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Transition state or Kramers’ rate theory has been used totifiyighe kinetic speed of many chemical, physical and kjatal
equilibrium processes successfully. For non-equilibreystems, the analytical quantification of the kinetic ratstill chal-
lenging. We developed a new transition state or Kramers'tfzory for general non-equilibrium stochastic systenth finite
fluctuations. We illustrated that the non-equilibrium regenainly determined by the exponential factor as the weégiion
measured from the basin of attraction to the “saddle” or nam@urately “global maximum” point on the optimal path rathe
than the saddle point of the underlying landscape as in theerttional transition state or Kramers’ rate formula fouiirium
systems. Furthermore, the pre-factor of the non-equilibniate is determined by the fluctuations around the basittrafcéion
and “saddle” point along the optimal paths. We apply our théar non-equilibrium rate to fate decisions in stem ceffetienti-
ation. The dominant kinetic paths between stem and diffexten cell basins are irreversible and do not follow thalgrat path
along the landscape. This reflects that the dynamics of goii#erium systems is not only determined by the landscapdignt
but also the curl flux, suggesting experiments to test thimalgredictions. We calculated the transition rate betveell fates.
The predictions are in good agreements with stochasticlations. Our general rate and path formula can be appliedhero
non-equilibrium systems.

1 Introduction For the equilibrium systems, the global stability and rabus
ness of a complex stochastic system can be quantitativedy st
For complex chemical and biological systems, identifying t ied if the underlying potential landscape is known a priori.
most important dynamic flow and estimating the transitionFor instance, the dynamics and the dominant (the most prob-
rates from one stable state in a basin of attraction definingble) kinetic transition paths between different staté®io

an equilibrium or nonequilibrium chemical state under fluc-the gradient ascending or descending on the potential land-
tuations, to another is crucial in understanding the uytegl  scape. Furthermore, the famous transition state or Kramers
kinetic mechanisms and global robustne%s Furthermore,  rate formula for kinetic speed is determined by the barréer b
the driving force of many dynamical systems in chemical andween the basins of attraction (the barrier height is detech
physical world can not be written in terms of the pure gra-by the difference in energy between the stable fixed point and
dient of a potential, which is closely linked to the underly- the saddle point on the underlying potential landscape}tzad
ing non-equilibrium natures For example, the setups for fluctuations around one basin and the saddle point between th
the normal bulk enzyme kinetic experiments are sometimegasins of attractions. This was proposed by Eyring in chem-
in non-equilibrium conditions such as constant flow. In Sin-istry and Kramers in physics on thermally activated barrier
gle molecule enzymatic experiments, the substrate cor&ent crossing more than 70 years dgd2 It provides a good an-
tion is high and can be thought of not changing significantly.alytical approximated formula of the transition rate fromeo
This often creates non-equilibrium yet steady conditiams f attractor to another for equilibrium systems with small fluc
enzyme kinetic measuremefit’. tuations. However, for general non-equilibrium dynamical
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systems, such as gene regulatory networks or enzymatic re-
actions, transition state rate formula often fails becabhse
dominant dynamic paths are not reversible and do not follow
the gradient path of the underlying non-equilibrium poignt
landscapé®.

For non-equilibrium stochastic processes with constdnt di
fusions, several approaches have been proposed to ideify
dominant (optimal) transition paths between arbitraryesta
especially between stable staté$2 Such formalism has
wide applications ranging from equilibrium dynamics such
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as protein folding to non-equilibrium systems such as gene
regulation network¥*20:23-26 However, many chemical and
biological systems have finite, non-constant, local diios
depending on the underlying variables, for example, concen
trations. Such location dependent diffusion coefficienitn
have significant impact on kinetic paths as well as transitio
rates. Therefore, a complete theoretical formalism of non-
equilibrium paths accounting for the non-constant diffusi
will be natural and necessary.

More importantly, the equilibrium transition state ratenca
be estimated by the path integral formal®m However,
an analytical formalism of the transition state rate in non-
equilibrium systems, which measures the capability of com-
municating between stable states and therefore the global r
bustness, is still challenging. It was argued that, in thre ze
noise limit, the dominant path will go through the saddlenpoi
between the basins of attraction and an analytic approxima- S
i i 5, L0118
}L(Z)T/v(e)f/g:ei:ZZiz?arI?ﬁr:-rg;TJitl?berillj;SIsr;/sCtirr;ts)es?r?:ﬁl iﬁ téini Fig. :.I..(C0|0I’ online) The potentiall barriédU for calcglating Fhe

! . e transition state or Kramers’ escaping rate. The basinstfciipns

fluctuations often emerge, and the dom_lnant kinetic paths dg,q |ocalized aGandS. Sis the saddle point.
not necessary go through the saddle pdthts

In this work, we developed a new analytical transition state
theory for kinetic rate of general non-equilibrium systerims  nary cell fate decisions in pluri/multipotent stem céfs*
this formula (theory), (i) we first obtain the most probaldgtp  For example, the multipotent common myeloic progenitar cel
according to the path integral by minimizing the action. éler (CMP) faces the binary cell fate decision between the mgeloi
the starting point and the ending point for the path integral and the erythroid fate. Such fate commitments are deter-
the two stable fixed pointSandS. (ii) Because of the non- mined by transcription factors (TF), PU.1, and GATAL. The
zero flux, this most probable path will not follow the gradien relative expression levels A (PU.1) and B (GATAL) of these
path of the landscape. In addition, under finite fluctuatibiss ~ two reciprocal TFs can promote the decision towards either
most probable path may not even go through the original sadineage’’33  For this system, we show that kinetic domi-
dle pointS. (iii) Then, on the most probable path, we searchnant paths for the differentiation and reprogramming are ir
for S, the new “saddle” or more accurately “global maximum reversible and do not pass through the saddle points of the
along the dominant path”. For general non-equilibrium sys-underlying potential landscape. Using our newly developed
tems under finite noises will not likely to be at the origi- transition state theory for kinetic rate of non-equilibrisys-
nal saddle poin§ of the driving force. (iv) The action of the tems, we also estimate the transition rates of the diffeatoin
path integral fronSto S obtained in (i), which is the minimal from our new formula (theory), which agree with the stochas-
among all paths, is smaller than the action through the-origitic simulation results within the same order of magnitudaisT
nal saddlesor the action along the gradient path of landscapeframework can be applied to other general non-equilibrium
This action calculated along the dominant path from the stachemical systems such as enzymatic kinetics, whose reactio
ble fixed point to the “global maximum along the dominant rate can be easily measured by enzyme asSagstworks and
path” will give the exponential term in our new transitioatst  dynamical systems.
rate theory. As the comparison, in conventional transiiaie
theory for equilibrium systems, the kinetic rate is onlyatet
mined by the barrier from the saddle point between the basin
of attraction on the underlying landscape. Furthermore, th
pre-factor part reflects the fluctuations around the basth an
the local curvature around the new saddle along the optimah this section, we will first review the equilibrium trarisi
path. state or Kramer’s rate theory. The stochastic dynamics can

As an application, we will study an important example be quantified in continuous spaces by tiagevinequations
of cell developmental circuit composed of a pair of self-(in Ito's form): x, = Fu(X) + YaB{(X)&3(t), whereX rep-
activating and mutually inhibiting genes. In various tesu  resents the dynamical variables of the systef(X) is the
this gene regulatory motif has been considered to control bidriving force. &;(t) represents the Gaussian distributed white

g Results and Discussions

2.1 Equilibrium Transition State Rate

2| Journal Name, 2010, [vol] 1-9 This journal is © The Royal Society of Chemistry [year]
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noise unit fluctuationsBf (X) represents the strength or mag- barrier is. In the small noise limi — 0, the transition state

nitude of the variable dependent fluctuatiop&?(t)&P(t’)) =  rate in equation (2) can also be rewritterfas

53P5(t —t'). In addition, rather than each individual trajectory, dF dF

the corresponding probabilif§(X, t) obeys theFokker-Planck &= (2m) 1/ — == () (§e 5" 3)
equatior?S; dx* dx

dp 1 in which M = [Sp-dx is the HJ weight actionor work
i S u(=FuP)+ % éduﬁv(&lvp) (1) (Hamilton-Jacobi weight action) along the dominant path
H v from S to S'*27 where p is the canonical momentum and
dx is the variable displacement of the system. The physi-
] f cal meaning is clear. The transition state rate for equilior
Here, we use the notatios), = z-. For convenience, we process is determined by two factors. The dominant factor
also useP(X) = P(X,t) to represent the time dependent proba-is determined by the exponential of the weight action. The
bility distribution andP®x) to indicate the time independent other is the prefactor determined by the fluctuations around
steady state probability distribution. When consideripgcif-  stable point and saddle or transition state of the undeglyin
ically the intrinsic noise from molecular number fluctuaso  equilibrium potential landscape. The 1 dimensional trtéorsi
the resulting théokker-Planckequation, whose diffusion co- state rate as in equation (2) can be generalized into the N di-
efficients depend on the locatig@ifconcentrations), can be de- mensional formt33°4Cfor equilibrium systems. However, for
rived from the second order Taylor expansion of the underlygeneral non-equilibrium systems, the driving force canbeot
ing chemical master equations (CME) describing the initins written as a pure gradient and there is no well defined poten-
fluctuations”’. tial U to give the driving force as a gradient of a potential,
The Fokker-Planck equatioran be rewritten in the for- F,(X) = —d,U(X). In addition, without the detailed balance,
mat of probability conservation where the local probapilit the curl current fluxssis not zero, which can lead the transi-
change is equal to the net in or out flugw =—0-j. The tion path to deviate from the gradient one and khkeweight
system is considered to be in detailed balance if the steadyction $$M becomes path dependéhtThe dominant or op-
state flux: Fy(R)PSYX) — 3, 30v g (R)PSIX)] = j5XX) is  timal paths may not pass through the saddle points or tran-
zero: [55=0. In this case, the system is in equilibrium sition states. Therefore, new transition state rate foegan
state. The equilibrium probability distribution is clogee-  non-equilibrium systems is needed. We have to specify the
lated to the underlying potential and the driving force is de transition path as well as the complete form of the weight ac-
termined by the gradient of the equilibrium potential: = tion in order to quantify the rates from transition stategimi
—InPsq andFy (%) = _%a“ U®)]+5y %av [€4v (X)]. For gen- be path dependent in contrast to the equilibrium case where
eral non-equilibrium systems without detailed balance, th they are fixed.
flux is not zero,jSS+ 0, the steady state flux is a divergence
free vector withd - i35 = 0 reflecting its rotational curl na- 2.2 Exponential Factor of Non-equilibrium Transition
ture. The flux quantifies the degree of how far the system State Rate
is away from the equilibrium. For non-equilibrium dynam-
ical systems, the dynamics determined by the driving forc
(Fu(®) = —30u[U(X)] + 3 30v[euv(X)] + [55/Pss ) and the
global nature are quantified by both the steady state prbbabi
ity distribution which defines thg non—gguilibrium landpea derived as for details see supporting information): S —
U = —InPssand the curl probability fluxj;¥x). t; . :
For one dimensional systems, which are integrable with defti dt.#” with thelagrangian
tailed balancgSS= 0 under nature boundary conditions, tran- -1

with the diffusion coefficiente, (X) = ¥, B3 (X)BY (%) 5%
9

For a 2 (or N) dimensional non-equilibrium system, we need
%o develop a new transition state theory for kinetic rates be
yond the equilibrium one dictated by equation (3). The gen-
eralized weight action for non-equilibrium systems can be

. . 1
sition state theory for the escaping rate from one basinto an.¥ = Z %(xu —F)(x—Fy) + ESHXOX(FV&“;‘}) 4)
other basin gives Hv Hvx
- . L . tf
7SNV (S . In the zero fluctuation limie — 0, the actionS= [’ dt.Z
K= %G*ZM )-US)I/e (2)  leads to the exponential part of the Freidlin-Wentzell's-th

ory!®. In addition, in the zero fluctuation limit, the ratio of
Here,U (x) is the potential function in the equilibrium system e’s‘l/e’sz between the two smooth pathsandl, agrees
and the driving force is a gradient of the potenti&l(x) = with Onsager-Machlup functiof.

—U’(x), as shown in Fig. 1. The attractor is locatedsand The optimal path which contributes most to the path weight
the saddle point of the potential landscape iSathere the by taking the functional variations of the weight acti®with

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [voll, 1-9 |3
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Fig. 2 (Color online) 2D illustration of non-equilibrium landgza
with the irreversible dominant transition paths betweesirss and
S (green lines with arrows) and the gradient path (white lik&re,
Sis the saddle point anfl is the “global maximum along the
dominant path”.

Fig. 3 (Color online) 3D illustration of non-equilibrium landgua
with the irreversible dominant transition paths betweesirss and
S (purple lines with arrows) and the gradient path (white))ne
Here,Sis the saddle point anfl is the “global maximum along the
dominant path”.

respect to the paths,(t)’s, we obtain the equation of motion
for the dominant path which satisfies tRiler-Lagrangian
equation§; 3£ = 4Z. The dominant path approach gives the
lowest order approximation of the full path integral weight
tiont4.

Instead of solving théculer-Lagrangianequation of mo-
tion directly, the dominant kinetic path can also be evaldat
by minimizing the weight actio®in path integral formalism.
Define canonical momentup), = % =5, s,;vl(xv —F), the

total energy
—E=—H =%~ puiy ®)

conserves along the dominant kinetic path. Then, HJe
weight actiort?, which should be minimized to find the domi-
nant path, can be written af®f details see supporting infor-
mation):

Xf Xf
S (% Xt :/ J2(E = Vers dl—/ e lF,dx,  (6)
( ) % ( e ) % ; uv v X[J
which is simplified to a line integral along the dominant path

dl=1/Yuv v dx,dx, in a curved space with distance mea-

sureelj‘,1 where thegy, characterize the fluctuation or diffu-
sion strengths.

2.3 New Transition State Rate for Non-equilibrium Sys-
tems

We found the forward and backward dominant paths (lines
with arrows) are irreversible and do not go through the saddl
pointSon the gradient path (white lines) along the landscape.
However, using the effective driving forcl?;‘?ff =35 s;}FV

in the 2nd term on the right side of equation (6), we can al-
ways find the “global maximum along the dominant pagh”
with the componerﬁ,e”(s’) along the path is zero, as shown
inin Fig. 2 (2D) and Fig. 3 (3D)! This is becaus, ff always
changes its sign from the neighborhood®{pointing to )

to the neighborhoo& (pointing toS). Normally, there will

be only one “global maximum along the dominant path” (or
one new saddle point along the path), since the new saddle is
between one basin or the other. Multiple new “saddles” along
the path will introduce additional basin of attractionsioetn
them. In the extreme case when there are multiple new “sad-
dles” along the path, we choose the last one before reaching
the ending stable fixed point S & Therefore, by replac-
ing the saddle poin® for equilibrium systems by the “global
maximum along the dominant pat8”for the non-equilibrium
system, we can derive a new analytical transition stateryheo
for kinetic rates of non-equilibrium systemdetails in sup-
porting information) as

_ Au(S) | detM(S) o SoM

noneq -1
r =(Et =
K (ET) 2\ |detM(S)|

@)

4| Journal Name, 2010, [voll1-9
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where theHJ weight action 8¢M = f§ p-dxis integrated difference between the saddle point and stable basin on the
along the dominant path from the fixed point (basinpab  landscape). On the other hand, in our kinetic rate formula
the “global maximum along the dominant path"St (theory) for non-equilibrium systems, the kinetic rate éted-

For the pre-factor, we follow the similar derivation as the mined by the weight action along the dominant path from the
case of zero noise limif (details reviewed in supporting ~ basin to the “global maximum along the dominant path™ . We
information). Here,Ay(S) is the positive eigenvalue of force see the non-equilibrium ‘saddle point’ is path and direwio

3 OFu (& dependent (the forward and backward paths do not share the

matrix F, y (S) = 72 (S) at the “global maximum along the : X . o
domi t S F] h s the fluctuati | h same ‘saddle point’ as in the conventional equilibrium cse
ominantpath's, which represents the fiuctuations along the o,y i Fig. 5). In addition, although equation (7) is dedv

QOm|nant|pgth ?S' hﬁ»‘totlilke S?lble Sle}atﬁ we ha(;/ehthe St"’," in 2 dimensional space, it can be generalized to any dimansio
tionary solution for t er-Planclequation and the matrix ... tha same final form.

M(S) satisfy the algebra equation (8) at the stable s$ate

&M sMuy +S M cF s +SM:F s =0 8 24 Compare with Transition State Rate of Zero Noise
%EX HETVX ; HETVE ; vETHE (©) approximation

With the zero fluctuation approximatiotst’18 Transition

At the “global maximum along the dominant paif’ since it State Rate can be written as

is not a fixed point (forc& # 0), we do not have a stationary A
solution for theFokker-Planckequation atS' and the matrix Froneq_ (gp)-1 A(S detME?i| K(é)e,fgz“ Pu% (10)

M(S) satisfies the dynamic equation$it 2\ |detm($
dMp(x)  9%H MM 0°H Here, because the possibility of crossing the separatréi-in
dt  dpgdps VY xuox ther directions equals/2, the total escape ratepl"*d with
92H 92H the factor ¥2m) is half of the transition rate to the separa-

(9) trix'® Matrix M satisfies the equation (8) and the frequency
factorK(S’)A, multiplied by the frequency of excursions in the
vicinity of S in contributing to the pre-factor, satisfies the dy-

The ,/-d8MS represents the ratio of the curvature aroundnamics

- M, — M
ax,0p; M oxuops ¢

detM(S
saddle‘ alo(ng)l‘ the dominant path and stable basin state 92H 1 82S  92H
(detM(S) represents the second order fluctuations around sta- ar [Z %90 + Z édx—xﬁ} K (11)
ble basin state in all directions, whiteetM(S) represents the mOXuOPu - fro £ OXuXv OPug Py
second order fluctuations around the “saddle po#tih all There are two major differences in equation (7) and equa-

directions). In other wordsl,(S) measures the frequency or tion (10). (i) In equation (7), the dominant path doesn’t-nec
fluctuations of the single unstable mode at the saddle-&int essary go through the saddle of the foBevhile in equation
detM(S) measures the fluctuations in terms of frequencies 0{10), the dominant path always go through the saddle of the
all stable modes &8, anddetM(S’) measures the fluctuations force é, which is a right assumption only under zero noise
interms of frequencies of all stable modes and unstable eodgimit. (ji) We derived the path dependent teenSi" from
atS. For the exponential factor, the weight act§" repre-  pure path integral formalism, which is an exact solution of
Isenfjs tlhe Weri]ght aCt(ijQﬁ-iJ' as delfi(;led in eqﬁﬁn (Gh), calcu- Fokker-Plank equation. While in equation (10), the path de-
ated along the one dimensional dominant m the sta- A S . .
ble basinSto the “global maximum along the dominant path” pen_dent ter_nK(_S)_e S%uPu is derived tthUQh WKB fpr-
S. In this rate expression for non-equilibrium dynamicalsys malism, which is Jus_t a lowest orde_r appromm_ated_ solutibn o
Fokker-Plank equation. In zero noise approximation, tee fr

tems, the major contribution comes from the exponentiatter A _ . L
with the weight action from stable basin state to the saddI&Hency factoK(S) # 1 is from WKB approximation, which is

point on the dominant path (based on the path integral formafready included ire~S5"" from our path integral formalism.
ism in a curved length space). While the non-exponential pre ' herefore, it can be expected our new transition state réite w
factor gives the second order correction or fluctuationerdet 9ive better estimations than transition state rate of zersen
mined locally at the stable poitand the “global maximum limit, especially when the fluctuation is large.
along the dominant pati.

On the one hand, in conventional transition state theory fo3 Application: Cdl Fate
equilibrium systems, the kinetic rate is determined by Htk s
dle point on the underlying landscape or more explicitly theln this section, we will apply our new dominant path for-
potential barrier between the basins of attraction (pédent malism and non-equilibrium transition state theory foretio

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [voll, 1-9 |5
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rates to a specific example of non-equilibrium network sys-
tem: a gene regulatory motif for binary cell fate decisioms i
stem cells. In this biological system, we found two differen
tiated attractors and one undifferentiated attractor. Jéwee
regulatory circuit, as shown in Fig. 4, consists of mutuglre
lation of two opposing fate determining types of gerfeand
_ _ B, which can be translated into proteidsandB respectively.

. It has been shown that this module controls developmental
cell fate decision (i.e. GATAL and PU.1) in several instance
of multipotent stem or progenitor cef&33. The synthesis of

proteinA(B) is controlled by the concentrations of protéin

Fig. 4 (Color online) Network diagram of canonical gene regukator andB. The proteinsA(B) can bind to the promoter of gene

circuit of two mutually opposing proteins that positively A(B) to activate the synthesis rate&B), which makes a self-

self-regulate themselves. activation feedback loop. In the meantime, prota{B) can
bind to the gend3(A) to repress the synthesis rate BfA),
which makes a mutual repression loop.

In the adiabatic limit, the binding/unbinding processes ar
much faster than the synthesis/degradation, and the madel ¢
be expressed by the following chemical reactions reprewment
the synthesis, degradation and mutual interactions of ¢éine g
products (proteins)sgpporting infor mation).:

B
o Lon oL A0 B (12
in which g*(xg,x2) (ka ) andg®(x1,x2) (kg) are the effective
synthesis (degradation) rate of the protéirand B respec-
tively. Here,g”(x1,%2) andg®(xy,x2) depend on the concen-
trations of the proteirh andB (x; = Na/V, %2 = Ng/V) as:

A, B ST
0TS I
B 5, % byS'
g (X1;X2) =00+ S4+X£21+ S4—|—XLI
Na andNg are molecule numbers of protefnandB, respec-
tively. V is the cell volume.as,ay,bq,bs,ka, ks are positive
0 parameters that denote the strength of the following ictera
0 1 2 3 tions or processes: The first term represents basal levedexp
sion when there is no regulations, the second term represent
X1 a self activation (of strengthi,ay) that obeys a sigmoidal
transfer function, the third term represents mutual irtfohi
Fig. 5 (Color online) Dominant forwardg — Sfor differentiation) ~ (of strengthby,by). Both second and third terms are deter-
and backward§ — Sfor reprogramming) transition paths (black ~ mined by the thresholds and Hill coefficients charactegzin
lines with arrows) between differentiated staBemnd the the degree of cooperativity (here power 4 represents tetram
multipotent stat&S' on two dimensional illustration of the binding of regulators to the genes). Finally, the degraadedi

underlying landscapeSis the saddle point on the landscape &% either factor is represented by the riaieks. The correspond-
are “the saddle points on the dominant paths”. The yellow ikrthe ing deterministic rate equation can be given as:
gradient path along the landscape. Three blue regionsseqrd

o(x1, %) =g (13)

(14)

attractive basins: 2 differentiated stateSaind one multipotent % — 0P (X1. %) — KaX d_XZ — 0B(X1.%) — KaX 15
state aiS. Black arrows represent the gradient force, while red dt 90, %) —kaa, dt g"(ax) —kexe  (19)
arrows represent the flux. At molecular number is finite, the intrinsic fluctuations

are unavoidable. The deterministic equation above is inade
quate and should be modified to the corresponding stochas-
tic equation under fluctuations. When the number of the

6| Journal Name, 2010, [vol]1-9 This journal is © The Royal Society of Chemistry [year]
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molecules becomes large, the Taylor expansion to the second
order leads to the Fokker-Planck equation (1) with the dgvi
forceF = (0" — kax1,0® — kex) and diffusion coefficients
£11= \% (gA—i— KaX1), €22 = \% (gB—|— kex2), €12 = €21 = 0 where

V is the cell volume. However, here we do not attempt to use
Fokker-Planck equation to approximate a CME. In general, no
diffusion process can accurately capture both the preifact
and the exponents of the transitions asymptotically for &8CM

in its limit of infinite molecule population, which is conrted

to Keizer’s paradox. Therefore, here we only consider a dif-
fusion process with the above driving force and the diffasio
coefficients as the start of our transition state rate theleoy

the comparison, we only use the Langevin dynamical simu- g

MFPT

—— Nonequilibrium TST
—%— Simulation

lations for diffusions instead of the Gillespie simulatdfior Zero noise approximation
e Lorono
CME 102 ‘ ‘ : quilibrium :
25 30 35 40 45 50

\%
For simplicity, we consider a symmetric case for parame-

ters of self activation, mutural repressions and degradsti

a=a = a;b=Dby =Dbyk=kn=ks. WherAthe éaaramet.ers differentiation € — S) from our theoretical predictions

are setas =1, b=1k=1, S:_ 0.5,n =40 =9 = 0.1, It (Nonequilibrium TST), Langevin dynamics simulations,zenise

is found that there are three fixed points of the determisti pproximations and equilibrium transition state thecoydifferent

equations: two differentiated stat8s= (2.094810.10519,  cell volumeV (different fluctuation levels).

S, = (0.105192.0948] and one undifferentiated stafy =

(1.1,1.1). On the potential landscape, the locations of the

attractors correspond to the fixed point of the averaged ratgial curl flux

equations, as shown in Fig. 5 fégr= 25. The two asymmet- 1

ric attractorsS represent the differentiated states with almost Fu(X)PSYR) — > 50 [euv (NP3IR)] = j33X) (16)

mutually excluding expression of protein(i.e. GATA1) and v

B (i.e. PU.1). On the other side, the central symmetric attrachreaks the detailed balance and contributes to the weight ac

tor S, characterized by approximately equal expression levelsion or the weight of the paths in a path dependent manner. The

of proteinA and proteirB, represents the multipotent state that non-zero flux is contributed by the non-gradient force as the

exhibits the characteristic balanced or promiscuous &sjwe  first term in equation (16). It leads to the deviation of thendo

of the two opposing, fate-determining concentrationsd& ha inant kinetic paths from the naively expected steepestatesc

mark of the indeterminacy of the undecided multipotent stenyradient paths and the irreversibility between the forvaard

cell. We also show the steady state probability flux (red arthe backward paths. It is worthwhile to point out that the

rows) on the landscape in addition to the gradient of potenGaussian position dependent and non-Gaussian fluctuations

tial landscape (black arrows). It is expected that the aurd ¢ can also shift the saddle and the path from passing through

rent flux component of the driving force leads to the deviatio the original saddle. However, the forward and backwardgpath

of the actual path from the one of the landscape gradient agre reversible for these fluctuations with zero flux. For non-

shown in Fig. 5. Numerically, the optimal path and its weight zero flux, the forward and backward paths are irreversiile. |

action can be obtained by minimizing the discretized targebur example of double negative feedback network as in Fig.

function @etailsin supporting information). 4, even for the Gaussian noise with constant diffusion coeffi

cients, the flux as defined in equation (16) is still non-zemb a

Therefore, we can quantitatively uncover the dominant dif-the system is still out-of equilibrium with irreversible tha

ferentiation paths from the undifferentiated st8téo the dif-  not passing through the landscape saddle. Our double negati

ferentiated states & and the dominant reprogramming paths feedback network as in Fig. 4 provides a good example of non-

from Sback toS, as shown in Fig. 5. It is easy to notice that equilibrium system with the non-gradient force, in whicle th

the forward and backward transition paths are irreversilble  equilibrium dominant path is inadequate and the irrevéasib

addition, neither dominant paths follow the gradient pgt-(  non-equilibrium dominant paths contribute at leading otde

low line) on the landscape nor go through the saddle point, irthe out-of-equilibrium kinetics.

contrast to what is expected from the gradient dynamicseofth In particular, following equation (7), since the dominant

equilibrium systems. In a non-equilibrium system, thedesi paths for the non-equilibrium systems do not pass through th

Fig. 6 (Color online) The mean first passage time (MFPT) of the

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [voll, 1-9 |7
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Detail values can be found in tables at the endugiport-

ing information. For real complex physical and biological
systems in practice, the analytical rate formula preseimted
provides a direct and good estimation of the transitionsrate
between different stable states.

10

10

4 Conclusions

MFPT

In this work, we developed a new transition state or Kramers’

10l | theory and associated analytical formula for the kinettesa
from one attractor to another for general non-equilibriyn d
¢ —— Nonequiibrium TST namical systems with small but finite fluctuations. Using the
T Smudaton . weight action from the path integral, we quantify the opti-
ero noise approxlmatlon . . .
—&— Equilibrium mal(dominant) paths. We found the optimal(dominant) paths
10 v prs mn s = for general non-equilibrium systems do not necessarily go
v through the saddle points. Importantly, we found that if we

replace the saddle point by the “the saddle point on the opti-
Fig. 7 (Color online) The mean first passage time (MFPT) of the =~ mal(dominant) path”, the complete expression of the kineti

reprogramming$— S) from our theoretical predictions rate can be approximated from matching asymptotic expan-
(Nonequilibrium TST), Langevin dynamics simulations,@apise sions.

approximations and equilibrium transition state theaoy different As a result, our new transition state theory in terms of the
cell volumeV (different fluctuation levels). analytical rate formula for non-equilibrium stochastiqdyn-

ical systems is determined by the difference in weight actio
from the basin of attraction to the “saddle point” of the dom-

he K s f lad 't hold d the Kineti inant kinetic paths between the two basins of the attrastion
the Kramer's formula doesn't hold any more and the Kinetic;, , exponential on the one hand, and by the fluctuations

transition state rate is determined by the new “saddle p&int around the basin of attractions and the “saddle” point of the
on the dominant path (not the saddle point on the I"’mdscape)dominant kinetic path between the two basins of the attrac-
We then predicted accordingly the differentiation raterfro o< in the pre-factor on the other hand.
the central basin of stem cell state to the side basin ofrdiffe
entiated celt""*%rom S to S, (see Fig. 6), as well as the re-
programming rate from the side basin of differentiated tell
the central basin of stem cell staff"**from Sto S (see Fig.
7). The results of the kinetic transition ratg8"*%= 1/MFPT
from equation (7), quantifying the Nonequilibrium TST (fira
sition State Theory), are compared with the predictionmfro
the Langevin dynamics simulations, the equilibrium tréosi
state theory (Kramers’ rate), as well as the zero fluctuatio
approximation$>1/-*8 Our theoretical predictions according
to equation (7) agree with the direct stochastic simulation
within the same order of magnitude for different fluctuation
levels (on average, 26% larger for differentiation fr&mo S
and 3% smaller for reprogramming frdato S), which is bet-
ter than the predictions according to the zero noise appraxi
tion (on average, 49% smaller for differentiation fr@no S
and 55% smaller for reprogramming frddto S) and the pre- ~ Acknowledgement
diction according to equilibrium transition state or Krasie
theory (on average, 88% smaller for differentiation frén  HF and JW thank the support from NSF grant NSF-0947767
to S and 82% smaller for reprogramming frogito S) as  for the support. KZ thanks the National Natural Science
shown in equation (3). As expected, zero noise approximaFoundation of China (Grant no. 21190040,11174105, and
tion is worse in the small volume limit and becomes better in91227114) for their support. We also thank Dr. Li Xu for
the large volume limit, especially for differentiatio8 (o S). the help on our figures.

transition state or the saddle pofiias discussed in this study,

As an example, we applied our path integral formalism to
a gene regulatory motif for binary cell fate decisions imste
cells. We found that the optimal paths often deviated froen th
gradient paths and irreversible due to the presence of the cu
flux in addition to gradient force in non-equilibrium system
Furthermore the dominant kinetic paths do not go through the
saddle or transition state point on the landscape. We el
the dynamical time scale of transition for the differentiatas
n example. Our new transition state analytical rate foamul
is in good agreements with the stochastic simulations. Our
new transition state theory and associate analytical ftaroun
kinetic rates (or Kramers’ rates) and kinetic path methad ar
general and can be applied to other non-equilibrium biaialgi
and physical systems.

8| Journal Name, 2010, [vol] 1-9 This journal is © The Royal Society of Chemistry [year]
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