11), with 2.05 equiv of 

NMe4Cl affording similar yields of product to those obtained 

using AgOAc (compare entry 11 with entry 1 in Table 1).12 40 

Table 2 Selected Optimization Results
 a
 

 

entry Pd cat. additive (equiv) 3aa (%)
b
 

1 Pd(OAc)2  NaOAc (1) 9 

2 Pd(OAc)2 Cu(OAc)2 (1) 9 

3
 

Pd(OAc)2 CsOAc (1) 10 

4
 

Pd(OAc)2 NH4OAc (1) 4 

5 Pd(OAc)2 NMe4OAc (1) 45 

6 Pd(OAc)2 NEt4OAc (1) 9 

7 Pd(OAc)2 NBu4OAc (1) 12 

8 Pd(OAc)2 NMe4Cl (1)+KOAc (1) 44 

9 PdI2 NMe4Cl (1)+KOAc (1) 42 

10 Pd(OAc)2 NMe4Cl (1.25)+KOAc (1.25) 62 

11
 c

 Pd(OAc)2 NMe4Cl (2.05)+KOAc (1.8) 85
 

a
 Unless otherwise noted, all reactions were carried out using 0.5 mmol of 

1a and 3 equiv of 2a. 
b
 Yields were determined by 

1
H NMR analysis 

using 1,3,5-trimethoxybenzene as an internal standard. 
c
 Reaction run for 45 

48 h. NMe4Cl and KOAc added in two portions. 

 

 The effect of NMe4 salts on the catalytic activity is remarkable, 

in particular when compared with the ineffective ammonium salts 

bearing much larger (NBu4 and NEt4) or smaller (NH4) cations. 50 

This may be due to a more favourable cation/anion radii ratio, 

leading to a more effective crystal packing of the corresponding 

iodide salt.13 The solubility of NMe4I in AcOH was determined to 

be lower than 0.3 mg per mL, which compares favourably to the 

higher solubilities of NH4I (4.7 mg per mL), NEt4I (6.5 mg per 55 

mL) and NBu4I (647 mg per mL). 

 Having found a suitable cheap and benign replacement for 

Ag(I) salts, we explored the effects of substitution in both the 

benzoic acid and the iodoarene coupling partners (Scheme 3). 

Gratifyingly, both electron-poor and electron-rich iodoarenes led 60 

to the corresponding biaryl products in yields similar to, or higher 

than, those reported for the same AgOAc mediated process (3ab-

3ae).4ac Varied substitution was also possible on the benzoic acid 

coupling partner, with high yields observed for ortho, meta 

and/or para substituted benzoic acids (3ba-3ha). 65 
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Scheme 3 Scope of the silver-free C–H arylation of benzoic acids with 

iodoarenes. All reactions were carried out on 0.5 mmol scale. Yields are 

of the isolated pure material. 

 We envisaged that formation of unreactive PdI2 may be a 5 

common intermediate in the majority of Pd(II)-catalysed C–H 

arylation reactions with iodoarene coupling partners. Therefore, 

we explored the general applicability of NMe4OAc as an organic 

analogue for Ag(I)-salts to a wide variety of C–H arylation 

reactions (Scheme 4). It is noteworthy that simply by adjusting a 10 

few reaction parameters the system could be applied to other 

classes of substrates. Using free amides instead of carboxylic 

acids as the directing group, the NMe4-mediated protocol 

furnished the biaryl products in good yield (3ia-3jd). Other 

common directing groups for C–H arylation, pyridine and 15 

benzoquinoline, were also successfully used under silver-free 

conditions (3kg-lg). We then explored the application of our 

arylation protocol to other heteroarenes in the absence of a 

directing group. Remarkably, this protocol also allowed the 

arylation of N-methylindole and 2-chlorothiophene in good yields 20 

(3ma-3ng). These reactions proceeded with high C2 and C5 

regioselectivity, respectively (>95:5 by 1H NMR). Finally, the C–

H arylation of electron-poor arenes was also tested and, to our 

delight, silver-free couplings with pentafluorobenzene could be 

successfully achieved (3oa-3od). 25 

 To further highlight the applicability and significance of the 

new catalytic system, we then examined C(sp3)–H bond arylation 

reactions (Scheme 5). Importantly, functionalization at the 

benzylic position of 8-methylquinoline proceeded well under 

silver-free conditions for iodoarenes containing both electron-30 

donating and electron-withdrawing groups (3pa-3pj). 

 
Scheme 4 Generality of the silver-free C–H arylation of arenes with 

iodoarenes. All reactions were carried out on 0.5 mmol scale. Yields are 

of the isolated pure material. 35 

 The development of NMe4-promoted reactions offers major 

economical and practical advantages over existing Ag-mediated 

methods. Firstly, the method provides a new avenue to reduce the 

cost of a number of chemical processes; NMe4Cl is ca. 50 times 

cheaper than AgOAc,14 and is produced in large scale (>5,000 40 

tons/year). Secondly, the synthetic advancement is also 

favourable from an environmental point of view; while AgOAc 

and AgI are both classed as very toxic to the aquatic environment, 

NMe4OAc and its by-product NMe4I
15 are only classed as 

irritants. Moreover, the tolerance of the system covers a broad 45 

range of chemical motifs and the procedure is operationally 

trivial; the reaction proceeds smoothly under air with no special 

precautions needed. Overall, the methodology greatly increases 

the potential for C–H bond direct arylations to be exploited in 

pharmaceutical and agrochemical industries, where the value of a 50 
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synthetic process is mainly assessed by the viability in terms of 

cost and environmental impact. 

 
Scheme 5 Scope of the C(sp

3
)–C(sp

2
) coupling. All reactions were carried 

out on 0.5 mmol scale. Yields are of the isolated pure material. 5 

 In order to demonstrate the utility of the new silver-free 

coupling for process chemistry, we scaled-up the reaction more 

than 3,000 times in a 5 L reactor. Further optimization of the 

method allowed the arylation of 1.6 mol (218 g) of o-toluic acid 

1c with 2 equiv of iodobenzene (2b) and 2 mol % Pd(OAc)2 10 

(Scheme 6). After an acid–base work-up, the reaction afforded 

295 g of product 3cb in 87% yield with a 97% a/a purity by 

HPLC suitable for most applications. The purity could be 

upgraded to >99.9% if required by a simple re-slurry process in 

n-heptane.10 The analogous reaction using AgOAc would have 15 

required 267 g of the silver salt, worth £840, and would have 

generated 376 g of waste in the form of AgI.16 Excluding costs 

associated with waste streams, this new process represents 

savings of ca. 70%. We are confident that our NMe4-promoted 

methodology could be readily carried out on multi-kilogram 20 

scale. 

 
Scheme 6 Scale-up of the silver-free arylation reaction. See ESI for full 

details.† 

 Our study helps to define the mechanism of previously 25 

reported Ag-promoted systems.3,4 The comparable reactivity, and 

required reaction times, observed between the NMe4-mediated 

method and those using silver salts suggests that the role of Ag(I) 

is purely that of a halophile in the catalyst regeneration step. 

Therefore, other functions attributed to Ag(I) such as terminal 30 

oxidant, activator of iodoarenes or assistant in the C‒H activation 

step can most likely be ruled out for this type of arylation 

processes. Based on these results, a proposed general catalytic 

cycle for the reactions here reported is depicted in Scheme 7. We 

postulate a Pd(II/IV) cycle where the C‒H activation of the arene 35 

would take place first to form an aryl Pd(II) complex I. This 

intermediate may then undergo oxidative addition to Pd(IV) 

species II which, after reductive elimination, would release the 

biaryl product and the catalyst in the form of PdIOAc (III). This 

intermediate could undergo ligand exchange with NMe4OAc to 40 

form Pd(OAc)2, disproportionate to PdI2 and Pd(OAc)2 or could 

also initiate a second catalytic cycle which would result in 

unreactive PdI2. Finally, PdI2 would react with NMe4OAc, 

regenerating catalytically active Pd(OAc)2. 

 45 

Scheme 7 Proposed general catalytic cycle. 

Conclusions 

In summary, we have described the discovery of an organic 

analogue of silver(I)-salts, and develop reaction conditions that 

allow the Pd-catalysed C–H coupling reaction of a variety of 50 

classes of substrates: benzoic acids, benzamides, 2-

phenylpyridines, benzoquinolines, indoles, thiophenes, 

polyfluorobenzenes and 8-methylquinolines with diverse 

substituted iodoarenes under silver-free conditions. The new 

method is easily scalable and benefits from the use of inexpensive 55 

and readily available reactants, an operationally simple 

procedure, high functional group tolerance and low-toxicity 

waste. We believe that this discovery will provide a pathway for 

facilitating application of numerous existing, and new, direct C–

H bond functionalizations to industry, in addition to opening the 60 

door to other novel silver-free transition metal catalysed 

processes. 
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